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ABSTRACT The management of food fermentation is still largely based on empirical 
knowledge, as the dynamics of microbial communities and the underlying metabolic 
networks that produce safe and nutritious products remain beyond our understanding. 
Although these closed ecosystems contain relatively few taxa, they have not yet been 
thoroughly characterized with respect to how their microbial communities interact and 
dynamically evolve. However, with the increased availability of metataxonomic data 
sets on different fermented vegetables, it is now possible to gain a comprehensive 
understanding of the microbial relationships that structure plant fermentation. In this 
study, we applied a network-based approach to the integration of public metataxonomic 
16S data sets targeting different fermented vegetables throughout time. Specifically, 
we aimed to explore, compare, and combine public 16S data sets to identify shared 
associations between amplicon sequence variants (ASVs) obtained from independent 
studies. The workflow includes steps for searching and selecting public time-series data 
sets and constructing association networks of ASVs based on co-abundance metrics. 
Networks for individual data sets are then integrated into a core network, highlighting 
significant associations. Microbial communities are identified based on the comparison 
and clustering of ASV networks using the “stochastic block model” method. When we 
applied this method to 10 public data sets (including a total of 931 samples) targeting 
five varieties of vegetables with different sampling times, we found that it was able to 
shed light on the dynamics of vegetable fermentation by characterizing the processes of 
community succession among different bacterial assemblages.

IMPORTANCE Within the growing body of research on the bacterial communities 
involved in the fermentation of vegetables, there is particular interest in discovering 
the species or consortia that drive different fermentation steps. This integrative analysis 
demonstrates that the reuse and integration of public microbiome data sets can provide 
new insights into a little-known biotope. Our most important finding is the recurrent but 
transient appearance, at the beginning of vegetable fermentation, of amplicon sequence 
variants (ASVs) belonging to Enterobacterales and their associations with ASVs belonging 
to Lactobacillales. These findings could be applied to the design of new fermented 
products.

KEYWORDS metataxonomic study, data integration, microbial association network, 
fermented vegetables, meta-analysis

O ver the last 20 years, the development of low-cost sequencing technologies has 
led to the creation of a large number of microbiome data sets, mainly generated 

using metataxonomic analyses based on 16S rRNA metabarcoding technology. For 
example, the number of papers using metataxonomic or metagenomic approaches to 
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study the microbial communities of food increased sixfold between 2015 and 2021 and 
currently exceeds 600 (1); similarly, within the NCBI database, the Taxonomy ID 
“Food metagenome” (NCBI: Tax id 870726) is associated with 770 BioProjects. In keeping 
with the principles of Open Science, most of these publication-associated data sets are 
available in public repositories such as SRA (the Sequence Read Archive of NCBI), ENA 
(the European Nucleotide Archive of EBI), or the DNA Data Bank of Japan. To promote 
the reuse of certain kinds of data sets, specialized databases have been developed, 
such as MGnify for microbiome data (2). Here, we focused on metataxonomic studies 
whose integration by a robust and efficient approach allows the identification of the key 
taxa found in a specific ecosystem. The availability of a vast amount of metataxonomic 
data sets provides an unprecedented opportunity to develop new integrative tools 
for comparing and better understanding taxa associations in various closely related 
microbial ecosystems. However, these efforts face numerous challenges related to data 
reusability (e.g., data availability, metadata quality, and data preprocessing) and the 
most appropriate ways of identifying biologically informative features in a collection 
of metataxonomic studies. In this work, we address these challenges by designing a 
workflow for exploring public data sets related to the microbiota of fermented vegeta
bles and performing a meta-analysis (i.e., reusing independent data sets and integrating 
them into a larger analysis to generate new knowledge).

Our choice of ecosystem was motivated by current interest in the bacterial commun
ities involved in the fermentation of vegetables (3–5). Plant-based fermented foods 
diversify human diets and possess interesting properties in terms of sustainability and 
nutritional quality. These products require little energy to produce and preserve, and 
their consumption confers several benefits to human health (6, 7). With this study, 
we wanted to assess whether public data sets that are already available for fermen
ted vegetables could help to improve our knowledge on the ecological dynamics 
taking place in these products. Fermented vegetables are created through the (usually 
spontaneous) activity of heterofermentative and homofermentative lactic acid bacteria 
(LAB) naturally present in the raw material (8). In Europe, the most popular example 
of this kind of food is sauerkraut, for which the use of pre-selected starter strains 
remains uncommon even for large-scale production (9). A combination of low pH and 
the anaerobic conditions resulting from the fermentation process are the main factors 
that select for the beneficial anaerobic LAB essential in the production of good-quality 
fermented vegetables (3). These bacteria are a broad and diverse group of species 
classified in the phylum Firmicutes, class Bacilli, and order Lactobacillales and include 
representatives from the families Lactobacillaceae, Streptococcaceae, Enterococcaceae, 
Carnobacteriaceae, and Aerococcaceae (10).

It should be noted that, to date, most studies have focused on describing the 
microbial communities present at the end of the fermentation process (4, 5), while 
the dynamic succession of various microbial populations during fermentation has 
received little attention. This represents an important gap in knowledge, especially 
when compared, for example, to research on cheese microbial communities, which 
has revealed that the proper succession of microbial populations is important to the 
quality of the final product (11, 12). Two separate metataxonomic analyses have revealed 
important changes in microbial dynamics during vegetable fermentation. A study on 
carrot juice reported a succession process involving Enterobacteriaceae, Leuconostoc, 
and Lactobacillus, while work on Suan Cai (Chinese pickles) showed that the dominant 
species changed from early stages of fermentation (Leuconostoc mesenteroides) to later 
ones (Lactiplantibacillus plantarum) (13, 14). The little information that can be gath
ered on the subject does not allow us to identify species or consortia that might be 
responsible for controlling various stages of fermentation among different vegetables. 
In this context, the use of metataxonomic data to carry out meta-analysis could prove 
illuminating.

The use and comparison of amplicon data (such as the 16S-based data considered in 
the present work) raise certain difficulties. First, sequencing technology may vary among 
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studies, as may the region amplified or PCR primers employed. Second, taxonomic 
assignment based on the 16S variable region is considered valid only at the genus 
level, limiting species-level interpretations (4). There are, therefore, two possibilities for 
carrying out a comparative study of multiple data sets: comparing genus-level taxo
nomic profiles or comparing exact sequences, specifically, amplicon sequence variants 
(ASVs). The advantages of the first approach include the ability to compare different 
sequenced regions and to reduce the sparsity of the count matrices, while the use of 
ASVs enables intra-genus diversity to be taken into account (15, 16). In both cases, 
the aim of this type of meta-analysis is often to identify core taxa based on criteria of 
abundance and prevalence (17).

The analytical design of such a study is also important. One promising approach 
for meta-analysis is the construction of microbial association networks, which provide 
additional and complementary information to classic analyses of alpha- and beta-diver
sity (18). Association networks enable the identification of hub species (19, 20), taxa 
clusters (21), and core networks, the last of which corresponds to the intersection of 
several microbial association networks and can be used to identify taxa and associa
tions shared by most networks (22). Association networks were originally designed for 
macroscopic ecosystems and have only recently been adapted for the investigation of 
interactions within microbial assemblages (21). They are constructed using count data 
from the sequenced environment, which are compositional (23), high-dimensional, and 
in the form of sparse matrices, thus increasing the difficulty of analysis (21). However, 
compared to networks from other assemblages, the association networks in fermented 
ecosystems appear to be significantly smaller (16) (due to the decrease in microbial 
diversity over time), making them easier to construct, visualize, and compare. According 
to Chen et al. (24), association networks can be divided into four categories, which 
are built using different approaches: correlation networks [CoNet (25) and SparCC (26)], 
conditional correlation networks [SPIEC-EASI (27)], mixture networks [MixMPLN (28)], and 
differential networks (DCDTr). Due to the complexity of microbial interactions, all these 
approaches have important limitations, and no method has yet managed to capture 
all of the aspects of interest. Indeed, studies have even shown that classical measures 
such as Pearson and Spearman correlations can perform just as well as computation
ally time-consuming methods based on more sophisticated statistical models (29, 30). 
Integrating independent studies, thanks to network analysis, offers a comprehensive 
view of microbial communities, facilitating the discovery of core associations among taxa 
(22). By modeling sample composition as a function of covariates, linear mixed models 
serve as an alternative method for integrating metataxonomic data sets. However, 
they primarily focus on differential analysis and the discovery of population structures 
within samples, as exemplified in the investigation of conditions such as inflammatory 
bowel disease (31). Conversely, meta-analyses employing a network approach center on 
elucidating microbial associations and are intrinsically integrative. They can be used to 
visualize associations between taxa and eventually highlight those that are conserved 
[for instance, in a study revealing the stability of gut microbiota across diverse geo
graphic populations (32)].

This study presents an integrative bioinformatics workflow based on a network 
approach for the meta-analysis of public amplicon data sets. The workflow includes 
steps designed to search for and select public time-series data sets and construct ASV 
association networks based on co-abundance metrics. Microbial communities are then 
analyzed by comparing and clustering the ASV networks. We applied this workflow to 
10 publicly available data sets and 931 samples of different fermented vegetables with 
specific sampling times on the microbial assemblages of fermented vegetables. Here, 
we describe the value of this approach for discovering core bacterial taxa and core 
associations shared by different vegetables during the process of fermentation.
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RESULTS

Design of a bioinformatics workflow for the integration of metataxonomic 
data sets

We designed a workflow aimed at selecting public metabarcoding studies, re-analyzing 
the samples, constructing ASV association networks, and finally integrating them by 
constructing a robust core network and ASV clusters. Figure 1 depicts the main steps of 
the bioinformatics workflow designed to analyze and integrate the amplicon data sets. 
The first step involved the careful selection of public data sets focused on the microbial 
communities of fermented vegetables. Next, ASV count tables were constructed for 
each of the selected studies. Using these count tables, we then produced ASV associa
tion networks for each study, which were based on four sensitive and computationally 
efficient metrics: Jaccard distance, Pearson and Spearman correlations between relative 
abundances, and a proportionality measure calculated from clr (centered log-ratio)-
transformed abundances . The purpose of the networks was to help visualize how 
microbial communities interact and evolve dynamically. Finally, the various networks 
were integrated together. A core network was constructed that identified which bacterial 

FIG 1 Meta-analysis approach for integrating amplicon data sets into microbial association networks to compare microbial communities of fermented 

vegetables.
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ASVs were common to most fermentations and which associations between ASVs were 
significantly shared among networks. In addition, a multiple stochastic block model 
(SBM) clustering method was used to identify a set of ASVs that were associated with 
each other across the different networks.

Selection of metataxonomic studies on fermented vegetables

Ten data sets meeting our selection criteria (see Materials and Methods) were obtained 
out of 1,443 studies from SRA (NCBI), 10 studies from MGnify (ENA), and 3 studies from 
FoodMicrobioNet. All data sets contained sequences of the V3–V4 or V4 hypervariable 
region, enabling ASV comparison. The selected data sets originated from studies on five 
different varieties of vegetables (cucumber, carrot, cabbage, pepper, and radish, used 
alone or in a mixture) and comprised between 18 and 310 samples each, for a total 
of 931 samples (Table 1). The time scales that were examined varied among studies, 
as the data sets included between 2 and 12 time points. Depending on the study in 
question, monitoring began between 0 and 30 days after the beginning of fermentation 
and ended between 3 and 720 days after. All studies were conducted on spontaneous 
fermentations, with the exception of PRJNA751723 and PRJNA662831, which included 
samples from spontaneous fermentations as well as samples inoculated with various 
LAB (Latilactobacillus curvatus, Leuconostoc gelidum, Latilactobacillus sakei, or Weissella 
koreensis). Data set PRJEB15657 contained data from two sets of experiments (samples 
from a laboratory experiment and samples from a citizen science experiment), which we 
divided into two subsets.

Visualization of microbial succession during fermentation through the 
construction of association networks

Historically, bar graphs have been used to visualize changes in the taxonomic com
position of bacterial communities between samples. Microbial association networks 
highlight taxa with similar changes in abundance and can visually present information 
that is complementary to bar graphs. For each of the 10 data sets, we built association 
networks, of which one is presented in Fig. 2A and B (study PRJNA689239, paocai 
fermentation over 30 days, captured at six time points). This network appeared to 
be composed of two subnetworks: one containing a high diversity of ASVs (including 
Pseudomonadales and Enterobacterales) with a weighted mean age (WMA) between 0 
and 10 days, and the other containing a lower diversity of ASVs belonging to Enterobac
terales and Lactobacillales, with a higher WMA (between 8 and 30 days). This corrobo
rates that there is a shift during fermentation from a broad initial diversity of ASVs to 
an assemblage dominated by few taxa (in this case, LAB) as observed in many fermenta
tions. Interestingly, we observed the same patterns in the PRJNA564474 study (Fig. 2D; 
kimchi fermentation over 50 days and eight time points). However, a notable difference 
from the paocai study was that the first subnetwork was present at WMAs ranging from 
0 to 50 days, and the second, composed only of Lactobacillales ASVs, appeared at 10–50 
days. This structure suggests that some of the samples failed to ferment, as observed for 
sample SRR10127549 in the bar graph.

A similar network pattern was observed for 8 of the 11 networks analyzed (Fig. S1 to 
S3). The overall pattern could be described as follows: samples initially contained a high 
diversity of ASVs (featuring Pseudomonadales, in particular) with a low WMA; then, as the 
WMA increased, nodes corresponding to ASVs from Enterobacterales and then Lactobacil
lales appeared, with numerous associations between them. However, we would like to 
emphasize a few points to keep in mind when interpreting these networks. The WMA of 
an ASV does not reflect the exact time point at which the ASV first appears. Indeed, 
during each of the vegetable fermentations, all ASVs were present from the beginning of 
the fermentation process. This measurement may also represent both living and dead 
bacterial populations because the DNA of dead bacteria may be recovered and 
sequenced as well. Hence, the use of WMA to organize an association network merely 
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provides a general picture of the temporal dynamics of ASVs over a fermentation 
process, highlighting the main “peaks” of presence and potential species associations.

We also analyzed the three networks that did not exhibit this succession of commun
ities (PRJNA473189, PRJNA662831, and PRJNA544161; see Fig. S1 to S3). A common 
feature of these three studies was a shift in timing compared to the others: more 
precisely, sampling did not start until 3 days after the onset of fermentation. Therefore, 
it is possible that the successional shift in microbial communities took place before the 
first sampling point. This hypothesis is supported by the observation that the taxonomic 

FIG 2 Microbial association networks for studies PRJNA689239 and PRJNA564474 highlight the dynamic evolution of microbial communities during 

fermentation. (A) and (C) Barplots depicting relative abundances in each sample for studies PRJNA689239 and PRJNA564474, respectively. Samples are ordered 

by age (the sampling time in days is included in the sample name). A dark gray color indicates a taxonomic order other than Enterobacterales, Lactobacillales, 

and Pseudomonadales, and NA corresponds to ASVs with unknown taxonomic affiliation at the order level. (B) and (D) ASV association networks for studies 

PRJNA689239 and PRJNA564474, respectively. Each node represents an ASV; node size reflects its maximum relative abundance, and color represents its 

taxonomic order. The x-axis corresponds to the weighted mean age of the samples in which the ASV was detected, measured in days, and weighted by ASV 

relative abundance. An edge between two nodes indicates an association that was detected according to at least one metric.
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profile of the pepper and sauerkraut samples (PRJNA473189 and PRJNA662831) did not 
change over time. In the case of doubanjiang (PRJNA544161), a fermented product 
containing numerous ingredients (beans, soya, rice, and spices), ASVs belonging to 
Enterobacterales appeared to proliferate relatively late, as observed on the bar graph.

Comparison of association networks to identify a core network of bacterial 
communities

To integrate the 11 association networks, we constructed a core network, i.e., the 
intersection of several networks (Fig. 3). In Fig. 3A, it can be seen that the 11 networks 
shared three vertices (ASVs) overall, and pairwise analyses revealed between 10 and 58 
vertices that were shared between a given pair of networks. Similarly, pairwise analyses 
detected between 3 and 296 edges that were shared by two networks, but no edges 
were shared by more than nine networks (Fig. 3B). To evaluate the statistical significance 
of the edge intersections, we compared them with a null model using a Kolmogorov-
Smirnov test; the results rejected the null hypothesis that our set of networks followed 
the same distribution as the null model for intersections between two, three, four, five, or 
six networks (P-value < 0.05 for 100 cases). This means that those network subsets share 
associations in a significant way.

We then constructed core networks based on the intersections between two and six 
networks (all shown in Fig. S2). The core network built using microbial associations 
present in at least three networks (Fig. 3C) included 97 ASVs (out of a total of 975 used to 
construct the 11 networks). Among them, 13 were affiliated with the order Pseudomona
dales, 17 with Enterobacterales, and 25 with Lactobacillales. In representing the core 
network, we used the scaled WMA on the x-axis. The rationale of the scaled WMA was to 
normalize time data and establish a common time scale between the various studies. 
Indeed, the WMAs are not directly comparable between studies because the time points 
measured varied from one study to another.

Analysis of the different significant core networks revealed that, despite all of the 
differences between experiments (type of sequencing, fermentation conditions, and 
time scale), there appeared to be a common temporal structure in the microbial 
dynamics of fermented vegetables. In particular, after a mean scaled WMA of 0.5, 
Lactobacillales ASVs tended to predominate. Furthermore, we also observed a shift from 
the initial microbial population of vegetables to one dominated by Enterobacterales and 
then a second shift to Lactobacillales.

This observation was confirmed by a clear difference in scaled WMA among all ASVs 
corresponding to Pseudomonadales, Enterobacterales, and Lactobacillales, as shown in 
Fig. 3D. Figure 3E highlights this trend and also shows that the ASVs with the lowest and 
highest scaled WMAs were less often shared among studies (less than three graphs when 
WMA was lower than −1 or higher than 2) than those with median WMA values. This 
suggests that the initial community, as well as the LAB present mainly at the end of 
fermentation, tended to be more specific to a given experiment than other ASVs. 
Moreover, the ASVs belonging to Enterobacterales were more likely to be shared between 
networks than those corresponding to Lactobacillales (non-parametric Wilcoxon-Mann-
Whitney test, P-value = 0.02). In fact, of the three ASVs that were detected in all experi
ments, all belonged to the Enterobacterales (Klebsiella, Pectobacterium, and an 
unidentified Enterobacterales).

Finally, we investigated distinctions between different genera within the family 
Lactobacillaceae [following the new taxonomy of Zheng et al. (42)] based on the type of 
fermentation performed. In the core network, ASVs belonging to genera that perform 
hetero-lactic fermentation were more numerous than those belonging to genera that 
perform homo-lactic fermentation. Moreover, most members of the Lactobacillales were 
found in only one graph (143 out of 208, i.e., 69%), and among those shared by more 
than two graphs, 18 perform heterofermentation and 7 perform homofermentation. We 
can therefore conclude that LABs are generally highly specific to a fermentation process, 
and the ASVs that are shared among different processes are mostly heterofermentative. 
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There was no significant difference between the scaled WMA of heterofermentative and 
homofermentative genera, but we did detect some expected successional shifts in 
genera (Fig. 3F, Leuconostoc and Lactiplantibacillus, P-value = 0.02).

Multiple clustering to identify putative bacterial consortia shared among 
studies

To identify sets of ASVs that were connected in similar ways across the 11 microbial 
association networks, we applied the multiplex stochastic block model graph cluster
ing method. Ten different clusters were identified, which varied in their size and the 
prevalence and taxonomy of their member ASVs. Clusters 1–5 contained few ASVs 
(between 5 and 45) that were shared between two or more networks, while clusters 6–10 
contained many ASVs (between 94 and 463) that were mainly specific to one network 
(Fig. 4A). ASVs affiliated with Lactobacillales predominantly belonged to clusters 5, 9, and 
10; this last group contained most of the Lactobacillales ASVs and those corresponding to 
the diverse initial microflora, i.e., those that were specific to each experiment.

Among the different clusters, clusters 1 and 5 were particularly interesting, as they 
included the majority of ASVs that were shared by more than five networks, and they 
were the predominant clusters in the core network (Fig. 4B). Moreover, ASVs in the two 
clusters differed significantly in their scaled WMA (P-value = 0.013). It is possible that the 
ASVs in these two clusters correspond to successive bacterial communities that are 

FIG 3 Core network and succession of bacterial communities. (A) Boxplot showing the number of vertices in the core networks built from the intersection of 

2–11 networks. The dotted gray line corresponds to three vertices. (B) Boxplot showing the number of edges in the core networks built from the intersection of 

2–11 networks. (C) Core network built from ASV associations found in at least three networks. The line type of an edge represents the number of times the ASV 

association was found. The node position on the x-axis is the mean scaled WMA. ASVs are colored by taxonomic order. (D) Boxplot showing the differences in 

mean scaled WMA between ASVs affiliated with the orders Pseudomonadales, Enterobacterales, and Lactobacillales. (E) Scatterplot of ASVs colored by taxonomic 

order, depicting their prevalence in relation to mean scaled WMA. (F) Boxplot showing the differences in mean scaled WMA among the genera in the family 

Lactobacillaceae. Each dot is an ASV.
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common in vegetable fermentation: cluster 1 appeared to be highly associated with 
ASVs in the orders Pseudomonadales and Enterobacterales, while cluster 5 represented an 
assemblage of Enterobacterales and Lactobacillales. This community of conserved ASVs 
could potentially represent a shared core consortia of early fermentation, including the 
genera Leuconostoc, Weissella, Latilactobacillus, Lactiplantibacillus, Enterococcus, 
Levilactobacillus, Lactococcus, Vagococcus, Pediococcus, Companilactobacillus, Brochothrix 
from Lactobacillales, and Yersinia, Citrobacter, Pseudocitrobacter, Erwinia, Serratia, and 
Providencia from Enterobacterales; its detailed composition is shown in Table S1.

DISCUSSION

This work presents an integrative bioinformatics approach that uses association 
networks to combine different independent data sets on the microbial dynamics of 
different vegetable fermentations. By using relevant network metrics and integration 
methods on metabarcoding data, we obtained valuable insights into bacterial commun
ity structure during different phases of fermentation. Historically, association networks 
have been used to detect potential inter-species interactions; here, we adapted this 
strategy to identify and visualize ASVs with similar temporal dynamics. To our knowl
edge, this work is the first to construct a core network representing the fermenta
tion of different vegetables throughout time based on sequence data from multiple 
independent data sets. By integrating several public data sets together, we were able 
to characterize two successional shifts that were conserved among different fermenta
tion ecosystems: the first from the initial microbial population of vegetables to Enter
obacterales, and the second to an assemblage dominated by Lactobacillales. To test 
the significance of the core network we obtained, we used an approach based on 
comparison to a null model, which was similar to that developed by Röttjers et al. 
(22), with a sampling of random graphs similar to Doane et al. (43). Indeed, the identifica
tion of core networks is a more challenging task than the computation of the global 
intersection network (21). With these tests, we determined that some intersections 
between networks would not be expected by random chance, and thus that some edges 
may correspond to genuine ASV dynamics shared among several studies. Finally, we 
complemented this approach by using the SBM method for ASV clustering, which is a 
technique applicable to multiplexes (a type of multi-layer network) that does not require 

FIG 4 Network clustering shows an association between highly prevalent ASVs from orders Lactobacillales and Enterobacterales. (A) Scatterplot of ASVs colored 

by cluster. The shape corresponds to the taxonomic order. (B) Core network built from ASV associations found in at least three networks, with ASVs colored by 

cluster. The shape corresponds to the taxonomic order.
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any a priori assumptions regarding connectivity patterns. The SBM model has been used 
for community detection in various fields, such as sociology. More recently, it has been 
applied to taxonomic profiling of the human microbiome in order to uncover patterns of 
community structure. Specifically, it was used as a bipartite model for clustering samples 
and taxa (44). In another study, the simple SBM enabled the detection of OTU clusters 
based on their connectivity patterns in a co-occurrence network (45). In the present 
work, we applied the multiplex version of this model to a collection of networks in order 
to identify clusters of ASVs that share similar patterns of associations across the different 
networks. We were able to identify 10 clusters of ASVs, which could be used to guide the 
exploration and delineation of new bacterial consortia in fermented vegetables (46).

With respect to the microbial ecology of fermented vegetables, our methodology not 
only confirms previously proposed hypotheses on bacterial succession from individual 
studies but also brings to light novel insights. Two expected successional shifts are 
observed, one from the initial very rich and diverse microbiota to Enterobacterales, and 
the second to an assemblage dominated by a few abundant Lactobacillales specific 
to the fermented product. However, contrary to expectations, we did not detect the 
anticipated succession between heterofermentative and homofermentative genera in 
our study. Our study also showed that Enterobacterales ASVs were more widely shared 
than Lactobacillales ASVs. Finally, our most important finding was the recurring and 
transient appearance, at the beginning of fermentation, of ASVs belonging to Entero
bacterales and their association with ASVs affiliated with Lactobacillales. This raises the 
question of the ecological function of Enterobacterales in vegetable fermentation and 
their impact on the properties of the final product. Due to the small number of studies 
carried out on the subject and the extensive variability in the methodologies used, 
most reports have not generated convincing conclusions on the impact of Enterobac
terales and their possible interactions with LAB. Nevertheless, based on the existing 
literature, several hypotheses can be put forward. Enterobacterales may have fermenta
tive properties or they may participate in nutritional mutualism that is beneficial to the 
development of LAB. Indeed, certain trophic relationships between LAB and Enterobac
teriaceae have already been described. For example, some LAB generate metabolic 
energy using an agmatine deiminase pathway that relies on agmatine produced by 
Enterobacteriaceae (47). In the wet coffee fermentation process, the first phase involves 
interactions between Enterobacteriaceae (with pectinolytic activity), acetic acid bacteria, 
and some yeasts (48). Enterobacteriaceae have also been found in two other studies on 
fermented vegetables (49, 50), of which the former hypothesizes that the presence of 
Erwinia sp. may reflect its ability to invade compromised plant tissues or its potential 
ability to ferment sugar.

This meta-analysis demonstrates the value of using public data sets in an Open Data 
and Open Science framework. The approach we designed is particularly well suited to 
fermented vegetable ecosystems: since these ecosystems are closed, contain relatively 
few taxa, and undergo a temporal succession of communities, the representation of ASV 
association networks is fairly easy to visualize and interpret. This approach could be 
easily applied to amplicon or shotgun metagenomic data on closed ecosystems with 
community shifts. One limitation of the present meta-analysis is that it was carried out 
on a relatively small scale (on 10 independent data sets including a total of 931 samples), 
due to the small number of reusable public metabarcoding data sets on fermented 
vegetables. Hence, biological results could be confirmed by investigating additional data 
sets. This limitation is mainly due to difficulties in accessing raw data (some samples are 
missing, some data are pre-processed, etc.) and metadata (sometimes incomplete and 
inconsistent, with manual extract from paper required). Indeed, these limitations were 
highlighted in a recent article (51), which recommended that data be deposited in public 
repositories together with assay metadata (technical features of the experiment) and 
biological metadata (environmental conditions of the biosamples). This, along with the 
adoption of other best practices, will enable wider reuse and integration of microbiome 
data sets on a broader scale.
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This study is based on 16S metataxonomic data, more specifically, the V4 hypervari
able region because it was used in the majority of the data sets found. This region 
is the most frequent target of studies focused on food ecosystems, along with the V3–
V4 region of the 16S rRNA gene (1). Unfortunately, this gene region has poor discrimi
natory power; it is able to provide reliable taxonomic assignment at the genus level 
only and cannot be used to study species-level diversity [unlike, for instance, the V1–
V3 region (52)]. Therefore, although it is interesting to discover ASVs that are shared 
between different studies, this approach is ill-suited for characterizing the species- 
and strain-level diversity of Lactobacillales and Enterobacterales. Furthermore, the read 
count tables obtained for the different studies can be shaped by many biases, including 
differences in sample collection and storage, DNA extraction method and primer choice, 
variation in the number of rRNA operons (52, 53), amplification of extracellular DNA, and 
errors in taxonomic affiliations. Therefore, the results of any individual ASV count table 
must be interpreted cautiously. However, in the context of our study, the use of ASVs 
enabled direct comparison of sequences between studies and reduced the influence 
of taxonomic misclassifications (54, 55). In addition, integrating ASVs into association 
networks allowed comparisons of similar dynamics between ASVs in different studies 
and limited the biases that might arise from direct comparison of relative abundances.

This work demonstrates the effectiveness of using association networks for temporal 
meta-analysis. The approach we developed could easily be applied to new data sets 
or extended to incorporate new tools for association network inference, core network 
detection, and clustering. In the future, it could be interesting to integrate additional 
sample metadata (such as temperature, lactic acid concentration, pH, and/or salinity) 
if they were available in a standardized format and could be easily integrated into an 
association network. Indeed, many factors can influence the composition and dynamics 
of the fermenting microbial community, as shown previously for salinity or temperature 
(3). This approach could lead to the design of ideal consortia that could make vegetable 
fermentation safer (56), more reproducible, and exploitable on a large scale (57).

Finally, the taxonomic profile inferred from 16S rRNA is not able to provide insights 
into the functional profile of bacterial communities or into the part(s) played by other 
microorganisms [even if their presence is minor, e.g., less than 5% relative abundance for 
fungi and Archaea in brine food according to Leech et al. (4)]. Ultimately, there is a need 
for complementary functional studies (shotgun metagenomics and metatranscriptomics) 
to improve our understanding of vegetable fermentation and assess the functional 
interactions taking place during this process between all microorganisms.

MATERIALS AND METHODS

Study selection

Data sets were obtained from three repositories: the MGnify database (on microbiome 
data), the FoodMicrobioNet database (on food ecosystems), and the NCBI SRA database. 
Studies focused on the microbial ecosystems in fermented vegetables were identified in 
MGnify by selecting the biome “Food production” and filtering with the term “Fermented 
vegetables,” while in FoodMicrobioNet, we used the spoilage filter “Fermented” from 
studies labeled with “Vegetables and vegetable products.” From NCBI/SRA, we retrieved 
studies with the Taxonomy IDs “Food metagenome” (870726), “Fermentation metage
nome” (1326787), and “Food fermentation metagenome” (1154581). Of the resulting 
studies, the only ones that were considered were those whose “SRA Run Selector” 
metadata contained the words “day,” “week,” “month,” “hour,” or “time” and that had an 
associated publication on fermented vegetables.

We included only studies that examined at least two time points, contained more 
than 10 samples, and were associated with a publication (to ensure access to extensive 
metadata). Finally, we retained only studies that sequenced the V4 or V3–V4 hypervaria
ble region of the 16S rRNA gene to permit comparisons of ASVs. Raw sequencing data 
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of the resulting selected studies were retrieved from the NCBI SRA repository using 
homemade scripts.

Construction of ASV count tables

Sequencing data from each study were processed using the dada2 pipeline (54) for read 
quality control, read filtering and trimming (with parameters truncLen = 240 or 220 
depending on read length, maxN = 0, maxEE = 2, truncQ = 2), error rate learning and 
ASV inference, paired read assembly (with parameter minOverlap = 3), chimera removal, 
and taxonomic assignment to kingdom, phylum, class, order, family, and genus (using 
Silva database nr 99 v 138. 1). For the five studies in which the V3–V4 region of the 16S 
rRNA gene was sequenced, only the V4 region was retained. The ASV count table for each 
sample, the ASV taxonomy table, and the sample metadata were combined into one 
phyloseq object (58) for each study. ASVs matching mitochondrial or chloroplast DNA 
and samples from negative fermentation controls were excluded from the count tables.

Inference of microbial association networks

For each study, a count table was filtered to create a microbial association network. 
Only non-control samples with more than 15,000 reads and ASVs found in at least 
three samples and with an average relative abundance greater than 1e-5 were inclu
ded. We chose association metrics that take into account co-presence, with Jaccard 
distance, as well as co-abundance, with Pearson and Spearman correlations based 
on relative abundances. The proportionality measure proposed by Lovell et al. (59) 

(Φ(a, b) = var(clr(a) − clr(b))
var(clr(a) + clr(b)) ) was also used following centered log-ratio transforma

tion, performed using the function aldex.clr from the package ALDEx2 (60). Edges 
were traced if at least one of these four measures reached a non-stringent threshold 
(0.4 for Jaccard distance and 0.5 for the three other measures). The thickness of each 
edge reflected the number of combined metrics supporting it. A force-driven algorithm 
(Fruchterman-Reingold) was used to calculate the layout of each association network. 
This layout was preserved on the y-axis, but the x-axis was modified: the position of each 
ASV was the mean age of the samples in which the ASV was present, weighted by its 
relative abundance (hereafter named WMA for weighted mean age).

Core network construction

The core network was constructed based on the intersections of the independent 
association networks created for each study. To account for the different sampling time 
points and fermentation rates among studies, the x-axis position of each ASV in the core 
network corresponded to the average of its centered and scaled positions in the original 
networks. A null-model statistical test was used to assess the significance of the core 
networks constructed from edges shared by a subset of networks or by all networks. 
First, we generated 100 sets of networks with the same nodes as the networks of interest 
but with random edges, using the “rewire” function of the igraph R package with prob 
= 1. Next, the distribution of edges shared by a given subset of networks or by all 
networks was compared between each null model and the studied set of networks with 
a Kolmogorov-Smirnov test.

SBM multiplex clustering

Multiplex networks refer to a collection of networks involving the same sets of nodes 
but originating from different types of relationships. Here, each network correspon
ded to a specific study and each node corresponded to an ASV. SBM clustering was 
applied to multiplex networks to assign each ASV to a community (or block) accord
ing to its connection patterns. The estimateMultiplexSBM function from the R pack
age sbm (61) was used with a Poisson model describing the relationship between 
the nodes. The number of blocks was chosen using a penalized likelihood criterion 
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( integrated completed likelihood [ICL]), and the likelihood maximization was obtained 
via a variational version of the expectation-maximization algorithm.

Statistical analysis and figure construction

To compare WMA or the prevalence among studies of ASVs belonging to different 
groups (taxonomic rank or SBM cluster), the non-parametric Wilcoxon-Mann-Whitney 
test was performed. To create figures, the R packages ggplot2, viridis, ggpubr, and 
ComplexHeatmap were used (62, 63).
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