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A B S T R A C T   

Although increasing threats on biodiversity are now widely recognised, there are no accurate global maps 
showing whether and where species assemblages are at risk. We hereby assess and map at kilometre resolution 
the conservation status of the iconic orchid family, and discuss the insights conveyed at multiple scales. We 
introduce a new Deep Species Distribution Model trained on 1 M occurrences of 14 K orchid species to predict 
their assemblages at global scale and at kilometre resolution. We propose two main indicators of the conservation 
status of the assemblages: (i) the proportion of threatened species, and (ii) the status of the most threatened 
species in the assemblage. We show and analyze the variation of these indicators at World scale and in relation to 
currently protected areas in Sumatra island. Global and interactive maps available online show the indicators of 
conservation status of orchid assemblages, with sharp spatial variations at all scales. The highest level of threat is 
found at Madagascar and the neighbouring islands. In Sumatra, we found good correspondence of protected 
areas with our indicators, but supplementing current IUCN assessments with status predictions results in 
alarming levels of species threat across the island. Recent advances in deep learning enable reliable mapping of 
the conservation status of species assemblages on a global scale. As an umbrella taxon, orchid family provides a 
reference for identifying vulnerable ecosystems worldwide, and prioritising conservation actions both at inter-
national and local levels.   

1. Introduction 

Nearly a million species will face extinction in the coming decades 
(Díaz et al., 2019), many of which having high value for medicine, food, 
materials, etc. (Pollock et al., 2020). The Post-2020 Global Biodiversity 
Framework requires assessing current biodiversity state and quantifying 
conservation measures impacts (Nicholson et al., 2021). However, the 
distribution of many species is little known (Wallacean shortfall), and 
there is lack of comprehensive enough information on species conser-
vation status (Schatz, 2009). Land managers still need accurate in-
dicators of species extinction risk that should be available both at a large 

scale (to allow comparisons between regions) and at a sufficiently fine 
spatial resolution. Recent automatic assessment of conservation status 
(Borgelt et al., 2022; Zizka et al., 2020) have proved promising to 
complement the assessment based on informing IUCN criteria, which 
should help tackle the major objective of intensive prediction at broad 
taxonomic and spatial coverage. 

Species distribution and richness patterns are complex, habitat and 
scale dependent, which entails that species conservation status must be 
assessed and acknowledged at multiple spatial scales and depending on 
habitat variation. According to Whittaker et al. (2005), protected areas 
design based on species distribution and richness may be sensitive to 
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spatial scale, and the conservation challenges must be addressed at both 
global scale and fine-resolution (Puglielli and Pärtel, 2023). Here we 
perform (i) multiscale assessment of conservation status, based on (ii) 
high-resolution characterization of habitat properties, in the case of the 
emblematic orchid family. 

Deep learning (DL) offers an unprecedented opportunity to charac-
terize complex, scale-dependent relationships between species and their 
environment (Deneu et al., 2021). In addition, the ever-increasing vol-
ume of data stemming from citizen science observations on one hand, 
and from remote sensing characterization of environmental heteroge-
neity on the other hand, requires adapted DL workflows (Borowiec et al., 
2022). DL models can learn from complex effects and interactions be-
tween environmental predictors (Puglielli and Pärtel, 2023), and Cai 
et al. (2022) have shown that DL can help to isolate relationships be-
tween biodiversity and ecological drivers. 

Understanding how threatened species are distributed is a task that 
ecologists have been working on since the nineteenth century (Gaston 
and Blackburn, 1997; Moret et al., 2019). Yet there are few quantitative 
studies of the distribution of threatened species (Orme et al., 2005). 
Successful attempts to design anthropogenic threat index at the regional 
scale (Paukert et al., 2011) or even worldwide with the Human Footprint 
(Venter et al., 2016) have lead the community to adopt this information 
as model predictor. However, several major questions remain unsatis-
factorily answered: how do anthropogenic and bioclimatic pressures 
relate to species environmental niches, at what scale and to what de-
gree? New studies in that regard consist in combining species IUCN 
status with known or predicted range of species and produce conser-
vation priority maps (Han et al., 2019; Mair et al., 2021; Verones et al., 
2022). Species included in these indices must have been previously 
assessed and their extinction risk status officially recognised by the 
IUCN. However, as of 2022, only 7% of the world’s described species 
have an IUCN status (15% for the world’s known plants, IUCN, 2022). 
Ultimately, there is a strong case to be made for including unassessed 
species in the design of spatial threat indicators. 

In order to widen the currently narrow IUCN coverage, automatic 
classification methods have made a breakthrough. A major research 
avenue has emerged from this urgent task (Walker et al., 2020). Two 
families of methods coexist: approaches that estimate IUCN criteria 
variables in advance to compare with official thresholds (Dauby et al., 
2017; Stévart et al., 2019), and models that directly predict IUCN status 
after being trained with predictors and already assessed species (Borgelt 
et al., 2022; González-del Pliego et al., 2019; Nic Lughadha et al., 2019; 
Zizka et al., 2022). Methods in the first category are easier to interpret 
by construction. However, newer predictive models achieve impressive 
performance. Research is also exploring the use of species distribution 
models (SDMs) to inform conservation status thanks to their niche 
modelling capabilities (Breiner et al., 2017; Syfert et al., 2014). 

SDMs are correlative models learning from the association of species 
observations with environmental predictors (Elith and Leathwick, 
2009). These statistical tools are now widely used and ongoing meth-
odological work continue to improve their convergence and predictive 
power (Lembrechts et al., 2019; Pollock et al., 2014; Powell-Romero 
et al., 2022). Applications at all scales contribute to grasp diversity 
patterns and help to hold invasive species back (Botella et al., 2021), 
highlight biodiversity hotspots (Hamilton et al., 2022) or orient Pro-
tected Areas (PAs) design (Guisan et al., 2013). Deep-SDMs embrace 
deep learning vision architectures to leverage rare and critical envi-
ronment spatial patterns (Deneu et al., 2021; Leblanc et al., 2022). 
Indeed, spatial and temporal (Estopinan et al., 2022) contexts were 
proven significant to model rare species niches and species-rich regions 
diversity. These models capture the shared environmental preferences 
between multiple species and let information flow from the most com-
mon to the rarest species without corrupting their specific features 
(Botella et al., 2018a). Spatially Explicit Models (SEMs) integrate the 
location of observations as a predictor variable. While ecologists 
discourage its use when modelling species’ environmental preferences, 

it has been shown to significantly improve prediction performance and 
influence conservation planning (Domisch et al., 2019). SEMs can 
incorporate local heterogeneities, creating positive feedbacks and 
allowing patterns to emerge at larger scales (DeAngelis and Yurek, 
2017). 

Our main contribution is to produce kilometre-scale extinction risk 
maps of species assemblages on a global scale. A species assemblage is 
defined as members of a community that are phylogenetically related, where 
a community is a collection of species that occur in the same place at the 
same time (Fauth et al., 1996). In the context of this study, a species 
assemblage can simply be reformulated as the pool of orchid species 
with a significant probability of being present at a given location. The 
first step consisted in training a deep-SDM model on 1 M observations of 
14 K species distributed worldwide. We then developed a novel method 
to estimate species assemblages from the trained deep-SDM. Coupled 
with the species’ IUCN status, the assemblages are then characterised by 
extinction risk indicators. Interactive maps are available online at 
https://mapviewer.plantnet.org/? 

config=apps/store/orchid-status.xml#. To our knowledge, 
this is the first realisation of SDM-derived spatial indicators at such 
resolution, taxonomic and geographic coverage. Four levels of analysis 
are also discussed: i) How is the extinction risk of orchid assemblages 
distributed at different scales? ii) Which zones appear to contain the 
most threatened assemblages? iii) Is there a correlation between the 
diversity of orchids in a country and the proportion of threatened spe-
cies? and finally iv) In Sumatra, how do our indicators relate to current 
PA implementation? 

1.1. Taxonomic focus: the Orchidaceae family 

The Orchidaceae family is a perfect taxon to guide our research, both 
because of its inherent nature and because of its large data coverage 
(Cribb et al., 2003). This uniquely diverse taxon comprises around 
31,000 species, making it one of the largest flowering plant families 
(Kew, 2023). Diversity and aesthetic appeal of orchids have made them 
the focus of attention for botanists and enthusiasts for decades. This has 
resulted in both a rich scientific literature (Cozzolino and Widmer, 2005; 
Givnish et al., 2016) and a wealth of observations: 8 M raw GBIF ob-
servations, including 6.8 M with coordinates (GBIF, 2023). Orchids are 
present on all continents and are flowering in a very wide range of al-
titudes and habitats. This is a crucial aspect as our modelling approach 
aims to capture and project species preferences worldwide. The threats 
they face - habitat destruction, climate change, pollution and intensive 
harvesting - make them singularly vulnerable. Moreover orchids are a 
relevant indicator of the health of their environment (Newman, 2009). 
This well-known and change-sensitive family can be used as a proxy to 
identify ecosystem conservation priorities (Yousefi et al., 2020). Un-
derstanding threats, monitoring populations and distributions, and 
raising awareness are other key conservation objectives for the group 
(Wraith et al., 2020). Orchids are widely used by international in-
stitutions as flagship species to lead and give visibility to the conserva-
tion debate (Cribb et al., 2003). The challenge of orchid conservation 
cannot be tackled at the species level alone. Large-scale and broad ap-
proaches should necessarily complement studies carried out on 
emblematic species with a high risk of extinction (Fay, 2018). 

2. Material and methods 

2.1. Data 

2.1.1. Orchid occurrences 
The orchid occurrence dataset comes from Zizka et al. (2020), whose 

authors queried GBIF in August 2019. This dataset has the advantage of 
being both global and already geographically/taxonomically curated. 
Nearly 1 million occurrences of 14,129 different species were used to 
build our model (999,258 observations after duplicate checking). The 
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average number of observations per species is 70, while the median is 4. 
25% of species have more than 13 occurrences. Date distribution sum-
mary statistics are min = 1901, Q1 = 1982, med = 1997, Q3 = 2010 and 
max = 2019. The cumulative number of occurrences per species, the 
distribution of observation dates, the distribution of georeferencing 
uncertainty, the observation map and the species richness maps are all 
available in SI Box D. 

2.1.2. Predictive features 
A large environmental context around each observation is collected 

and provided to the model: 64 × 64 2D tensors sampled at the kilometre- 
scale resolution and centred on the observation. Predictors include 
WorldClim2 bioclimatic variables, Soilgrids pedological variables, 
human footprint rasters, terrestrial ecoregions of the world and the 
observation location (longitude and latitude), see SI Box E for details. 
Examples of input are shown in Fig. S5 and the full list of predictors is 
given in Table S2. 

2.2. Species assemblage model 

2.2.1. Definition 
The objective is to optimise a model returning likely species assem-

blages worldwide while being learned on a set of presence-only obser-
vations. To do so, we optimise a deep species distribution model (Botella 
et al., 2018b) and further calibrate it to return species assemblages 
including the initial species observed with very high confidence. This 
method is derived from what is called set-valued prediction (or set-valued 
classification) in the machine learning community (Chzhen et al., 2021; 
Mortier et al., 2021). The model is trained on presence-only data, all 
species combined (multi-species SDM), and is then used to predict a set 
of labels by thresholding the SDM output categorical probabilities 
associated to species. 

In more details, let us consider the following species assemblage 
prediction problem with C distinct species. The input set made of the 
predictive features associated to each occurrence location is denoted by 
X = {x1,…, xn}, where n is the total number of samples. The matching 
species label set is Y = {1,…,C}. The objective is to learn a species 
assemblage predictor on a training dataset composed exclusively of 
presence-only occurrences (x1, y1), …,

(
xn, yn

)
∈ X × Y . The pairs 

(
xi, yi

)
are supposed to be independently sampled from a unknown 

probability measure ℙX,Y . This joint measure can be decomposed into 
the marginal distribution measure over X , ℙX, and the conditional 
distribution of y given an input x denoted η(x) = (η1(x) ,…, ηC(x) ) and 
equal to 

ηs(x) = ℙX,Y(Y = s|X = x)

Then, the assemblage of species likely to be present conditionally to x 
can be defined as: 

S*
λ(x) := {s ∈ Y : ηs(x) ≥ λ }

where λ is a threshold on the conditional probability of species opti-
mised to return precautionary assemblages (see next section on model 
validation). 

In practice, the true conditional probability η(x) is unknown and we 
assume we are given an estimator η̂(x) from which we can derive the 
following plug-in estimator of the species assemblage: 

Sλ(x) := {s ∈ Y : η̂s(x) > λ } (1) 

One approach to get a good estimator η̂s(x) of the conditional 
probability is to fit a model using the negative log-likelihood which is 
known to be a strictly proper loss (Gneiting and Raftery, 2007), i.e. it is 
minimized only when the model predicts η. The negative log-likelihood 
loss is defined as: 

llog(s, η̂) = − log η̂s(x) (2) 

In the context of deep learning, η̂(x) is typically chosen as a softmax 
function on top of a deep neural network fθ(x) : X →ℝC so that: 

η̂s(x) =
exp

(
f s

θ(x)
)

∑

j
exp

(
f j
θ(x)

)

where θ is the set of parameters of the neural network to be optimised by 
minimizing the loss function of Eq. (2). 

Using this very common deep learning framework, it is possible to 
show that the species assemblage predictor Sλ(x) of Eq. (1) is consistent 
(Lorieul, 2020), i.e. it tends towards the optimal set S*

λ(x) when the 
number of training samples increases. In other words, our species 
assemblage predictor is as simple as training a deep neural network with 
a cross-entropy loss function on the presence-only samples and thresh-
olding the output softmax probabilities to get the assemblage of pre-
dicted species. 

Our backbone model is an adaptation of the Inception v3 (Szegedy 
et al., 2016). This convolutional neural network learn spatial patterns 
from two-dimensional predictors (Botella et al., 2018a; Deneu et al., 
2021). A spatial block hold-out strategy is used to limit the effect of 
spatial autocorrelation in the data when evaluating the model (Roberts 
et al., 2017). Blocks are defined in the spherical coordinate system ac-
cording to a 0.025◦ grid (2.8 km square blocks at the equator). The split 
of the training/validation/test spatial blocks (90%/5%/5%) is stratified 
by region to ensure that all regions are represented within each set, see 
Table 1. We use the regions defined by the World geographical scheme 
for recording plant distribution (WGSRPD) level 2 (Brummitt et al., 
2001). Training is done on Jean Zay, a supercomputer from the Institute 
for Development and Resources in Intensive Scientific Computing 
(IDRIS). A full description of the model architecture, dataset spatial split 
and training procedure can be found in supplementary information (SI) 
Box A. Finally, the settings of our species assemblage model are sum-
marised in the Fig. 1. 

2.2.2. Validation 
The species assemblage model is calibrated on the occurrences from 

the validation spatial blocks (see dataset split in SI Box A). The objective 
is to guarantee that the true species is included within the kept species 
assemblage. This optimises recall rather than model precision. It results 
in species assemblages that are potentially larger than in reality, and 
consequently in aggregated indicators at species level that are poten-
tially overestimated but precautionary (see next section). Furthermore, 
the SI Box H provides additional results qualifying the model’s precision. 
These include a histogram of the proportion of occupied locations per 
species and maps comparing individual species predictions with true 
observations. 

Our dataset is highly unbalanced in terms of the number of occur-
rences per species (see SI Box D). It is therefore difficult to calibrate a 
specific threshold for many species. However, this would have been 
appropriate if we wanted to guarantee an error per species rather than 
per observation point. The aim is indeed to reduce the marginal error of 
classification per observation (i.e. we want assemblages with little error 
on the species observed). The optimal solution is given by a common 
threshold per species (Fontana et al., 2023). 

The threshold value λ is then an important hyper-parameter of the 
method. Theoretically, we could consider that any species s with a non- 
null conditional probability ηs(x) is potentially present in the assem-

Table 1 
Dataset split proportions.  

Set Training Validation Test 

Proportion 90% 5% 5% 
Occurrences 902,174 46,290 50,794 
Species 14,129 4037 4166  
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blage (i.e. by chosing λ = 0). However, in practice, the estimator ̂ηs(x) is 
never null even for the most unlikely species. Thus, it is required to 
adjust the value of λ so that only the relevant species are returned in the 
assemblage. Therefore, we use the validation set for this calibration step. 
It allows estimating the average error rate for a given value λ: 

ℰ(Sλ) = ℙX,Y [Y ∕∈ Sλ(X) ]

by computing the percentage of samples xi in the validation set for 
which the true observed species yi is not in Sλ(xi). 

Finally, we can chose λ so as to minimize the average species 
assemblage size E[|Sλ(X) |] - which is equivalent to maximize λ - while 
guarantying that the average error rate is lower than an ϵ objective: 

argmin
λ∈[0,1]

E[|Sλ(X) |] max
λ∈[0,1]

(λ)

⇔
s.t. ℰ(Sλ) ≤ ϵ s.t. ℰ(Sλ) ≤ ϵ

(3) 

This is equivalent to what is called conformal prediction in machine 
learning (Fontana et al., 2023) and guarantees that the actual species is 
contained within the set with probability 1 − ϵ. 

2.3. Conservation indices for species assemblages 

2.3.1. Definition of the indices 
In addition to the classical Shannon index ℐH , we define two novel 

indices characterizing the extinction risk of a predicted species assem-
blage, ℐc and ℐO . They respectively render the proportion of threat-
ened species in the assemblage and the most critical IUCN status in the 
assemblage. Let’s break down their construction. 

2.3.2. IUCN status notations 
Our indices partly rely on the extinction risk classification scheme 

from the IUCN Red List of threatened species, https://www. 
iucnredlist.org/ (Mace et al., 2008). IUCN categories are limited 
to Least Concerned (LC), Near Threatened (NT), Vulnerable (VU), Endan-
gered (EN) and Critically Endangered (CR). We set the ensemble Estatus =

{LC,NT,VU,EN,CR} with the relation order LC<NT<VU<EN<CR. 
Additionally, we introduce a general THREAT category corresponding to 
the union of VU, EN and CR categories. We denote as φ(y) the function 
that provides the extinction risk status of a species y. 

2.3.3. Indicator ℐO (S): most critical status of the species in the assemblage 
For a given species assemblage S, our first indicator consists in taking 

on the most critical species extinction risk status. This is a concise and 
precautionary index. It aims at providing an information easy to un-
derstand and represent. Here is its formal definition: 

ℐO : P (Y ) ↦ Estatus
S → max

sj∈S

{
φ
(
sj
) } (4)  

2.3.4. Indicator ℐc(S): proportion of species in the assemblage with a given 
status 

Our second indicator ℐc(S) measures the proportion of species from 
a given category c in an assemblage S. Let us consider a species assem-
blage with its associated probability distribution (S, η). ℐc is defined as 
the proportion of species with status c in S, with the species being 
weighted by their relative probability of presence η (see Eq. (5)). The 
proportion of critically endangered species is for instance denoted 
ℐCR(S). And so on for the four other IUCN status in Estatus and the overall 
THREAT category. 

ℐc : P (Y ) × ℝC ↦ ℝ[0,1]

(S, η) →
∑

j∈φ− 1(c)

ηj
(5)  

2.3.5. The Shannon index ℐH (S)
The Shannon index is one of the most popular measures of biodi-

versity. It originates from the famous communication theory (Shannon, 
1948), but was adopted in ecology as early as 1955 (Ricotta, 2005). 
Denoted ℐH , this metric evaluates the quantity of information of a set. 
Both the set richness (number of distinct classes) and evenness (classes 
ratio) influence the index (Marcon, 2015). Let (S, η) be a species 
assemblage, with η its associated conditional probability distribution: 

ℐH (S) = −
∑

l∈S
ηl⋅log(ηl) (6)  

2.3.6. Missing status completion 
Only 889 of our 14,129 orchid species have an official IUCN status in 

2021, i.e. 6.3%. It therefore seems unreasonable to ignore all unassessed 
species in our indicator calculation. We decide to supplement the status 
information with an automatic preliminary assessment method from the 
literature called IUCNN (Zizka et al., 2022). The distributions of the 

Fig. 1. Method summary scheme. The orchid observation set of 999,258 occurrences from 14,129 species (Section 2.1.1 and Box D) is enriched with predictive 
features: WorldClim2 bioclimatic variables, Soilgrids pedological variables, Human Footprint rasters, terrestrial ecoregions of the world and location (description Box 
E, list Table S2 and examples Fig. S5). Next, the Inception v3 model (Szegedy et al., 2016) is first trained with the observation set (Section 3.1.1). Secondly, it is used 
to predict the most likely species assemblages on a global regular grid of 30-s resolution (Section 2.4.1). The calibration step, which determines the threshold λ on the 
relative probability of species presence, is described theoretically in Section 2.2.2 and set in Section 3.1.2. When the model is provided with a predictor tensor in 
inference, the final output is the associated species assemblage Sλ. 
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IUCN-assessed and predicted IUCN status are shown in Fig. S3. Both 
indicators can then be computed considering only IUCN-assessed species 
or the entire species assemblage. By default, the indicators are on all the 
orchid species from our assemblage, i.e. considering both known IUCN 
status and predicted IUCN status. When they are restrained on the IUCN- 
assessed species only, the indicators are denoted with an IUCN super-
script: ℐIUCN. 

2.4. High-resolution maps construction 

2.4.1. Global grid design 
The aim now is to create a global grid to support our spatial in-

dicators. This is done in two steps. First, we create a regular grid 
covering all longitudes and latitudes. We sample the longitude range 
[− 180◦,180◦] and the latitude range [− 90◦,90◦] at 30-s intervals. One 
second equals 1/3600◦, hence r = 30/3600 degrees. Let M = { −

180, − 180 + r,…,180 − r,180} and N be its latitudinal counterpart. 
The grid support is then obtained by crossing the two sampled axes M ×

N . Secondly, we spatially intersect the grid with the land areas of the 
world. We are indeed only interested in terrestrial regions. The geometry 
used is the Esri grid of world country boundaries (Esri, 2023). The 
intersection contains 221 M points. Finally, predictive features are 
assigned to each land grid position. This results in G =
{
xm,n | m, n ∈ M × N

}
. 

2.4.2. Map definition and construction 
Maps are constructed in two steps: First, the species assemblages 

associated to each G grid point are predicted by batch with our model: 
Ŝ λ(G ). Second, the spatial indices defined in section 2.3.1 are 
computed on the predicted assemblages: ℐ(G ) =

{ℐ(S) | S ∈ Ŝ λ(G ) }. This set of indicators {ℐ(G ) } constitute our 
global and kilometre-scale maps (reminder: by default all orchid species 
are considered and predicted IUCN status thus employed). Within 
worldwide predicted species assemblages:  

• ℐO (G ) highlights the most critical IUCN status  
• ℐc(G ) represents the proportion of species with IUCN status c (five 

maps)  
• ℐTHREAT(G ) maps the proportion of threatened species  
• ℐH (G ) draws the global patterns of predicted orchid diversity. 

Details on predictions batch processing and on the website solution 
are available in Box C. 

2.5. Zonal statistics 

Spatial analysis can necesit aggregated regional indicators. With a 
kilometre scale resolution, ℐO and ℐc can be dissolved at different or-
ganization levels. Municipalities, protected areas, states or biodiversity 
units: the choice depends on the application. To illustrate this method at 
the global scale, we aggregate our indicators at the WGSRPD level 3. It 
corresponds to botanical countries which can ignore political borders 
(Brummitt et al., 2001). We selected countries of at least 2000 km2 to 
highlight large area priorities (65 countries out of 369 removed). 

2.5.1. Region spatial coverage of the most critical IUCN status 
This measure is based on ℐO , the spatial indicator of the most critical 

IUCN status in the species assemblage. In a given region r, areas with 
distinct worst IUCN status coexist. Focusing on a given status c, its 
spatial coverage proportion in r is denoted Area%[ℐO ](r, c). By default, 
this variable is computed on the entire species assemblage. Nonetheless, 
it can also be expressed considering only IUCN-assessed species. 

2.5.2. Region average proportions 
Second zonal statistic consists in taking ℐc average for a given region 

r and status c. It represents region’s average proportion of species with c 
as IUCN status and is written down μ[ℐc](r, c). The entire species 
assemblage is taken into account. Such statistic allows direct comparison 
between arbitrary zones. For the sake of simplicity, square brackets 
precising the spatial indicator can be dropped in both zonal statistics. 

3. Results 

3.1. Validation of the species assemblage model 

3.1.1. Backbone model optimisation 
The backbone species distribution model (Inception v3) was first 

evaluated on unseen occurrences from the validation spatial blocks. 
Validation performances set the best epoch choice - the 69th - for final 
test set metrics to be computed. Selected metrics are the top-k accuracy 
and its per-class counterpart the top-k accuracy per species. These set- 
valued metrics do not require pseudo absences to avoid potential 
induced bias (Phillips et al., 2009). Top-k accuracy measures if the 
model returns the correct label among the k most likely classes: 

Ak(i) =
{

1 if η̂yi (xi) ≥ η̃k
(xi)

0 otherwise
(7)  

with 
(
xi, yi

)
an input/label pair, η̃ the permutation of η̂ sorted in 

descending order and ̂ηk its component at rank k. The success rate can be 
calculated for all test set occurrences, all classes combined (micro- 
average denoted Ak) or first for each class individually and then averaged 
together (macro-average denoted MSAk). The former gives prominence 
to common species by construction, while the latter depends heavily on 
rare species performances. Macro-average metrics are suitable for highly 
imbalanced datasets. 

Final test set performances at epoch 69 are A30 = 0.87 and MSA30 =

0.48. This means that i) the correct label is returned among the first 30 
species for 87% of the test observations (representative of common 
species), and ii) when each species in the test set is given the same 
weight, the correct label is within the first 30 classes returned almost 
half the time. This second metric may seem low, but it actually measures 
a particularly difficult task, given that the test set contains 4166 species 

Fig. 2. Average error control setting on the validation set. The accuracy of the 
model is represented against the threshold on the species conditional proba-
bility of presence, denoted by λ. To calibrate the model and reach precautionary 
species assemblages at any point, we set the limiting condition on the average 
error to be ϵ = 0.03 ⇔ AS ≥ 0.97 (green curve), as shown in Eq. (3). The optimal 
threshold, denoted by ̂λ, is highlighted in red. It guarantees that i) AS is superior 
or equal to 0.97 while ii) the average species assemblage size is as small as 
possible. Matching macro-average accuracy MSAS (grey function) is reported 
with a red dashed line. Average set sizes are indicated. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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(30/4166 ≤ 1%). Furthermore, it reflects the performance of the model 
on rare species, and Fig. 2 shows that considering on average 124 species 
significantly improves performance on the validation set. Training and 
validation curves show no sign of overfitting, see Fig. S2. 

3.1.2. Calibration of the species assemblage predictions 
Once the backbone species distribution model optimised, we cali-

brate the species assemblage predictions. To do so, we control the 
average error on the validation set when testing if the correct species is 
returned within the assemblage thresholded with the hyperparameter λ 
(see method explanation Section 2.2.2). In Eq. (3), ϵ is set to 0.03. As 
reported on Fig. 2, the resulting value for λ is estimated to be 8.75e − 5. 
The average size of the predicted species assemblages is equal to 124 
species. Summary statistics on ∣Ŝλ∣ are reported on Table S1. 

AS is the micro-average accuracy of the species assemblage model 
when testing if the observed species is well retained within the predicted 
assemblage across all validation observations. MSAS is its macro- 
average counterpart: every species contributes therefore equally to 
this second metric. Reaching AS = 0.97 accuracy means that, for a 
random validation point, the model returns the correct label, i.e. the 
species that has effectively been observed at this point, within the pre-
dicted assemblage with 97% confidence. The number of observations 
per class being strongly unbalanced (see Box D Fig. a), AS is strongly 
influenced by the performance on common species. Now, when all 
species are granted the same weight with MSAS, performance is still 
MSAS = 0.80, see Fig. 2. Given how unbalanced the observation dataset 
is (median occurrence number is four, 25% species have more than 13 
occurrences), it indicates that the predicted species assemblages are 
capturing most of the rare validation species as well. The performance at 
the species level shows the robustness of our assemblages and the per-
formance at the point level its validity in space. 

After validating and calibrating the model on the validation set for 
predicting species assemblages, a new training is started from scratch on 
the entire dataset. It stops at the best epoch previously determined on 
the validation set (epoch 69). The aim is to obtain the best possible 
model weights before global-scale inference. Finally, the species as-
semblages are post-processed. i) Predictions outside the continents 
where species are known to occur (according to our observation dataset) 
are removed, and ii) conditional probabilities associated with orchids 
are normalised, see SI Box B for more details and resulting maps. 

3.2. ℐO indicator: Most critical status of the species in the assemblage 

3.2.1. Global patterns 
Considering the worst status of a species assemblage, Fig. 3 compares 

(a) currently available IUCN information with (b,c) our model results 
ℐIUCN

O and ℐO . IUCN species range data are still very scarce (only 1.2% 
of species in our dataset have IUCN ranges) and of variable quality: some 
species have raw model outputs as official IUCN range maps whereas 
others will have tailored expert-designed maps. Our species assemblage 
model combined with known IUCN status results in a consistent and 
contrasted map Fig. 3b. 

Predictions in tropical Africa, East and South-East Asia and North 
America include CR species assessed by the IUCN. The presence of CR 
species in North America may be surprising at first, but given that i) this 
continent is comparatively well assessed and ii) this indicator is both 
sensitive and precautionary (only one species is sufficient to reach the 
CR category), it is reasonable. No CR species are predicted in South 
America if only known IUCN status are considered. However, when 
predicted IUCN status are included on Fig. 3c, the value of ℐO across 
South America is drastically different. Indeed, EN and CR species pre-
dictions lead the indicator to change to higher categories of risk. Ac-
cording to our model taking into account predicted IUCN status, Brazil 
and the Andes are for instance hosts to CR-estimated species on a large 
part of the territory. On Fig. 3c, new global patterns are highlighted. 

These include India and temperate Asia presenting EN species, the 
Western Ghats and Southeast Asia hosting CR species, and Portugal, 
western Spain and the French Landes turning orange due to the pre-
diction of EN species. Overall, the differences are more pronounced in 
the southern hemisphere than in the northern hemisphere. This illus-
trates the fact that IUCN assessments are biased towards northern 
countries and that large assessment gaps remain. 

3.2.2. Country-level analysis 
Table 2 shows the botanical countries with the largest ℐO coverage 

as CR or as EN. There are many islands in this ranking. All top fifteen 
countries are almost completely covered by only one status. See sup-
plementary information T3 for the full table. High on the Area%(CR)
ranking are Equatorial Guinea, Réunion, Mauritius, Madagascar, 
Comoros and Laos. CR species are present throughout these countries. 
By construction, countries with a high CR coverage status cannot also 
have a high EN coverage. Therefore, countries with high Area%(EN) are 
different from the first column. European territories such as Corse or 
Portugal appear in the ranking and Caribbean islands are well 
represented. 

3.3. ℐc indicator: Proportion of species in the assemblage with a given 
status 

3.3.1. Global patterns 
Fig. 4a shows the Shannon index calculated on our species assem-

blage predictions (full resolution on the website). As expected, the tro-
pics appear to contain the richest areas. This map can be read in parallel 
with the SI Box D second map: the species richness map of our occur-
rence dataset stratified by botanical country (WGSRPD level 3). The 
resolution gain is clear. Moreover, some biases in the initial observations 
set explain ℐH patterns. Colombia orchid richness, estimated for 
instance at 4327 species according to World Plants (Hassler, 2004-2023), 
is for instance under-represented within our occurrence set with only 
1375 species. Global orchid diversity patterns can also be appreciated in 
relation to the three following maps, which reflect the extinction risk of 
the predicted species assemblages. 

High proportions of threatened species appear in East Africa, South 
and Southeast Asia on Fig. 4b ℐTHREAT. The Sahel also has a particularly 
high proportion of threatened species. Orchids in central North America 
also appear to have relatively high rates of threatened species, given the 
low observed and predicted diversity in this region. The threat levels in 
the Amazon Basin are high. However, compared to East Africa or trop-
ical Asia, they are not as high as the region’s impressive orchid richness 
would suggest. This result is quantified on the scatter plot Fig. 5. High 
diversity does not necessarily imply high threat levels. 

On Fig. 3c map (proportion of CR species), the first striking element 
is certainly the strong emphasis on Madagascar. The patterns in the 
Himalayan belt, Indonesia and Southeast Asia are both more contrasted 
and appear more localised than on the ℐTHREAT (b) map. In northern 
Mexico and the southwestern United States of America, high levels of CR 
species are appealing and contrasting with the Shannon index. In South 
America, our model predicts relatively high levels of CR species along 
the Andes, in Bolivia, Paraguay and southern Brazil. If we compare ℐCR 

with ℐIUCN
CR (see website), we can see that the presence of CR species in 

South America is almost entirely due to predictions whose IUCN status 
has been automatically classified. 

Finally, ℐEN levels (Fig. 4d) are important throughout sub-Saharan 
Africa, Central and South America, South and Southeast Asia. The pat-
terns observed here are closer to ℐTHREAT than ℐCR. With these maps we 
can better understand how the patterns of ℐCR, ℐEN and ℐVU indicators 
combine to produce the ℐTHREAT map. 

3.3.2. Country-level analysis 
In Table 3, the top three botanical countries with the highest average 
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Fig. 3. Global comparison of the most critical IUCN status indicator according to three methods. (a) represents the IUCN information on our dataset: observations 
and available spatial data (polygons and points from https://www.iucnredlist.org/resources/spatial-data-download) taken together. Spatial data is available for only 167 
IUCN-assessed orchids from our dataset, i.e. 1.2% of all species. (b) is the result of our species assemblage model coloured by the most critical known IUCN status 
whereas (c) includes predicted IUCN status too in the indicator calculation. [Figure maps are under-sampled, see the website for full-resolution]. 
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proportion of threatened species, species classified as CR and species 
classified as EN are common: Réunion Island, Madagascar and Mauritius 
Island. Overall, 60% of the species predicted for Madagascar are 
threatened with extinction. All μ[ℐTHREAT] top fifteen countries have an 
overall predicted proportion of threatened species greater than or equal 
to 40%. Again, the three columns are dominated by East African and 
tropical Asian countries. See supplementary information T3 for the full 
table. 

The scatterplot Fig. 5 tests the relation between the average rate of 
threatened species and the Shannon index at the level of botanical 
countries. The Spearman ρ value is 0.29 (p = 2.5e − 7), indicating a 
positive but relatively law global correlation. The colour code, indexed 
by continent, reveals different patterns per continent. North American 
(brown) and European (pink) countries are clearly clustered on the 
graph, with a medium diversity index and low threat levels on average. 
The top fifteen μ[ℐTHREAT] countries (Table 3 first column) are this time 
marked with red borders. The top fifteen μ[ℐH ] are framed in green and 
the intersection includes Myanmar, Assam and Laos. African (purple), 
Asian temperate (grey) and Asian tropical (green) countries present 
more variation in this graph and represent the extremes. The South 
American countries (yellow) at the bottom right of the graph confirm the 
observation made with Fig. 4: this continent is highly diverse with 
relatively low levels of threat to its species assemblages. A Venn diagram 
crossing μ[ℐH ] and μ[ℐTHREAT] top-30 countries plus the Spearman 
correlations per continent are available at Fig. S6. 

3.4. Sumatra case study 

On the western side of Sumatra, the Barisan Mountains form a sharp 
relief (see Fig. 6a). The elevational diversity gradient theory would suggest 
that species richness is particularly high along the mountainous area. 
However, according to the ℐH indicator on (b), the predicted orchid 
diversity appears to be fairly constant across the island. Considering 
only the known IUCN assessments, the presence of CR species (c) is not 
clearly correlated with the mountain range. In addition, there are areas 
where no CR species are predicted, for example in the northern and 
southern regions of the island. When the predicted IUCN status are 
included in the indicator calculation with ℐCR on (f) map, high pro-
portions of CR species are predicted across the island. There is a sharp 
pattern following the Barisan Mountains. By construction, a similar 
trend is drawn on the (d) map representing ℐTHREAT. Such a difference 
between ℐCR and ℐIUCN

CR at the regional scale confirms the need to 
include automatic IUCN assessments when designing extinction risk 
indicators. Finally, ℐVU on Fig. 4e map indicates the likely presence of 
VU species inhabiting the lower elevations of the islands. 

Protected areas cover 12.7% of the island of Sumatra. Three national 
parks on the spine of the Barisan Mountains were inscribed on UNES-
CO’s World Heritage List in 2004, forming the Tropical Rainforest 
Heritage of Sumatra. They are the three largest protected areas on the 
island. From north to south: Gunung Leuser National Park, Kerinci 
Seblat National Park and Bukit Barisan Selatan National Park. Since 
2011, these parks have been placed on a Danger List to help combat 
numerous threats, including poaching, illegal logging and agricultural 
encroachment. 

Let’s look at the zonal statistics for PAs. We calculate the ratio of two 
indicators, both averaged across PAs: i) the proportion of all CR species 
(known IUCN status + predicted status combined) and ii) the proportion 
of IUCN-assessed CR species: μ[ℐCR ]

μ[ℐIUCN
CR ]

(PAs) = 3.1. This ratio is even 

greater when all threatened species are considered together: 
μ[ℐTHREAT ]

μ[ℐIUCN
THREAT]

(PAs) = 7.1 The level of threat in Sumatra’s PAs is then signif-

icantly higher than the IUCN information alone would suggest. Now let’s 
compare the average CR proportion inside versus outside PAs: 
μ[ℐCR](PAs) = 0.108 and μ[ℐCR](PAs) = 0.036. Thus the average pro-
portion of CR species is 3 times higher in PAs than outside PAs. The 
current design of PAs therefore seems to well match habitats hosting 
particularly threatened orchids. However, looking closely at the map 
reveals that many areas with a specially high proportion of CR species 
are still outside PAs, so that the ratio could be consistently improved. 
With IUCN-assessed species only, the average proportion of CR species 
in PAs is 3.4%. It is similar to the proportion of CR species outside PAs 
with the completed Red List. Again, enriching the current IUCN infor-
mation within our method changes the narrative on PA efficiency. 

4. Discussion 

4.1. Modelling choices and considerations on covariates 

Our species assemblage predictor has theoretical guarantees that we 
have validated on a previously unseen observation set (see Section 3.1). 
However, some bias in the input data could prejudice its predictions. 
Unlike some methods, it has the advantage of not being biased by the 
heterogeneous sampling effort. Indeed, it depends only on the condi-
tional probability ℙX,Y(Y = k|X = x) and not on the marginal distribu-
tion ℙX. Nonetheless, it is impacted by species detection bias, i.e. by the 
fact that some species might be observed more than others conditionally 
to a given x. Largely under-observed species, in particular, may be 
excluded from the predicted assemblage. Conversely, some over- 
observed species could be predicted at locations where they are not 
present. In future work, it would be interesting to study the impact of 
this type of bias on the assemblage-level indicators introduced in this 
paper. Further considerations on the model (on the trade-off between 
model generalisation and over-prediction, on the difficulty of measuring 
the precision of the model) are carefully detailed in Box F. In addition, 
Box H provides additional results on the precision of the model by 
investigating individual species predictions. A histogram represents the 
proportion of occupied sites per species for a random sample of two 
hundred species and prediction maps of a hundred species are compared 
to the observations in the dataset. 

Nature’s myriad of elements are interfaced to produce heteroge-
neous patterns of diversity, unpredictable at a given point, but statisti-
cally structured. Measuring some of these factors and feeding them into 
our model will hopefully allow us to capture biodiversity shapes. 
However, it is essential to remember that no single mechanism fully 
explains a given pattern, that inter-scale dependencies and local his-
torical events strongly influence biodiversity, and that no pattern is 
exempt from variation and exceptions (Gaston, 2000). Other ecological 
variables contain valuable information influencing the distribution of 
orchids. They have not been included because of the currently limited 
spatial and taxonomic coverage or for practical reasons. Remote sensing 

Table 2 
Top-15 countries with the largest share of their area covered by CR (left) or EN 
(right) as most critical IUCN status.   

CR  EN   

B. country Area% B. country Area% 

1 Eq. Guinea 100.00 Jamaica 100.00 
2 Réunion 100.00 Dominican R. 100.00 
3 Mauritius 100.00 Haiti 99.95 
4 Madagascar 99.76 Cuba 99.86 
5 Comoros 99.60 Afghanistan 99.74 
6 Laos 99.38 French Guiana 99.65 
7 Connecticut 98.71 Guyana 99.45 
8 Vietnam 98.59 Surinam 99.29 
9 Rhode I. 98.49 Costa Rica 99.15 
10 Cambodia 98.26 Portugal 99.02 
11 Jawa 97.93 Corse 98.98 
12 Massachus. 97.25 Tadzhikistan 98.79 
13 E Himalaya 97.07 Puerto Rico 98.71 
14 Thailand 96.99 Windward Is. 98.64 
15 Sumatra 96.93 Galápagos 98.50 

B. country, botanical country (WGSRPD level 3). 

J. Estopinan et al.                                                                                                                                                                                                                               



Ecological Informatics 81 (2024) 102627

9

Fig. 4. Four indicators based on species assemblage predictions. (a) ℐH the Shannon index, (b) ℐTHREAT the weighted proportion of threatened species, (c) and (d) 
the weighted proportions of respectively CR species ℐCR and EN species ℐEN. [Figure maps are under-sampled, see the website for full-resolution]. 
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is a natural perspective for improvement (Gillespie et al., 2022; He et al., 
2015). The inclusion of biological and functional traits of orchids is 
another exciting perspective (Bourhis et al., 2023; Puglielli and Pärtel, 
2023; Weigelt et al., 2020), as well as mycorrhizal fungi or pollinator 
distribution (McCormick et al., 2018). 

We believe that predictors of large spatial patterns may play a sig-
nificant role in the regional diversity of orchids, and that the computer 
vision model can learn such information. The model’s strength is to rely 
on the best possible input set and exploit complex interactions in order 
to be as predictive as possible. The trade-off is interpretability, but the AI 
community is investing heavily in this area and our understanding is 
getting finer (Linardatos et al., 2021). For example, deep-SDMs have 
been shown to construct a feature space with structured functional traits 

and bioclimatic preferences, even though only remote sensing data were 
provided (Deneu et al., 2022). 

4.2. Error and uncertainty quantification 

The uncertainty (both aleatoric and epistemic) attached to species 
assemblage predictions was not estimated using classic methods such as 
bootstrap, dropout, ensembles or Bayesian neural networks. However, 
the shortcomings of our method in terms of error and uncertainty are 
further discussed with: i) a map of the average error rate per botanical 
country when testing whether validated observations are predicted 
within the assemblages, ii) a map estimating the uncertainty associated 
with the assemblages, and iii) a focus on the error propagation of 
automated IUCN assessments. 

First, we introduce the average error rate ER
S per botanical country of 

our predicted assemblages, calculated on the validation and test sets. For 
each observation, ES measures whether or not the correct label is pre-
dicted within the assemblage (ES = 1 − AS). While the average error rate 
across the validation set is ES = 0.03, this map shows the spatial vari-
ation in the quality of the predicted assemblages, see Fig. S7. Overall, 
average error rates are higher in the southern hemisphere. Some regions, 
such as Uruguay or Angola, have no correctly predicted observations 
within the assemblages, but they host less than five points. India, South 
East Asia and northern South America have relatively high average error 
rates. This can be read in parallel with the species richness map per 
botanical country in Fig. S4. Indeed, it is more difficult to predict the 
correct species assemblages in rich regions where the potential for 
confusion between species is greater. 

Secondly, we present an attempt to map the uncertainty of predicted 
assemblages derived from the logit sum of the top-30 predicted species, 
see Fig. S8. Using the top-30 species is coherent with the validation of 
the species distribution model. This approach to exploring model un-
certainty is based on the assumption that logit levels reflect a degree of 
model confidence in the predictions. Global uncertainty is high, with the 
Sahara being the region with the highest uncertainty. France and 

Fig. 5. Average proportion of species predicted as threatened by botanical country (WGSRPD level 3) versus average Shannon index. Countries are coloured in 
function of their continent (WGSRPD level 1) and top-15 countries of both variables are highlighted. Myanmar, Assam and Laos are the only three regions in the top- 
15 intersection whereas Pakistan and Cape Verde show especially high threatened species proportions with low diversity indices. 

Table 3 
Top-15 average status proportions per botanical country. From left to to right: 
threatened species all taken together (THREAT), Critically endangered species 
(CR) and Endangered species (EN). In average, 60% of the predicted species in 
Madagascar are threatened by extinction (63% in Réunion island).   

THREAT  CR  EN   

B. country μ [ℐc] B. country μ [ℐc] B. country μ [ℐc]

1 Réunion 0.63 Réunion 0.15 Réunion 0.44 
2 Madagascar 0.60 Madagascar 0.12 Madagascar 0.39 
3 Mauritius 0.55 Mauritius 0.10 Mauritius 0.38 
4 Comoros 0.48 Comoros 0.10 India 0.36 
5 Kenya 0.46 Jawa 0.07 Philippines 0.35 
6 Myanmar 0.45 Sumatra 0.04 Taiwan 0.34 
7 Nepal 0.45 Azores 0.03 Myanmar 0.33 
8 E Himalaya 0.44 Philippines 0.03 Sri Lanka 0.33 
9 Somalia 0.44 Vietnam 0.03 E Himalaya 0.33 
10 India 0.44 Laos 0.03 Nepal 0.33 
11 Laos 0.43 Arizona 0.03 Laos 0.32 
12 Assam 0.43 New Mexico 0.03 Assam 0.32 
13 China SC 0.42 Myanmar 0.03 Comoros 0.30 
14 W Himalaya 0.40 Mozambique 0.03 Thailand 0.30 
15 Taiwan 0.40 Lesser Sunda Is. 0.03 Cambodia 0.29  
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Germany have the lowest uncertainty. The United States and Canada 
show mixed but overall lower than average uncertainty. The observation 
map in Fig. S4 explains some of the observed patterns: for example, there 
are occurrences in southern Chile but not in Patagonia, and no occur-
rences in the Sahara. 

Third, considering not only IUCN-assessed species, but all orchid 
species in our dataset, 93.7% of the extinction risk information used is 
estimated using the IUCNN method (Zizka et al., 2020). The corre-
sponding maps and results are therefore dependent on the accuracy of 
the IUCN automated assessment method. Different IUCN status pre-
dictions from IUCNN (or any other status prediction method) would 
strongly affect our map patterns and zonal statistics when considering 
all species from the predicted assemblages. The state-of-the-art IUCNN 
method has an accuracy of 84% for binary prediction and 64% for status 
prediction. At the status level, the intermediate threat categories NT and 
VU are particularly difficult to estimate, both because of their close 
definition and their relatively low representation. Other statuses are 
well estimated (although CR species are frequently confused with EN), 
see the confusion matrix in Supplementary Information Table 3 (Zizka 
et al., 2020). The IUCNN authors also reported that accuracy was highest 
for species considered threatened by modification of natural systems, en-
ergy production and mining, and lowest for species threatened by human 
intrusion, disturbance and pollution. Indeed, it seems more difficult to 
detect harmful human disturbance remotely than large-scale habitat 
modification. Consequently, such a bias will be reflected in the maps 
produced. In addition, a class of Bayesian neural networks was intro-
duced to quantify prediction uncertainty and possibly retain only high 

confidence status predictions (Zizka et al., 2022). With this classifier it 
would be possible to precisely study how status uncertainty propagates 
into all our extinction risk indicators. However, our aim here was to 
focus on the proof-of-concept methodological workflow and possible 
applications, assuming the status information is correct. Furthermore, 
the quality of automated IUCN assessments will improve with the 
coverage and consistency of manual assessments, and with increasing 
access to appropriate environmental predictors. While current auto-
mated (and manual) assessments are still plagued by errors, we have 
taken the position to build on this knowledge and produce ambitious 
indicators as they continue to improve. Finally, it is partly the uncer-
tainty of status predictions that has led us to design a very precautionary 
indicator: ℐO the most critical IUCN status from the predicted species 
assemblages. In doing so, we respect the IUCN principle of using the 
most critical status when there is uncertainty. In the assessment process, 
this prevails when different criteria with adequate data lead to different 
threat categories. Here we apply this principle to all species in a given 
assemblage. SI Box G proposes a simplified attempt to quantify the 
probability of underestimating ℐO at a given location. 

4.3. Our indicators’ originality 

One of the main strengths and originality of our indicators is their 
scalability. An analysis can start at the country level with zonal statistics 
before delving deep into regional patterns. For example, India ranks 
fourth in terms of its average proportion of CR species (Table 3 last 
column). Looking at the ℐCR indicator, the Western Ghats and eastern 

Fig. 6. Five indicators of species assemblage extinction risk applied on Sumatra island. Elevation is also provided and protected areas are hashed in blue (down-
loaded from https://www.protectedplanet.net/en). (a) elevation map, (b) Shannon index, (c) proportion of IUCN-assessed CR species in the predicted species as-
semblages. On the second line, species proportion of: (d) threatened species, (e) VU species only, and (f) CR species only (all statuses combined). [Maps in figures are 
under-sampled, see the website for full-resolution]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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India appear to be the main hosts of CR species. Finally, the interactive 
map allows you to zoom in on patterns, explore and look for terrain 
correspondence with the base maps. The case study of Sumatra also 
shows that mountainous regions can host particularly high proportions 
of CR species. 

One of the main shortcomings of our indicators is their lack of 
transparency. A first direct perspective for improvement is to return, for 
a given point, the names and IUCN status of the species assemblage. 
However, this is a technical challenge given the global support size of 
221 M points. Another drawback is the interpretability of deep-SDMs. 
Feature importance experiments would provide a sense of which fea-
tures the model relies on most. Again, this is a very active area of 
research and future work will complement this point (Ryo et al., 2021). 

Orchids have specific characteristics that make them valuable in-
dicators of ecosystem health (Newman, 2009). They are sensitive to 
climate change and environmental disturbances (Kull and Hutchings, 
2006), and their interactions with pollinators and mycorrhizal associa-
tions contribute to ecosystem functioning (Swarts and Dixon, 2009). In 
addition, orchids are easy to monitor in the sense that once a population 
has been established, it is easy to find it every year. Therefore, as defined 
by (Jørgensen et al., 2016), orchids can be considered as suitable 
ecological indicators of ecosystem health. The family is i) easy to 
monitor, ii) sensitive to small-scale environmental changes, whose 
response can be quantified and predicted, and iii) globally dispersed. 
They also are umbrella species and their local disappearance may be an 
early warning of environmental disturbance (Gale et al., 2018). How-
ever, they don’t encompass all aspects of ecosystem biodiversity. While 
orchids can be used as surrogate species for biodiversity planning, they 
can’t fully represent overall ecosystem health. Taking these elements 
into account, orchid-based indicators such as ℐO and ℐc can be 
considered to have a wider scope than just qualifying their family, but 
also a degree of habitat quality. Nonetheless, we do not pretend to be 
able to fully capture ecosystem health through a single family of in-
dicators. In practice, achieving this goal would require a large number of 
indicators and measurements. 

Safeguarding ecosystems within the post-2020 global biodiversity 
framework requires robust indicators that capture different dimensions: 
area, integrity and risk of collapse (Nicholson et al., 2021). Among the 
recommendations for selecting indicators, two are particularly relevant 
to our work: 4. greater testing and validation of indicators is required to 
understand their ecosystem relevance, reliability and ease of interpretation 
and 5. the connection between global indicators and national or local policy 
and reporting needs strengthening. A strength of our indicators is to meet 
recommendation five. However, a downsize is that they also suffer from 
a lack of ground truthing to be confidently applied on the ground, as the 
fourth recommendation points out. 

4.4. Comparison with existing indicators 

We can further weigh the pros and cons of our method by comparing 
our results with previous attempts to map orchid extinction risk and 
diversity. 

To start with, we compare our work with (Zizka et al., 2020): The 
μ[ℐTHREAT] top countries, i.e. the countries with the highest average 
proportion of predicted threatened species, largely overlap with the 
countries identified in as having the highest proportion (and not the 
highest number) of potentially threatened species. This point of 
convergence is reassuring since we processed the same species and 
occurrences. 

Protecting species for their evolutionary distinctiveness, combined 
with an IUCN threatened status, is another approach taken by EDGE: 
Evolutionary Distinct Globally Endangered (Isaac and Pearse, 2018). 
While EDGE species must be officially listed as threatened by the IUCN 
in addition to having an above-average ED score (Evolutionary 
Distinctiveness), Vitt et al. (2023) developed a conservation prioritisa-
tion method based on ED and rarity as the number of occupied regions or 

the area of occupancy. This approach has the advantage of basing con-
servation priorities on fully available data. It shares the same goal of 
informing the conservation of data-deficient orchid taxa by highlighting 
urgent locations. Their analyses and conclusions are carried out at the 
level of botanical countries. Here, the spatial ranges considered are 
compiled from the WCSP (World Checklist of Selected Plant Families) 
and GIFT (Global Inventory of Floras and Traits) databases. Tropical 
Africa does not emerge as a clear priority hotspot, as our indicators using 
IUCN information suggest. However, they highlight the Neotropics and 
Southeast Asia as hotspots of richness, as does our Shannon index in-
dicator. They also identify islands as having particularly high numbers 
of rare and distinct species. Interestingly, they point out that orchid ED is 
highly correlated with their richness (R2 = 0.87). 

On a global scale the speciation rates highlighted by Perez-Escobar 
et al. (2023) correspond overall to ecoregions identified as highly 
diverse by the Shannon index and having high threatened species pro-
portions according to ℐTHREAT. However, this is not reciprocal as many 
regions predicted with high diversity and threat levels by our indicators 
do not present high speciation rates, as in Angola and Zambia. More-
over, when we zoom in more details on the Costa Rican ecoregions with 
the highest speciation rates, some of them, such as the Cordillera de 
Talamanca, do present very high extinction risk levels, while others, as 
the Nicoya Peninsula, are projected to be relatively safe from extinction. 

The global extinction probability of terrestrial vascular plants from 
Verones et al. (2022) is an indicator than can be compared to ℐTHREAT. In 
a given place, this indicator is high if many threatened species are 
known to occur there and/or if they have very small ranges. However, 
we defend our kilometre-scale resolution and the novel way in which we 
calculate ℐc. This allows us to weight the contribution of species by 
their relative probability of occurrence. 

Although the Shannon index measures not only community richness 
but also its evenness, global vascular plant richness maps such as (Cai 
et al., 2022) are the closest available point of comparison. Again, both 
the resolution and construction of our indicator differ from previous 
work. 

4.5. Orchid conservation 

Spatial indicators can be used to identify priority areas and support 
the design of PAs (Almpanidou et al., 2021). An intuitive method is to 
select the k-highest percentiles of the indicator as hotspots. In Sumatra, 
the creation of corridors extending PAs along the Barisan Mountains 
seems a natural improvement to conserve CR species. While this 
approach is easy to understand, there is a risk that some aspects of 
biodiversity will be missed by the indicator and left unprotected (Orme 
et al., 2005). It is fair to ask: if the current PAs preserve key aspects of 
biodiversity and are representative of the other areas identified as most 
at risk, where is the next priority? The combination of complementary 
indicators is the key to designing effective PAs with a limited budget 
(Silvestro et al., 2022). 

Manual extinction risk assessments should be carried out extensively 
in the tropics and on islands. Indeed, it is well known that the tropics are 
poorly assessed, although they host most of the world’s biodiversity 
(Collen et al., 2008). The orchid family follows the same trend. Auto-
mated assessment methods will continue to improve, hand in hand with 
the quality of IUCN assessments in terms of taxonomic coverage, 
geographical extent and consistency. Finally, special attention must be 
paid to the assessment and protection of islands: all our indicators point 
to them as hosts of particularly threatened species assemblages. 

5. Conclusions 

Based on a deep-SDM architecture, we have developed global in-
dicators that qualify the extinction risk of species assemblages at an 
unprecedented kilometre resolution. This allows multiscale analysis 
from global patterns down to country statistics or landscape 
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discrepancies. The indicators are available as interactive maps at 
https://mapviewer.plantnet.org/? 

config=apps/store/orchid-status.xml#. Although our results 
show how our novel indicators can be successfully employed, working 
closely with decision-makers would ultimately allow for more effective 
guidance of conservation actions (Guisan et al., 2013). To enable effi-
cient technology transfer, interdisciplinary studies between computer 
science and conservation science need dialogue with conservation 
practitioners (Gale et al., 2018). 
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