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Abstract

Bovine mastitis (BM) is a major disease in dairy industry. The current approaches — mainly antibiotic treatments —
are not entirely effective and may contribute to antimicrobial resistance dissemination, rising the need for
alternative treatment. The present study aims to evaluate the impact of post-milking application of Lacticaseiba-
cillus paracasei CIRM BIA 1542 (Lpl542) on the teat skin (TS) of 20 Holstein cows in mid lactation, in order
to reinforce the barrier effect of the microbiota naturally present on the teat. Treatment (Lpl542, iodine or no
treatment) was applied post-milking twice a day on the 4 teats of healthy animals for 15 days. Blood and milk
samples, and TS swabs were collected at day (D)1, D8, D15 and D26 before morning milking and at D15 before
evening milking (D15E) to evaluate Lpl542 impact at the microbial, immune and physiological levels. Lp1542
treatment resulted in a higher lactic acid bacteria and total microbial populations on TS and in foremilk (FM) at
D15(E) compared with iodine treatment. Metabarcoding analysis revealed changes in the composition of TS and FM
microbiota, beyond a higher Lacticaseibacillus abundance. This included a higher abundance of Actinobacteriota,
including Bifidobacterium, and a lower abundance of Pseudomonadota on TS of Lpl542 compared with iodine-
treated quarters. In addition, Lp1542 treatment did not trigger any major inflammatory response in the mammary
gland, except interleukin 8 production and expression which tended to be slightly higher in Lp1542-treated cows
compared with the others. Finally, Lp1542 treatment had no impact on the mammary epithelium functionality (milk
yield and composition) and integrity (epithelial cell exfoliation into milk and milk Na*/K* ratio). Altogether, these
results indicate that a topical treatment with Lp1542 is safe with regard to mammary gland physiology and immune
system, while impacting its microbiota, inviting us to further explore its effectiveness for mastitis prevention.
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1 Introduction Gaeta et al., 2017). Strategies for modifying or restor-

ing the microbiota, based on the administration of one
Several studies highlighted in human and animals a  or more strains of the microbiota, have been explored,
relationship between the microbiota and the health or  mostly in human (Doré et al,, 2013; Martin et al., 2019).
functionality of the related organ (Bicalho et al.,, 2017;  Similarly, in bovine, a relationship was found between
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the richness of teat cistern microbiota and the udder
health (Falentin et al, 2016; Rault et al., 2020). Bovine
mastitis (BM) is the most common and detrimental
disease in dairy industry worldwide affecting approxi-
mately 40% of cows in France each year (CNIEL, 2021).
BM is caused by an intramammary infection, which trig-
gers an inflammation of the bovine mammary gland
(Blowey et al., 1995; Halasa et al, 2007). Prophylac-
tic treatments including post-milking teat disinfection
and/or antimicrobial therapy at the end of lactation
are currently used to prevent infections (Gruet et al.,
2001). The use of chemical products for post-milking
dipping such as chlorine or iodine is contested because
they can provoke a teat skin (TS) irritation (Sadakane
and Ichinose, 2015) and the presence of iodine residues
was reported in milk, with safety concerns especially for
young consumers (Borucki Castro et al., 2010, 2012). On
the other hand, antimicrobials used to treat the cows are
unfortunately not entirely effective (Sharun et al., 2021),
and increase the risk to spread antimicrobial resistance
(Oliver and Murinda, 2012). Therefore, researchers are
working on the development of alternatives to cur-
rent approaches to prevent or treat BM (Bennett et al.,
2022; Brouillette et al, 2023). One of them is to pre-
serve the mammary microbiota (Teat skin, foremilk) to
act as a barrier against pathogens. Besides, although
they are not dominant, lactic acid bacteria (LAB) are
very interesting components of the bovine mammary
microbiota. Their abundance has been associated with a
healthy mammary gland (Oikonomou et al., 2014). Fur-
thermore, the use of LAB as a barrier flora has shown
in vitro encouraging results to prevent BM by modulat-
ing the innate immune response and by preventing the
adhesion and/or internalisation of pathogens (Armas et
al., 2017; Souza et al., 2018). Lacticaseibacillus paraca-
sei CIRM BIA 1542 (Lp1542) is one promising candidate,
due to its ability to inhibit Staphylococcus aureus inter-
nalisation into bovine mammary epithelial cells (bMEC)
(Bouchard et al., 2013, 2015). Lp1542 was isolated from
teat canal microbiota and belongs to a species with
a Qualified Presumption of Safety (QPS) status (EFSA,
2023). In the present study, we postulated that the appli-
cation of Lpl542 would allow maintaining a diverse
microbiota on TS and in foremilk (FM) and strengthen-
ing its barrier effect in relation to the in vitro beneficial
properties of the strain. An in vivo assay was thus con-
ducted to evaluate the impact of a post-milking appli-
cation of Lpl542 on the bovine TS at the microbial,
immune and physiological levels, in comparison with
iodine and the absence of treatment.

C. GOETZ ET AL.
2 Materials and methods

The strain used in this assay was Lacticaseibacillus
paracasei CIRM BIA 1542 (hereafter referred as to
Lpl1542), isolated from bovine mammary gland micro-
biota. Lpl542 was cultured on Man Rogosa Sharpe
medium (MRS; pH 5.4; BD, Le Pont de Claix, France)
and incubated without agitation for 24 h at 37 °C. After
the incubation, the bacterial cells were harvested by
centrifugation at 6,000xg for 10 min at 4 °C, washed
twice with 0.9% (w/v) saline solution and resuspended
in UHT skimmed milk at 1 x 10° cfu/ml. The Lp1542 sus-
pension was aliquoted (10 ml) and stored at -20 °C until
use.

Animals and experimental design

The trial was performed on 20 Holstein cows (2 batches
of ten animals according to calving date) at the INRAE
PEGASE experimental farm (IEPL, 35650 Le Rheu,
France; https://doi.org/10.15454/yk9q-pf68); See Sup-
plementary Table S1 for the complete list of cows, their
batches and their treatments). All procedures involving
animals were approved by the local Ethics Committee in
Animal Experiment of Rennes and the French Ministry
of Higher Education, Research and Innovation (APAFIS
#22154-201909261613485 V3). The cows were separated
into 3 treatment groups that were balanced by milk
production, body weight, lactation rank, days in milk
(DIM), milk composition and somatic cell count (SCC),
measured during 2 weeks before treatment. Three treat-
ments were tested: (1) absence of post-milking treat-
ment (group N, n = 6 cows), (2) post-milking teat spray-
ing with iodine as conventional treatment (group I, n =
6 cows) and (3) post-milking teat spraying with Lp1542
suspension at ~1 x 109 cfu/ml (group L, n = 8 cows) (Fig-
ure 1). Treatment was applied twice a day for 15 days
on the 4 teats of the animals, treating each animal with
one treatment (N, I or L) to avoid cross contamination
between teats with the Lp1542 and to observe the effect
of treatment also at the systemic level. The trial was car-
ried out on healthy animals (SCC < 100,000 cells/ml) in
mid lactation (110 + 22 DIM) treated with iodine before
the trial (twice a day, for 1 week). The animals were fol-
lowed for an additional period of 11 days in order to
assess the persistence of the effect. During this period,
iodine was used twice a day as a conventional treatment.

Sample collection

Teat skin (side and teat end) swabs, foremilk (5 ml) and
cisternal milk (CM, 15 ml) were collected manually at
the quarter level (4 x 6-8 cows per treatment group) just
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FIGURE 1  Experimental design of the study. The trial was performed on 20 Holstein cows. The cows were separated into 3 treatment
groups: (1) absence of post-milking treatment (group N, n = 6 cows), (2) post-milking teat spraying with iodine as conventional
treatment (group I, n = 6 cows) and (3) post-milking teat spraying with Lp1542 suspension (group L, n = 8 cows). Treatment was
applied twice a day on the 4 teats of the animals for 15 days. The animals were followed for an additional period of 11 days with
iodine treatment twice a day, in order to assess the persistence of the effect. Teat skin (TS) swabs, foremilk (FM) and cisternal
milk (CM) were collected just before (D1), during (D8, D15) and 11 days after the differential treatment period (D26). Teat skin
swabs and FM samples of individual quarters were also collected before the evening milking at D15 (D15E) for the second batch
of animals (n = 10). Composite milk (CoMi) and blood samples (B) were collected at D1, D8, D15 and D26 (only for CoMi).

1 Microbial analyses were performed at the quarter level at all timepoints, except microbiota analyses through metabarcoding
and determination of Lp1542 by quantitative PCR, which were performed at D15 and D15E only. 2 Immunological analyses were
performed at the quarter level at all timepoints (except D15E) only in CM. 3 Milk performances were evaluated at the cow level

at all timepoints (except DI5SE). Other physiological analyses were performed at the cow level at all timepoints (except DI5E

and D26).

before (D1), during (D8, D15) and 11 days after the differ-
ential treatment period (D26). Sampling was performed
blindly and randomly before the morning milking, cor-
responding to 15 hours following the post-milking treat-
ment (see Supplementary Methods for details on sam-
pling). Teat skin swabs and FM samples of individual
quarters were also collected before the evening milking
at D15 (DI5E) for the second group of animals (n = 10).
These additional samples were included to limit milk
leaking, that occurred frequently before morning sam-
pling and that biased the sampling of FM. Besides, it
allows monitoring the impact of treatment on TS and
FM microbiota 8 h following the treatment. Compos-
ite milk and blood samples were collected at cow level
(6-8 samples per treatment group) at D1, D8, D15 and
D26 (only for composite milk). Composite milk cor-
responds to the milk of the 4 quarters that was col-
lected by the milking machine. All milk samples (FM,
CM, and composite milk) and TS samples were stored
on ice until use. Blood was collected in two lithium-
heparin tubes (Sarstedt, Numbrecht, Germany) immedi-
ately after milking from the coccygeal vein of each cow.
The plasma was recovered by centrifugation at 3,000xg
for 15 min, aliquoted and stored at —20 °C until use.

Microbial analysis

Microorganisms recovered from TS, FM or CM were
quantified by diluting serially and plating on differ-
ent selective agar plates using the conventional plate-
counting technique or its miniaturised method (Baron
et al., 2006). MRS agar was used for LAB isolation, Plate
Count Agar (PCA, Blokar, Beauvais, France) for total bac-
teria, Mannitol Salt Agar (MSA; CONDALAB, Madrid,
Spain) for Staphylococcus spp. and Mac Conkey (CON-
DALAB) for enteric bacteria. The plates were incubated
48 h at 37 °C under anaerobic conditions, 48-72 h at
30 °C, 24-48 h at 37 °C and 24 h at 37 °C for MRS, PCA,
MSA and Mac Conkey, respectively. Bacterial popula-
tion was expressed in log (cfu/ml). A value of 0.95 was
attributed when no colony was counted, corresponding
to a threshold detection of 1 colony detected in 100 pl of
milk or TS microbial suspension.

Determination of Lacticaseibacillus paracasei CIRM
BIA 1542 by quantitative PCR

Lp1542 population was determined by qPCR from total
DNA extracted from TS and FM at D15 and DI5E
(used for microbiota analysis, see below). Strain-specific
primers were designed using the tools available on the
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Pathosystems Resource Integration Center (PATRIC)
platform (https://www.bv-brc.org/; see Supplemental
methods for details on the design of Lpl542 specific
primers). The forward primer (5-TGTTGGATACCGAGA
CTCAATGAA-3') and the reverse primer (5-ATTTCTTTA
GCTTTATCCTTCCCGT-3') targeting the Lpl542_504
gene were used to quantify the Lp1542 strain in the sam-
ples, using a range of DNA of the strain and a detection
threshold corresponding to 0.62 log cfu/ml of Lp1542.

Presence of pathogenic microorganisms in cisternal
milk

The presence of pathogenic microorganisms was inves-
tigated on CM pooled from the 4 quarters at D1 and D15.
The analysis was performed by an accredited laboratory
(Labocea, Fougeéres, France) using the PathoProof™ Mas-
titis Complete-16 Kit (Thermo Scientific™, Waltham, MA,
USA), allowing the detection of 15 of the main conta-
gious mastitis-causing microorganisms.

Microbiota analysis

An analysis of the TS and FM microbiota was performed
at DI5 (morning and evening) by PCR amplification
of the V3-4 region of the gene encoding 16S rRNA
using the universal primers S-D-Bact-0341-b-S-17 and
S-D-Bact-0785-a-A-21. DNA extraction, PCR amplifica-
tion and amplicon sequencing on the Illumina MiSeq
PE250 platform (Illumina Inc., San Diego, CA, USA) of
Genome Quebec (Montreal, Canada) were performed
as described previously (Mariadassou et al., 2023). Neg-
ative controls undergoing all steps from extraction
to sequencing but without bacterial suspension were
included for each set of extractions, resulting in 13 nega-
tive controls that were further used to determine the kit-
ome (i.e. potential contaminant Operational Taxonomic
Unit (OTU) originating from extraction, amplification
and sequencing steps).

Sequence library analysis was performed using the
FROGS pipeline hosted on the INRAE MIGALE bioinfor-
matics platform. Pre-processing, clustering and chimera
removal steps were performed with the FROGS pipeline
(Galaxy Version 3.2.3+galaxy2) essentially as previously
described (Rault et al., 2020). The FROGS clustering
step was performed with Swarm with an aggregation
distance of 1 (Mahé et al., 2014). Additional filter tool
(FROGS OTU filter) was used to apply an abundance
filter before the taxonomic affiliation process and to
keep OTU with a minimum proportion of 0.00005. Affil-
iation was then performed with the FROGS affiliation
OTU tool based on Blastn+ using the 16S SILVA 138.1
database (Camacho et al., 2009; Quast et al., 2013). Data

C. GOETZ ET AL.

were filtered to remove the kitome, defined as OTUs
present in at least one negative control and whose abun-
dance in the negative control was >1%. This threshold
allowed to deplete 97,6% of OTU in the negative con-
trols, while limiting the risk to remove OTUs that were
really present in samples. Finally, samples with a num-
ber of reads < 1,500 were removed. A rooted phyloge-
netic tree was created with FastTree and Phangorn R
package implemented on FROGS pipeline.

Markers of inflammation

Mammary gland inflammation was estimated by mea-
suring interleukin 8 (IL-8) concentration in milk at the
quarter level but also plasma concentrations of cor-
tisol and haptoglobin (i.e. at animal level). IL-8 lev-
els were determined by enzyme-linked immunosorbent
assay (ELISA) as described previously (Roussel et al.,
2015). The plasma concentration of cortisol was deter-
mined using the competitive ELISA method previously
developed (Komara and Marnet, 2009). Haptoglobin
was measured with the PHASE haptoglobin colorimet-
ric assay kit (Tridelta Development Ltd, Maynooth, Ire-
land) using a multiparameter analyser (Kone Instru-
ment Corp., Espoo, Finland).

Isolation and count of milk somatic cells

Milk somatic cells were isolated at D1, D8 and D15 and
mammary epithelial cells (MEC) were purified from
milk as described previously by immunomagnetic sepa-
ration using Dynabeads (Pan Mouse IgG, Dynal Biotech,
Invitrogen) previously coupled to an anti-cytokeratin
antibody (Clone 34fFE12, Dako, Trappes, France) (Herve
et al., 2019). The cells bound with the Dynabeads
were resuspended in 1 ml phosphate buffered saline
(PBS) containing 1% bovine serum albumin (BSA) and
aliquoted into two microtubes. An aliquot was used to
determine the viability and the concentration of MEC
in the milk with a Vi-Cell XR analyzer (Vi-CELL XR, Cell
Viability Analyzer, Beckam Coulter, Brea, CA, USA) and
the other aliquot was fixed with 1 ml of trizol and stored
at —-80 °C until RNA extraction.

Milk somatic cell typing

Milk somatic cell typing was performed by fluorescence-
activated cell sorting (FACS) using a panel of antibod-
ies designed to granulocytes and MEC (Supplemen-
tary Table S2 and Supplementary Methods). The cells
labelled with CD49f antibody were identified as MEC
and those with CH138 antibody as granulocytes.
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Evaluation of mammary epithelium integrity
Mammary epithelium integrity was estimated by mea-
suring plasma concentration of lactose but also Na*:K*
ratio in milk and MEC exfoliation rate into milk as
described previously (Herve et al, 2019). Lactose was
quantified using the kit for the detection of lactose/D-
galactose (Roche Diagnostics, Basel, Switzerland) and a
multiparameter analyser (Kone Instrument Corp.). Milk
concentration of Na* and K* were measured by atomic
absorption spectrophotometry (Spectra AA220, Varian,
Palo Alto, CA), allowing the calculation of Na*:K* ratio
in milk. The MEC exfoliation rate was defined as the
number of MEC exfoliated per day and calculated as fol-
lows:

MEC exfoliation Rate = MY x MEC,

where MY = daily milk yield (1) and MEC = MEC con-
centration (cells/l of milk) measured during morning
milking (see above).

Milk performances

Milk yield of each animal was recorded during the
morning and the evening milking. A volume of 50 ml
was taken to determine the SCC and milk composi-
tion (fat, protein, and lactose content) using an infrared
method (MyLab, Chateaugiron, France). The somatic
cell score was then calculated as follows:

Somatic cell score (SCS) = log base 2(SCC/100,000) + 3.

Expression of genes involved in the inmune response
and in the milk production by epithelial cells collected
Sfrom milk

RNA extraction and RNA quality analysis of the purified
MEC were performed as described previously (Boutin-
aud et al, 2013). Gene expression analysis of IL-8
(CXCL8) and 6 (IL6), related to the immune response,
and of cadherin 1 (CDHI), alpha lactalbumin (LALBA)
and kappa casein (CSN3), related to epithelium integrity
and functionality in epithelial cells was performed by
quantitative RT-PCR as described previously (Herve et
al., 2019). The primers used for real-time PCR have
been described in previous studies (Ben Chedly et al,
2009; Boutinaud et al., 2008, 2012, 2013; Finot et al.,
2018; Souza et al., 2018). NormFinder macro (Ander-
sen et al., 2004) was used to assess the variability of
candidate reference genes (Andersen et al., 2004). The
mRNA levels of the studied genes were expressed rel-
ative to the geometric mean of 3 selected reference
genes: RPLPO, RPS5 and RPL19 and expressed as a semi-

absolute number of mRNA molecules, multiplied by 108
and loglO-transformed, using the method described pre-
viously (Boutinaud et al., 2004).

Statistical analysis

A one-way analysis of variance (ANOVA) based on
mixed model followed by a post-hoc test was performed
using R software (Version 4.2.2, R Core Team, 2022) to
compare the impact of treatments at D8 and D15 at the
microbial, immune, and physiological levels. Two mixed
models were used in our study, as the treatment was
not applied during the entire experiment. One model
was used to evaluate the effects during the treatment
period (D8, D15) and another to evaluate the effects
post-treatment. These mixed models take into account
days, treatment and the interaction of both, but also par-
ity and batches of animals, as fixed effects, and cow as a
random effect. The impact of treatment at D1 was used
as the covariate, especially because a treatment effect
was observed for certain variables at D1, indicating that
our treatment groups were initially not fully homoge-
neous (Figures 1 and 4, Supplementary Figure S2 and
S3 and Supplementary Tables S, §8, S9 and S10). Addi-
tional mixed models were used at D1 (before treatment),
DI5E (group of ten cows) and D26 (following treatment)
and take into account treatment, parity and batches of
animals (except at DI5SE) as fixed effect and cow as a
random effect. Differences were considered statistically
significant at P < 0.05. Of note, a trend-level signifi-
cance was defined at P < 0.10.

Regarding microbiota, statistical analyses were per-
formed using R and specialised packages: phyloseq (v.
1.34), DESeq2 (v 1.30.1) and custom scripts (Love et al.,
2014; Mariadassou, 2023; McMurdie and Holmes, 2013;
R development Core Team, 2013). Data were rarefied to
the same depth before computing alpha and beta diver-
sity indices but not for differential abundance studies.
Observed, Shannon and Inversed Simpson indices were
used to represent the alpha-diversity of each condition.
The impact of treatment on each index was assessed
using a one-way analysis of variance (ANOVA) followed
by a Tukey’s HSD post-hoc test to find significant pair-
wise differences (adjusted P-value < 0.05). Beta diversity
analyses were performed on the Bray-Curtis, Jaccard,
UniFrac and wUniFrac distances. A Multi-Dimensional
Scaling (MDS) was performed on the Bray-Curtis dis-
tance matrix to represent the samples on the principal
plane, labelled by treatment. The impact of treatment
on beta-diversity was assessed using multivariate anal-
ysis of variance (PERMANOVA), as implemented in the
adonis2 function from the vegan package. Differences
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were considered statistically significant at P < 0.05.
Finally, a discriminant analysis was performed between
the treatments using the linear discriminant analysis
(LDA) effect size (LEfSe) pipeline, hosted on the INRAE
galaxy GENOTOUL bioinformatics platform as previ-
ously described (Rault et al, 2020). This analysis was
completed by a differential abundance analysis per-
formed with the DESeq2 R package implemented in the
Easyl6S R-shiny interface hosted on the Shiny Migale
platform (Love et al., 2014).

Data availability

Data files related to metagenomic analysis are available
at the Sequence Read Archive of the National Center for
Biotechnology Information under the accession number
PRJNA1050055.

3 Results

Lacticaseibacillus paracasei CIRM BIA 1542 is
transiently present on teat skin and in foremilk

The impact of Lpl542 post-milking treatment (L) was
first evaluated on LAB populations present on TS and in
FM, revealing a LAB population in FM 1.5 and 30-fold
higher in L quarters than iodine post-milking treatment
(I) quarters at D15 and DI5E, respectively (P < 0.01;
Figures 2A and 2B). Similarly, a 49-fold increase of the
LAB population was observed on TS of L compared
with I quarters, but only at DI5E. The LAB popula-
tion in CM was close to-and most generally below-the

=
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* %

N

Teat skin LAB population (log(CFU/mL))
N »

o

D1 D8 D15 D26
day

D15E

FIGURE 2
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threshold whatever the treatment was, suggesting that
no live Lpl542 was present in the mammary gland cis-
tern (Supplementary Figure S3A). Since MRS medium
is not species or strain-specific, the presence of Lpl1542
specifically on L quarters was confirmed by qPCR using
specific primers of Lpl542 (Supplementary Methods,
Supplementary Figures SIA and S1B). At D26, the LAB
population on TS or in FM was similar for all treat-
ments, indicating no persistence of Lp1542 11 days after
the treatment (Figures 2A and 2B).

Lp1542 treatment preserves the total microbial
population compared with iodine treatment, without
negative impact on the presence of pathogens in milk
and teat skin

Interestingly, the total microbial population was also
modulated by the treatment (Supplemental Figures S2A
and S2B), with a lower total microbial population on TS
and in FM in I than in L quarters at D15 (P < 0.05)
and DI5E (P < 0.1) but also in CM at D15 and D26
(P < 0.05) (Supplementary Figure S3C). No significant
differences were found between L and N (absence of
post-milking treatment) quarters, while the total micro-
bial population on TS at D15 also tended to be lower in
I compared with N quarters. This suggests that iodine
treatment decreased the total microbial population on
TS compared with the two other conditions (L and N),
rather than a major increase of the microbial popula-
tion induced by Lp1542 treatment. Similarly, the staphy-
lococcal population was lower at D8 and DI5E on TS
of I compared with L and N quarters (P < 0.05; Sup-
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Lactic acid bacteria population (log (cfu/ml)) on teat skin (A) and in foremilk (B) before treatment (D1), during treatment (D8,

D15, D15E), and following treatment (D26). Cow quarters were either treated with Lacticaseibacillus paracasei CIRM BIA 1542
(L; blue square) or iodine (I; green triangle) or not treated (N; red circle). Boxplots were used to represent the data distribution.
Boxes extend from the 25th to the 75th percentile of each group’s distribution of values. Within each box, horizontal line
represents median value. ANOVA analysis based on mixed models followed by a post-hoc test was used to obtain statistical

data; *** P < 0.001, ** P < 0.01.
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plementary Figure 2E). However, no significant differ-
ences were found in FM during treatment regarding the
staphylococcal population (Supplementary Figure S2F).
Furthermore, the treatment did not significantly impact
the enteric bacteria population with a median at the
threshold detection level whatever the treatment was
(Supplementary Figures S2C and S2D). No significant
difference was observed in CM for enteric bacteria and
staphylococcal population (Supplementary Figures S3B
and S3D).

Finally, the presence of pathogens causing BM was
evaluated in CM using the PathoProof™ Mastitis Com-
plete-16 Kit, indicating no or a very low detection of
pathogen DNA as revealed by a very high number of
amplification cycles (Ct > 30 in all cases). Low levels of
Staphylococcus spp. DNA were detected in cows of the 3
treatment groups at D1 and or D15 (30 < Ct < 40), as well
as a low level of Enterococcus spp. DNA in cow C22 at D1
(Ct = 31) (Supplementary Table S1).

Lacticaseibacillus paracasei CIRM BIA 1542 impacts
the teat skin and foremilk microbiota

The impact of the Lpl542 treatment on TS and FM
microbiota was evaluated using metataxonomic ap-
proach at D15 and DI5E on 234 samples from 20
cows (Figure 3). The sequencing of 16s rRNA produced
15,687,803 pairs of read. After the data were filtered,
7,878,144 of reads were finally obtained corresponding
to 220 samples: group N (n = 39 at D15 and n = 22 at
DI5E), group I (n = 43 at D15 and n = 24 at DI5E) and
group L (n = 60 at D15 and n = 32 at DI5E). TS and
FM microbiota was dominated by Bacillota, followed
by Bacteroidota, Actinobacteriota, Euryarchaeota, Pseu-
domonadota and Patescibacteria regardless the treat-
ment applied (Figure 3A and Supplementary Figure
S4A for dominant phyla and families at D15 and DI5E,
respectively).

Regarding the alpha-diversity, Lp1542 treatment had
no significant effect on the FM microbiota (Figure 3B
and Supplementary Figure S4B), whereas for TS micro-
biota, the Shannon and InvSimpson indexes were lower
in L compared with I and or N quarters (P < 0.05;
Figure 3B and Supplementary Figure S4B). Regarding
beta-diversity, although separation of samples by treat-
ment was not fully obvious from the MDS represen-
tation associated with Bray-Curtis distance (Figure 3C
and Supplementary Figure S4C), an effect (P < 0.05) of
treatment was found on the TS at D15 and D15E with the
four distances used (Bray-Curtis, UniFrac, wUniFrac and
Jaccard distances), except with the wUniFrac distance
(only a trend at D15) (Supplementary Table S3). Simi-

larly, a treatment effect (P < 0.05) was observed on the
FM microbiota beta-diversity at D15 with Bray-Curtis
and Jaccard distances (and a trend with wUniFrac) and
at DI5E with all distances except UniFrac (Supplemen-
tary Table S3).

The impact of post-milking treatment on TS and
FM microbiota at D15 and DI5SE was further explored
though a differential abundance analysis and a linear
discriminant analysis effect size (LEfSe) (Figure 4, Sup-
plementary Tables S4-S7 and Supplementary Figures
$5-S9). Both methods confirmed that Lactocaseibacillus
paracasei was more abundant in L quarters than in T and
N quarters on TS and in FM (Figure 4, Supplementary
Tables S4-S7 and Figures S5-S9).

Additional significant differences were observed
between treatments, with globally more differences
between L and I quarters than between L and N or I
and N. The most discriminant taxa in TS microbiota
at D15, as revealed by the LEfSe analysis, included
a higher abundance of Actinobacteriota (previously
named Actinobacteria) (including two Bifidobacterium
species), Negativicutes, Fusobacteriota, and Suterrel-
laceae in L quarters, whereas Pseudomonadota (pre-
viously named Proteobacteria), Euryarcheota, Planc-
tomycetota and Erysipelotrichaceae, were more abun-
dant in I quarters and Pseudomonadales, Bacillales
and Micrococcaceae in N quarters (Figure 4A, Supple-
mentary Figure S6 and S10). These differences in TS
microbiota composition at D15 were corroborated by
the differential abundance analysis, which revealed a
higher abundance of two OTUs related to Bifidobac-
terium merycicum and Bifidobacterium ruminantium
and several OTUs related to Staphylococcus chromo-
genes, Corynebacterium, Fusobacterium, Alloiococcus or
Oscillospiraceae in L quarters compared with I and or
N quarters (Supplementary Table S4). Conversely, the
abundance of several OTUs related to Euryarcheota,
Acinetobacter and Escherichia-Shigella were more abun-
dant in I than L quarters. Albeit less numerous, differ-
ences between treatments were observed on TS at D15E
as well (Supplementary Figures S5 and S7 and Table S5),
and in FM at D15 and DI5E (Figure 4B, Supplementary
Figures S5, S8 and S9, Supplementary Tables S6 and S7),
with most differential OTU being more abundant in L or
N compared with I quarters.

Lacticaseibacillus paracasei CIRM BIA 1542
application on the teat hardly affected the local or
systemic immune level

The impact of Lp1542 at the immune level was investi-
gated through the SCS and IL-8 concentration in milk
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FIGURE 3  Impact of post-milking treatment on alpha- and beta-diversity of the teat skin and foremilk microbiota at D15. (A) Taxonomic
profiles of the total microbiota. The barplots represent the 20 dominant families of each condition. (B) Observed, Shannon and
Inversed Simpson indices were used to represent the alpha-diversity of each condition. Each point represents a cow quarter
either treated by Lacticaseibacillus paracasei CIRM BIA 1542 (blue), Iodine (green) or not treated (red). ANOVA analysis
followed by a Tukey test was used to obtain statistical data; ** P < 0.01, * P < 0.05. (C) Multi-dimensional scaling (MDS)
performed on the measurement of the Bray-Curtis distance were used to represent the beta diversity. PERMANOVA analysis
revealed a treatment effect on both teat skin and foremilk microbiota (P < 0.05). The R2 value indicates the contribution of the
treatment to the beta-diversity of microbiota.
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FIGURE 4 Linear discriminant analysis effect size (LEfSe) of the total microbiota on teat skin (A) or in foremilk (B) at D15. A cladogram

was used to represent the difference of family composition between cow quarters treated by Lacticaseibacillus paracasei CIRM

BIA 1542 (blue), iodine (green) or not treated (red).

at the quarter level (Figure 5). No significant difference
was further observed for the SCS between the treat-
ments. Albeit low in all cases, the IL-8 concentration
tended to be higher at D8 and D15 in L compared with
I quarters (P < 0.1), while no significant difference was
found with N quarters. A similar impact of treatment
was observed at D26, after the treatment was stopped.

Interestingly, a higher expression of CXCL8 in exfoli-
ated milk MEC was observed in L cows compared with
N cows (9.45 versus 812 log, corresponding to a 20-
fold higher expression) at D15 (Table 1). In contrast, the
abundance of IL6 was not impacted by the treatments.
Finally, the proportion of granulocytes in milk but also
the plasma concentration of haptoglobin and cortisol at
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(A) Somatic cell score (SCS) and (B) interleukin (IL)-8 concentration (pg/ml; B) before treatment (D1), during treatment (D8,

D15, D15E) and following treatment (D26). Cow quarters were either treated with Lacticaseibacillus paracasei CIRM BIA 1542
(L; blue square) or iodine (I; green triangle) or not treated (N; red circle). Boxplots were used to represent the data distribution.
Boxes extend from the 25th to the 75th percentile of each group’s distribution of values. Within each box, horizontal line
represents median value. ANOVA analysis based on mixed models followed by a post-hoc test was used to obtain statistical

data; ** P < 0.0, * P < 0.05, black square: P < 0.1

TABLE 1

Impact of post-milking treatment (D8 and D15) on the gene expression of interleukins 8 (CXCL8) and 6 (IL6), related to the

immune response, and cadherin 1 (CDHI), alpha lactalbumin (LALBA) and kappa casein (CSN3), related to epithelium integrity
and functionality in epithelial cells recovered from composite milk samples!

D8 D15 Treat- Day Ttx
N I L N I L SEM  ment? Day
Immune response®*
Interleukin 8 CXCL8 8.602 915°» 9.52b 8122 8552 945> 0292 ™ . NS
Interleukin 6 IL6 5.60 5.78 6.07 5.80 5.37 5.64 0.435 NS NS NS
Mammary epithelium integrity and synthesis®*
Kappa casein CSN3 10.1 9.91 10.2 9.43 9.17 9.17 0.240 NS - NS
Alphalactalbumin LALBA 122 122 127 977 976 978 0330 NS o NS
Cadherin 1 CDHI 7.01 7.13 7.40 7.69 7.98 7.90 0175 NS - NS

1 Cows were either not treated (N; n = 6) or treated with iodine (I; n = 6) or Lacticaseibacillus paracasei CIRM BIA 1542 (L; n = 8).

2 ANOVA analysis based on mixed models followed by a post-hoc test was used to obtain statistical data; ™ P < 0.001, P < 0.1. NS = not
significant. Values with different superscript letters means significant difference (P < 0.05) at a specific day.

3 Data are expressed in Emmean + SEM where Emmean is the mean estimated by the statistical model using D1 as covariate and SEM, the

maximal standard error.

The mRNA levels of the studied genes were expressed relative to the geometric mean of 3 reference genes: RPLP0, RPS5 and RPLI9 and

expressed as a semi-absolute number of mRNA molecules, multiplied by 108 and log-transformed.

the cow level, were not affected by the treatment (Table
2 and Supplementary Table S8).

Lacticaseibacillus paracasei CIRM BIA 1542
application on the teat did not affect the mammary
gland epithelium integrity nor the milking
performances

The impact of Lpl542 treatment the mammary gland
integrity was investigated through the MEC exfoliated
into milk, the proportion of MEC and the Na*/K* ratio

in milk and the blood lactose concentration, revealing
no significant impact of the Lp1542 application on those
parameters (Table 3).

The impact of the treatment on the mammary gland
functionality was investigated through the milk yield
and milk fat and protein contents and lactose concen-
tration, revealing no difference at D8 and D15 (Table 3).
Of note, the lactose concentration had the tendency to
be slightly higher at D26 for the Lpl1542-treated cows
in comparison with the iodine-treated cows (P < 0.1;
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TABLE 2

C. GOETZ ET AL.

treated (N; n = 6) or treated with iodine (I; n = 6) or Lacticaseibacillus paracasei CIRM BIA 1542 (L; n = 8)

Impact of post-milking treatment on different immune markers at the animal level at D8, D14 and D15. Cows were either not

D8 D14 D15 SEM Treat- Day Day x

N 1 L N I L N I L ment? Tt
Granulocytes (%)34 521 605 610 NA5> NA NA 559 553 447 509 NS . .
Cortisol (ng/ml)%6 151 105 815 1.9 951 114 144 108 122 242 NS NS NS
Haptoglobin (mg/ml)*¢ 0.41 048 042 044 044 041 042 045 038 0.06 NS NS NS

1
2
3

TABLE 3

An additional blood sampling was realised at D14 to avoid an effect of stress induced by sampling.
ANOVA analysis based on mixed models followed by a post-hoc test was used to obtain statistical data;- P < 0.1. NS = not significant.
Milk somatic cells typing was performed by fluorescence-Activated Cell Sorting (FACS) using a panel of antibodies. The cells labelled with

the anti-CH138 antibody were identified as granulocyte.

Data are expressed in Emmean + SEM where Emmean is the mean estimated by the statistical model using D1 as covariate and SEM, the

maximal standard error.
NA means that no sample was analysed at this time.
Plasma concentrations.

Impact of post-milking treatment on integrity and functionality of mammary epithelium at D8 and D15.!

D8 D15 Day Ttx
N I L N I L SEM Treat- Day
ment?
Mammary epithelium integrity?
MEC exfoliation in milk rate (x103 cells/day) 116 76.3 144 143 121 144 519 NS NS
Milk Na* concentration (mg/kg) 276 288 285 290 297 299 782 NS ™ NS
Milk K* concentration (x10% mg/kg) 171 167 167 183 179 176  0.035 NS ' NS
Milk Na*/K* ratio 163 172 168 160 165 167 0319 NS NS NS
Lactose in blood (mg/1) 445 50.6 392 525 518 481 629 NS ™ NS
MEC (%)* 736 1166 6.34 5.61@ 11.69> 9.052> 184 * NS NS
M. e. functionality3
Milk yield (kg/day) 30.6 30.0 30.6 30.8 302 305 0472 NS NS NS
Milk fat content (g/kg) 416 372 387 426 406 425 197 NS NS
Milk protein content (g/kg) 364 341 334 376 362 368 164 NS . NS
Lactose in milk (g/kg) 49.3 491 488 495 497 490 0301 NS : NS

1
2

Cows were either not treated (N; n = 6) or treated with iodine (I; n = 6) or Lacticaseibacillus paracasei CIRM BIA 1542 (L; n = 8).

ANOVA analysis based on mixed models followed by a post-hoc test was used to obtain statistical data; ™ P < 0.001, “ P < 0.05,- P < 0.1.
NS means not significant. Values with different superscript letters means significant difference (P < 0.05) at a specific day.
Data are expressed in Emmean + SEM where Emmean is the mean estimated by the statistical model using D1 as covariate and SEM, the

maximal standard error.

Milk somatic cells typing was performed by fluorescence-Activated Cell Sorting (FACS) using a panel of antibodies. The cells labelled with

CD49f were identified as MEC.

Supplementary Table S9). Finally, the absence of any 4
treatment effect was further confirmed on the expres-
sion of CDHI, LALBA and CSN3 in MEC recovered from
milk (Table 1).

Discussion

Most in vivo assays addressing the LAB potential for

bovine mammary gland health explore the ability of

intramammary infusions of LAB to treat mastitis (i.e.
curative treatment) (Beecher et al., 2009; Crispie et al.,
2008; Kitching et al., 2019). Preventive strategies based
on topical application of LAB on TS have been poorly
explored, despite promising results when a combina-
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tion of four LAB strains were applied on TS (Paduch
et al, 2020). In the present study, we evaluated the
impact of a topical post-milking application of a Lac-
ticaseibacillus paracasei strain on the bovine TS during
lactation as a preventive strategy and deeply assessed,
for the first time, the impact of such treatment at
the microbial (through culture-dependent and inde-
pendent approaches), immune and physiological levels
before further exploring its effectiveness to prevent BM.

Lacticaseibacillus paracasei CIRM BIA 1542
application modulate teat skin and foremilk
microbiota: implications for the prevention of mastitis
Lactic acid bacteria were present on TS, and to a lesser
extent in FM, whatever the treatment was. This was
not surprising as LAB are commonly present in dairy
environment such as silage (Gagnon et al., 2020). How-
ever, the LAB population increased on TS and in FM of
Lp1542 treated quarters and the presence of Lp1542 on
these quarters was specifically confirmed with qPCR. Its
presence on TS and in FM was transient, highlighted by
a Lpl542 population higher at DI5SE than at D15, and
no more differences in LAB population at D26, once
the treatment was stopped. Furthermore, Lp1542 was
not present in CM, suggesting that the latter did not
reach the cistern or that the immune system prevented
this phenomenon. Altogether, these results are reassur-
ing for the dairy producers who could be refractory to
use a live culture of bacteria. Beyond the presence of
Lp1542 on TS and in FM, the Lp1542 treatment allowed
to preserve a microbial load on TS and in FM close to
the one that naturally occurs in non-treated quarters.
Conversely, the bactericidal effect of the iodine treat-
ment, highlighted on total and staphylococcal popula-
tions, was confirmed (Bennett et al., 2022; Gibson et al.,
2008).

A major question was to evaluate whether the Lp1542
treatment could impact the presence of pathogens.
The staphylococcal population was higher on the TS of
Lpl542-treated and non-treated quarters in comparison
with iodine-treated quarters, which may be seen as a
risk of intramammary infection development (Dufour
et al., 2012). Nevertheless, the presence of staphylo-
cocci, mainly coagulase negative staphylococci (CNS)
on teat skin has also been proposed to prevent colonisa-
tion by other major pathogens responsible for mastitis
(De Vliegher et al., 2004; Lam et al., 1997). At least, no
pathogens causing mastitis were found in cisternal milk
as confirmed using the Pathoproof kit, except Staphylo-
coccus spp. that were detected in the cisternal milk of
few cows belonging to the 3 groups of treatment, and

at a very low level (Ct > 30). Additional experiments
are required to further explore the potential protective
effect of the Lp1542 application on teat skin against sub-
clinical and clinical mastitis.

The metataxonomic analysis enabled to deeply inves-
tigate changes in teat microbiota. Only a moderate
impact was found on alpha-diversity, with indexes such
as InvSimpson and Shannon that were lower in L quar-
ters. These 2 indexes consider both the richness and
evenness and their decrease in Lp1542 treated quarters
may be due to the relative abundance of Lacticaseibacil-
lus which was strongly increased in these quarters. How-
ever, the richness itself (number of OTU) was not mod-
ified. Several studies highlighted a positive correlation
between the alpha-diversity and the mammary gland
health (Braem et al, 2012; Falentin et al., 2016; Rault
et al., 2020). Thus, although Lp1542 treatment does not
increase richness, it maintains it at a level similar to the
non-treated control, with potential benefits to health. Of
note, although similar richness was also found in iodine-
treated quarters, it may be associated to both alive and
dead bacteria.

Several changes occurred in TS and FM microbiota
composition, beyond the higher abundance of Lacti-
caseibacillus casei on Lpl542 treated quarters. Most
changes were observed on TS at D15, and mostly
between L and I, with an intermediate situation of
non-treated quarters. The differential analyses on TS
and in FM samples at D15 revealed that Actinobacte-
riota were more abundant in L but also in N quar-
ters (only in FM) whereas Pseudomonadota were more
abundant in I quarters. Pseudomonadota have previ-
ously been associated with a higher rate of mastitis
using metataxonomic analysis (Rault et al.,, 2020). It’s
worth mentioning here that metataxonomics, like other
DNA-based approaches, does not differentiate live and
dead bacterial cells. At least we did not observe a higher
population of Enterobacteria on iodine treated quar-
ters by culture. Furthermore, the differential abundance
analysis also highlighted that Staphylococcus chromo-
genes, Corynebacterium spp. but also Lachnospiraceae,
Bifidobacterium merycicum and Bifidobacterium rumi-
nantium were more abundant in L than I quarters. This
is of interest considering that Bifidobacterium and Lach-
nospiraceae were associated to a healthy state (Falentin
et al., 2016; Oikonomou et al., 2014; Rault et al., 2020).
Furthermore, several studies highlighted the benefi-
cial proprieties of Bifidobacterium, especially in human
intestinal context, including their anti-inflammatory
properties, and their ability to reinforce the epithelial
barrier (Al-Sadi et al., 2021; Bergmann et al., 2013). In the
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opposite, S. chromogenes and Corynebacterium spp. are
both considered as minor pathogens causing BM (Rey-
her et al., 2012). However, a meta-analysis highlighted a
significant protective effects by those minor pathogens,
specifically when major pathogens were introduced into
the mammary gland via methods bypassing the teat end
(Reyher et al., 2012). Altogether, these results suggest
that the addition of an exogenous strain modulates the
balance between species within the microbiota and/or
the recolonisation of the TS and FM microbiota after
each post-treatment.

Safety assessment of Lp1542 treatment at the immune
and physiological levels

At the immune level, our results showed that post-
milking Lpl542 teat application did not induce any
major local nor systemic inflammatory response. In-
deed, the haptoglobin concentrations and somatic cell
scores were not impacted by the Lp1542 treatment, con-
trary to other studies which have administrated LAB
into the bovine mammary gland (Beecher et al., 2009;
Crispie et al., 2008; Pellegrino et al., 2017). Our results
are consistent with one study observing no association
between the external application of a teat dip contain-
ing LAB and the SCC (Paduch et al, 2020). Further-
more, immune cell proportion was unchanged between
Lpl542-treated cows and the others cows. Several stud-
ies have reported that the quantification of the differ-
ent types of immune cells in addition to the SCC pro-
vide a better representation of the udder health sta-
tus (Schwarz et al., 2011; Widmer et al., 2022). Finally,
blood cortisol concentration was not impacted by the
treatment with Lpl542, suggesting that its application
does not induce a stress for the animal. This find-
ing is of interest for the dairy producers because an
increase blood cortisol concentration may lead to a
milk yield loss (Grelet et al., 2022). In contrast, the pro-
duction of the proinflammatory cytokine, IL-8 but also
the expression of the corresponding gene, tended to be
slightly higher in Lp1542 than in iodine-treated quarters,
indicating a local low-level stimulation of the immune
response by Lp1542, without measurable consequences
on somatic cell counts. As mentioned above, intramam-
mary infusion of LAB generally lead to a proinflamma-
tory response — including an increase in IL8 secretion
in milk — which was proposed to help eliminating the
pathogen (Kitching et al., 2019; Mignacca et al., 2017).
In our case, no significant differences in IL-8 secretion
in milk were observed between the untreated quarters
and quarters treated with Lpl542 or iodine, suggest-
ing an intermediate state for the non-treated quarters.

C. GOETZ ET AL.

The presence of a live microbiota (in non-treated and
Lpl542-treated quarters) may help to maintain a basal
inflammatory level contrary to iodine treatment. In the
literature, researchers have proposed that cows with an
intermediate SCC values (21,000-50,000 cells/ml) have
alesser risk to develop intramammary infections, due to
the presence of an ‘optimal’ microbiome (Oikonomou et
al., 2014).

At the physiological levels, our results firstly showed
that Lpl542 did not impact the integrity of the mam-
mary epithelium. The integrity of the mammary epithe-
lium, allowed by the existence of tight junctions be-
tween MEC, ensures the cohesion of the tissue needed
to the synthesis of milk and the establishment of a
barrier against the invasion by pathogenic agents. Fur-
thermore, the MEC contribute to the innate immune
response (Giinther et al, 2017). In case of an intra-
mammary infection, the integrity of the epithelium is
broken, leading to variations in milk yield and compo-
sition, in the plasmatic concentration of lactose and
the Na*:K* ratio in milk as well as an increase in the
rate of MEC exfoliation and spread of infection (Bruck-
maier and Wellnitz, 2017). Our results showed that the
application of Lpl542 preserve the integrity of mam-
mary epithelium. Secondly, Lpl542 did not affect the
functionality of the mammary epithelium nor the milk-
ing performances. Likewise, the quantification of genes
involved in the integrity of mammary gland (CDHI)
but also genes related to the synthesis of milk com-
ponent (LALBA and CSN3) supports the safety of the
Lp1542 application with regard to the functionality and
integrity of the mammary epithelium. To our knowl-
edge, this is the first study to evaluate the impact of LAB
application at the physiological level.

In conclusion, this study shows that a topical treat-
ment with L. paracasei CIRM BIA 1542 is safe with
regard to mammary gland physiology and immune sys-
tem, while significantly impacting its microbiota. Alto-
gether, these results invite us to further explore on a
larger scale and on longer treatment periods, the effec-
tiveness of this new microbial strategy to prevent mas-
titis, possibly in relation to the changes in microbiota
and low-level immune stimulation. Whether a protec-
tive effect of the Lpl542 application were to be con-
firmed, it would contribute to the development of more
sustainable control strategies that are more respectful
of the environment, the human health and well-being
of animals.
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Supplementary material

Supplementary material is available online at:
https://doi.org/10.6084/m9.figshare. 25689357

Supplementary methods. Sample collection, Deter-
mination of Lacticaseibacillus paracasei CIRM BIA 1542
by quantitative PCR and Milk somatic cells typing.

Figure S1. Lacticaseibacillus paracasei CIRM BIA 1542
population was determined on teat skin (A) and in
foremilk (B) at D15 and D15E by qPCR using specific
primers and is expressed in log (number of copies/ml).

Figure S2. Total microbial (A and B), enteric (C
and D) and staphylococcal (E and F) populations
(log (cfu/ml)) on teat skin (A, C and E) or in foremilk
(B, D and F) before treatment (D1), during treatment
(D8, D15, DI5E) and following treatment (D26).

Figure S3. Lactic acid bacteria (A), enteric (B),
total bacterial (C) and staphylococcal (D) populations
(log (cfu/ml)) in cisternal milk before treatment (D1),
during treatment (D8, D15) and following treatment
(D26).

Figure S4. Impact of post-milking treatment on
alpha- and beta-diversity of the teat skin and foremilk
microbiota at D15E.

Figure S5. Linear discriminant analysis effect size
(LEfSe) of the total microbiota on teat skin (A) or in
foremilk (B) at D15E.

Figure S6. Linear discriminant analysis effect size
(LEfSe) of the total microbiota on teat skin at D15.

Figure S7. Linear discriminant analysis effect size
(LEfSe) of the total microbiota on teat skin at D15E.

Figure S8. Linear discriminant analysis effect size
(LEfSe) of the total microbiota in foremilk at D15.

Figure S9. Linear discriminant analysis effect size
(LEfSe) of the total microbiota in foremilk at DI5E.

Figure S10. Relative abundance of discriminant taxa
between the three treatments (Lacticaseibacillus para-
casei CIRM BIA 1542, iodine or no treatment), as deter-
mined by a Linear discriminant analysis effect size
(LEfSe) on the TS microbiota at D15.

Table S1. List of cows and associated metadata and
impact of post-milking treatment on the presence of
pathogens causing bovine mastitis at D1 and D15 using
the PathoProof™ Mastitis Complete-16 Kit.

Table S2. Antibody panel used for milk cell typing by
fluorescence-activated cell sorting (FACS).

Table S3. Impact of post-milking treatment on beta-
diversity of the total microbiota on teat skin or in
foremilk at D15 and D15E.

Table S4. Differential abundance analysis of the total
microbiota on teat skin at D15. Cows were either not

treated (N; n = 6) or treated with iodine (I; n = 6) or
Lacticaseibacillus paracasei CIRM BIA 1542 (L; n = 8).

Table S5. Differential abundance analysis of the total
microbiota on teat skin at D15E.

Table S6. Differential abundanceanalysis of the total
microbiota in foremilk at D15.

Table S7. Differential abundance analysis of the total
microbiota in foremilk at DI5E.

Table S8. Impact of post-milking treatment on differ-
ent immune markers at the animal level before treat-
ment (D1).

Table S9. Expression of genes of interleukins 8
(CXCL8) and 6 (IL6), related to the immune response,
and cadherin 1 (CDHI), alpha lactalbumin (LALBA) and
kappa casein (CSN3), related to epithelium integrity and
functionality in epithelial cells recovered from compos-
ite milk samples before treatment (D1).

Table S10. Impact of post-milking treatment on
integrity and functionality of mammary epithelium
before (D1) and following treatment (D26).
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