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Microbiome

Shotgun metagenomics reveals 
interkingdom association between intestinal 
bacteria and fungi involving competition 
for nutrients
Zixuan Xie1,2, Aleix Canalda‑Baltrons1, Christophe d’Enfert3 and Chaysavanh Manichanh1,2* 

Abstract 

Background The accuracy of internal‑transcribed‑spacer (ITS) and shotgun metagenomics has not been robustly 
evaluated, and the effect of diet on the composition and function of the bacterial and fungal gut microbiome 
in a longitudinal setting has been poorly investigated. Here we compared two approaches to study the fungal 
community (ITS and shotgun metagenomics), proposed an enrichment protocol to perform a reliable mycobiome 
analysis using a comprehensive in‑house fungal database, and correlated dietary data with both bacterial and fungal 
communities.

Results We found that shotgun DNA sequencing after a new enrichment protocol combined with the most com‑
prehensive and novel fungal databases provided a cost‑effective approach to perform gut mycobiome profiling 
at the species level and to integrate bacterial and fungal community analyses in fecal samples. The mycobiome 
was significantly more variable than the bacterial community at the compositional and functional levels. Notably, 
we showed that microbial diversity, composition, and functions were associated with habitual diet composition 
instead of driven by global dietary changes. Our study indicates a potential competitive inter‑kingdom interaction 
between bacteria and fungi for food foraging.

Conclusion Together, our present work proposes an efficient workflow to study the human gut microbiome inte‑
grating robustly fungal, bacterial, and dietary data. These findings will further advance our knowledge of the interac‑
tion between gut bacteria and fungi and pave the way for future investigations in human mycobiome.

Keywords Mycobiome, Microbiome, Diet, Shotgun metagenomes, Comprehensive database

Introduction
The fungal microbiome, named mycobiome, is believed 
to play essential roles in human health and disease 
[1–10]. However, in comparison with the gut bacte-
rial microbiome, the human gut mycobiome has only 
been partially investigated (225 results of “human gut 
mycobiome”, 32,653 results of “human gut microbi-
ome” in PubMed before February 2023). The knowledge 
gap could reflect the lack of a comprehensive fungal 
sequence database and bioinformatics pipeline. However, 
we have recently addressed this issue by creating a gene 
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catalog with over 1.6 million fungal single-copy marker 
genes and 3 million fungal protein sequences. Addition-
ally, we developed a tool that enables fungal taxonomic 
and functional profiling from shotgun metagenomic 
sequence data [11]. Another reason for this knowledge 
gap may lie in the sequencing approach that has been so 
far used to access the composition of the fungal micro-
biome. Indeed, similar to the analysis of the human gut 
bacterial microbiome, studies of the human gut mycobi-
ome have frequently exploited amplicon sequencing of 
ribosomal DNA, especially the sequencing of the internal 
transcribed spacer (ITS) region [6, 8, 10, 12, 13]. How-
ever, it has been demonstrated that the copy numbers of 
the ribosomal DNA in fungi can vary widely at the spe-
cies level and even at the strain level [14–18]. This high 
variation challenges the quantitative taxonomic profil-
ing of fungal communities of an environment. Moreover, 
such as other amplicon sequencing approaches, ITS, or 
18S sequencing methods have been criticized for having 
a low phylogenetic resolution at the species level [12, 15, 
19], and for the disability to provide functional informa-
tion [20]. To address the above issues, combining shot-
gun metagenomic sequencing which randomly breaks 
and sequences the whole genomic DNA with the use of 
single-copy marker genes [11] could be a more suitable 
strategy.

The microbial species in the human gut display varying 
abundance levels, of which the fungal species only make 
up a small proportion. The cultivable fungi in feces range 
from  102 to  107  cfu/g [21–23], indicating that the ratio 
of the fungal cells against the bacterial cells is between 
 10−9 and  10−4 [24]. Moreover, the proportion of the fun-
gal genes in the human gut is reported to be less than 
0.08% of the whole microbial metagenome [11, 25, 26]. 
This numerical inferiority, making the human gut myco-
biome a subdominant community, is a potential source 
of bias when using shotgun sequencing to recover fungal 
sequences, as this approach provides compositional data. 
Thus, either deep shotgun sequencing, which has a rela-
tively high cost, or an experimental fungal enrichment 
protocol can provide a solution to this issue. It is known 
that the size of fungal cells is generally larger than that of 
bacterial cells. The diameter of fungal yeasts is approxi-
mately 2–10 μm, and the diameter of hyphae can reach 
40  μm [27–30], while the diameter of bacterial cells is 
normally between 0.2 and 2 µm [31]. Thus, centrifugation 
that separates cells from these two kingdoms based on 
differentiated cell sizes could be an option to enrich the 
fungal cells in human fecal samples.

Therefore, in this study, we have introduced an enrich-
ment protocol that separated the original human fecal 
samples into two separate partitions and successfully 
enriched fungal and bacterial cells respectively. This 

protocol has been validated on a cohort of 48 fecal 
samples collected from 6 healthy volunteers longitudi-
nally within 8 weeks. Beyond that, we also collected the 
habitual diet data by asking the volunteer to fill out a 
short food frequency questionnaire [32] every 4  weeks. 
Our study demonstrated that after applying this enrich-
ment protocol, significantly more fungal sequences 
could be captured with normal-depth shotgun sequenc-
ing. Moreover, with the dietary information, our study 
allowed us to link the habitual diet with microbial taxa 
and functions.

Methods
Fungal genomes collection
All species and strains used in this project were col-
lected from the FunOMIC-T database [11] in order to 
use the marker genes. To analyze the ITS copy number, 
260 fungal strains covered by seven species (Aspergillus 
flavus, Candida albicans, Candida glabrata, Cryptococ-
cus neoformans, Rhizopus oryzae, Rhodotorula muci-
laginosa, and Saccharomyces cerevisiae) were chosen, as 
explained in the Results section. For each of the selected 
strains, both its genome assembly and its corresponding 
raw shotgun sequencing reads were downloaded from 
the NCBI [33] or JGI [34] databases. Moreover, genome 
assemblies of the 14 most abundant species in the human 
healthy gut mycobiome were also downloaded to create 
in silico mock communities [11].

Estimation of the ITS copy numbers
Two methods were used to estimate copy numbers of 
fungal ITS regions: Hidden Markov models (HMM) 
and mapping depth [16, 35]. To determine the ITS copy 
numbers using HMM, we created two HMMs respec-
tively for predicting the flanking sequences of the two 
ends of the whole ITS region. These two HMMs are 
located separately in the large subunit (LSU) and small 
subunit (SSU) of the rRNA gene. For creating the HMM 
of the LSU, a total of 97 sequences in FASTA format 
were obtained from NCBI (Additional file  1: Data S1) 
which were then aligned using the “MUSCLE” tool [36] 
in Stockholm format. This alignment was then used to 
create the HMM profiles with the hmmbuild function in 
UNIX [37, 38]. For creating the HMM of the SSU, 100 
sequences (Additional file  2: Data S2) were recovered 
and used through the same process as with the LSU. The 
resulting HMM profile had a length of 588 bp for LSU 
and 142  bp for SSU. With the obtained HMM profiles 
we searched the DNA homologies of the beginning and 
the ending of the ITS regions in each of the 260 genome 
assemblies mentioned above, then estimated the num-
ber of copies by using the nhmmer function. Then, we 
applied a filtering step to eliminate those matches that 



Page 3 of 19Xie et al. Microbiome          (2023) 11:275  

presented an E-value greater than 0.001 [39]. The copy 
number was then determined using an in-house Python 
script that evaluated the distance between the start 
and end of the ITS region. As most ITS lengths were 
reported in a range of 400 and 800 bp with an average of 
550 bp [40, 41], the script accepted a distance between 
400 and 800 bp. Moreover, if there was an HMM match 
for one end of the ITS but not the other, the script 
determined whether the prospective ITS sequence was 
at the end of a chromosome/scaffold, in which case 
the other end of the region could not be found, thus 
the script counted another copy. Once the copy num-
ber was determined for a genome, the complete ITS 
sequence was extracted by means of the BEDTools tool, 
which will be used in the mapping depth method men-
tioned below [42]. The resulting file contained three col-
umns for each genome: genome ID, ITS copy number, 
and ITS sequence. Summary statistics were calculated 
for the seven species analyzed.

To estimate CNV using the mapping depth approach, 
we calculated the ratio of the ITS depth against the single-
copy marker genes’ depth [18]. The ITS sequence for each 
genome was obtained from the HMM method mentioned 
above while the single-copy marker genes were obtained 
from the FunOMIC-T database [11]. The raw reads of 
the 260 genomes previously downloaded from the NCBI 
and JGI were filtered and trimmed using Trimmomatic 
(version 0.36) with the default settings [43] to obtain 
reads with higher qualities. The filtered reads were then 
mapped respectively to the corresponding ITS sequence 
and the set of single-copy marker genes by using Bow-
tie2 [44]. Once the mapping was finished, samtools [45] 
was used to convert the resulting SAM file into a BAM 
file. Next, those reads mapped with a q-score inferior to 
30 were filtered out and the depth at each base was calcu-
lated. The resulting file was then analyzed using R (version 
4.0.2) where the mapping depth, which was determined as 
the mean depth of all the bases of each gene, was calcu-
lated and normalized by gene lengths. Prior to calculating 
the mean, the positions at the two ends (which present 
fewer reads and lead to a bias on the real mapping depth) 
were trimmed by deleting the first and last 50 bp, as done 
in the report of Lofgren et al. [16]. The copy number was 
finally estimated as the ratio of the mapping depth of the 
ITS region by the median of the mapping depths of all the 

single-copy marker genes. We used the median in order to 
avoid a bias of outlier single-copy genes that had a higher-
than-usual mapping depth. The whole pipeline for this 
analysis is summarized in Fig. 1a.

To validate the above mapping pipeline, we selected 
10 S. cerevisiae genome assemblies out of the 260 
assemblies downloaded from NCBI. We recovered the 
ITS sequences from each of these assembled genomes 
using the CN-HMM method. Then we queried the ITS 
sequences in chromosome XII of each genome assembly 
to get the total number of hits, which is used as the refer-
ence ITS copy numbers. Then for each of the 10 assem-
blies, we generated 15 million sequence reads using the 
InSilicoSeq tool [46]. Those reads were then mapped to 
their respective ITS and single-copy fungal marker genes’ 
sequences using the read mapping pipeline to identify 
the copy number estimated by mapping depth (CN-MD). 
The Student t test was done to compare the CN-MD with 
the references, with a significant threshold p value < 0.05.

In‑silico comparison of ITS and shotgun methods
To compare the accuracy of the ITS and shotgun methods 
in detecting the relative abundance of fungi at strain, spe-
cies, or genus level in environmental samples, genomes 
assemblies from 27 strains were used, for which the ITS 
sequences (by CN-HMM method) and copy numbers 
of ITS (CN-MD) were extracted. These were used as 
artificial genomes for creating mock communities. Five 
different in silico mock fungal communities were gen-
erated with randomly selected strains for each species. 
The strains and their randomly attributed abundances 
are shown in Additional file 3: Data S3. With the InSili-
coSeq tool, we created 15 million reads [47] from the 
whole genomes (for the shotgun simulation) and another 
15 million from the ITS sequences (for the ITS sequenc-
ing simulation) for each community (Additional file  4: 
Fig. S1). After obtaining the reads, the shotgun reads 
were mapped to the FunOMIC-T database, while the ITS 
reads were mapped to an in-house ITS database. The ITS 
database was created by integrating the UNITE [48] (ver-
sion 8.2) and the RefSeq database [49] (data downloaded 
before 09/12/2020), as well as the sequences extracted 
from the HMM, in total of 96,388 sequences. The post-
mapping processing was the same as the CN-MD pipe-
line. Then, an extra filtering step was taken: the filtering 

Fig. 1 Shotgun sequencing provides higher accuracy than ITS sequencing in mycobiome profiling at the species level. a Workflow of the mapping 
depth approach to recover ITS copy numbers. b The distribution of CN‑MD (y axis) of the ITS across the strains of the 7 analyzed species (x axis) 
(n = 260). c The intraspecific CN‑MD of S. cerevisiae (x axis) for the 32 strains analyzed (y axis) (n = 32). d In silico comparison at species level 
between expected abundance (“Expected”) and observed abundance by using the shotgun method (“Shotgun observed”) and the ITS method 
(“ITS observed”)

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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of those genes that presented less than 15 mapping depth, 
as they were possible off-target mappings and could be a 
cause of bias. This filtering was based on previous publi-
cations [50, 51], where various tests were undertaken to 
determine the optimal filtering value.

A lower mapping depth filter would result in the intro-
duction of more off-target species while a higher filter-
ing depth would reduce low-abundant but relevant 
species [50, 51]. Relative abundance for each mapping 
hit inside each mock population was calculated by divid-
ing the mean depth of each hit by the sum of all mean 
depths. Then, the relative abundance of each species was 
retrieved by summing all the hits that corresponded to 
the relevant species; all other species were marked as off-
target. The expected and observed relative abundances 
were then compared using R (v4.0.2), as described in the 
Statistical analysis section.

To further evaluate a more diverse fungal community 
and to mimic a gut microbiome sample, an additional 
mock community, consisting of the 14 most prevalent 
fungal species with their relative abundance found in 
healthy gut controls was created [11] (Additional file  3: 
Data S3).

Fungal enrichment protocol
Centrifugation was used to separate fungal and bacterial 
cells based on their different cell sizes. Stoke’s law was 
used to estimate the centrifugation speed and time, in 
which D is the particle diameter (cm), η is the fluid vis-
cosity (poise), Rf and Ro are the final and initial radius 
of rotation respectively (cm), ρp and ρf are the density of 
the particle and fluid respectively (g/ml), ω is the rota-
tional velocity (radians/sec) and t is the required time for 
sedimentation from Ro to Rf (sec) (Eq. 1).

Briefly, 15  ml of 1 × PBS solution (Sigma-Aldrich 
Phosphate Buffered Saline Powder pH 7.4) was added 
to 500  mg fecal samples together with 10 2  mm glass 
beads (Merck KGaA glass beads 2  mm) to homogenize 
the feces into fecal suspension. The suspension was then 
passed through a 40-micron cell strainer (Clearline® cell 
strainers 40  µm blue color) to remove large-size undi-
gested particles. We then centrifuged the filtered suspen-
sion for 3 min with 201 g using Eppendorf A-4-62. The 
supernatant was collected in a 50-ml falcon tube (del-
talab EUROTUBO® 50  ml conical tubes) and the pellet 
was resuspended in 15  ml of 1 × PBS. The resuspended 
solution was centrifuged again for 3 min and 201 g with 
the same centrifuge to reduce the remaining number of 
bacterial cells from the fungi-enriched fraction, then the 

(1)D =

18ηlη Rf /Ro

ρp− ρf ω2t
0.5

supernatant was collected and combined with the previ-
ous supernatant. We then resuspended the pellet with 
1 ml of 1 × PBS and centrifuged it for 20 min at 10,000 × g 
using an Eppendorf Centrifuge 5427R to collect the pel-
let containing the enriched fungal cell fraction. The com-
bined supernatant was centrifuged parallelly in Fiberlite™ 
F14-6 × 250LE for 30 min at 10,000 × g, the pellet was col-
lected as the enriched bacterial cell fraction (Additional 
file 5: Fig. S2).

Collection and processing of habitual diet information
Six volunteers, free of diagnosed diseases, were recruited 
between August 2021 and October 2021 by disseminat-
ing an announcement. During 2 months, each volunteer 
filled a short Frequency Food Questionnaire (sFFQ) [32], 
in total 12 sFFQs were collected.

Nutrients were adjusted by energy using the residual 
method [52] to control the confounding effect of calories. 
We then used the Wilcoxon test and the intraclass corre-
lation coefficient (ICC) [52, 53] to evaluate the reproduci-
bility of the sFFQ by comparing both the energy-adjusted 
nutrient data and the food groups extracted from the 
sFFQ administered on two-time points.

Sample collection and DNA extraction
Each of the above-mentioned volunteers donated one 
fecal sample per week for 2  months, in total 48 fecal 
samples were collected. The fecal samples were frozen 
immediately at – 20 ℃ then transferred to – 80 ℃ within 
the month. For each of the 48 samples, two aliquots of 
500  mg were taken, one was used directly for the DNA 
extraction, and the other was separated into the fungal 
enriched partition and enriched bacterial partition by 
applying the fungal enrichment protocol before the DNA 
extraction. Thus, three partitions per sample (enriched in 
fungi, enriched in bacteria, and control without enrich-
ment), in total 143 samples (volunteer No. 4 did not pro-
vide enough feces for time point 1 so only one aliquot 
was obtained for getting the enriched fungal and bacte-
rial partitions) were processed for genomic DNA extrac-
tion as previously described [54].

Shotgun metagenomic sequencing and profiling
Shotgun metagenomic sequencing was applied to the 
143 extracted genomic DNA using the Illumina Novaseq 
6000 platform. The average reading depth was 6.45 Gbp. 
For each of the sequencing samples, we used the Kne-
adData v0.7.7-alpha tool (https:// hutte nhower. sph. harva 
rd. edu/ knead data/) for trimming out low-quality reads 
and decontaminating human sequences. Then, an unpub-
lished updated version of the FunOMIC database that 
contains 2 million single-copy marker genes and 21 mil-
lion protein sequences extracted from more than 3000 

https://huttenhower.sph.harvard.edu/kneaddata/
https://huttenhower.sph.harvard.edu/kneaddata/
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fungal species [11] was used for getting the raw reads 
of taxonomic and functional mycobiome profiling. The 
Original version of this database is available at https:// 
manic hanh. vhir. org/ funom ic/, the complete release of 
the updated version is under preparation. Then the raw 
reads were normalized with the TMM method [55, 56] 
using the R package “edgeR”. The MetaPhlAn v3.0.9 and 
the HUMAnN v3.0 [57] (https:// hutte nhower. sph. harva 
rd. edu/ humann/) were used respectively for the taxo-
nomic and functional prokaryotic microbiome profil-
ing. The functional profiling output by HUMAnN was 
annotated using MetaCyc pathway database [58] while 
that of FunOMIC was using the KEGG pathway database 
[59]. To make the annotations consistent, we regrouped 
the prokaryotic functional profiling into KEGG annota-
tion style by using the function “humann_regroup_table” 
embedded in HUMAnN and the function “keggLink” 
under R package “KEGGREST” (Dan Tenenbaum and 
Bioconductor Package Maintainer (2021). KEGGREST: 
Client-side REST access to the Kyoto Encyclopedia of 
Genes and Genomes (KEGG).).

Keystone species analysis
The network was constructed based on the species-level 
SparCC correlation matrix measured using the SparCC 
tool which uses logarithmically scaled variances to calcu-
late correlations between species [60]. We inferred and 
removed the indirect effects from the observed correla-
tion matrix by using the network deconvolution algorithm 
as previously proposed [61, 62]. Then based on the ran-
dom matrix theory (RMT), we determined a threshold of 
rho = 0.78. All correlations that had an absolute value of 
less than 0.78 were discarded [63]. The p values for all the 
correlations were adjusted using the Benjamini and Hoch-
berg false discovery rate (FDR), and a cutoff of FDR = 0.001 
was applied to remove the non-relevant correlations. The 
resulting correlation matrix was then used to construct 
the network using the R package “igraph” [64]. “The igraph 
software package for complex network research.” Inter-
Journal, Complex Systems, 1695. https:// igraph. org.). After 
network construction, the topological indices, including 
the degree, betweenness centrality, and closeness central-
ity of each node, were calculated by using functions devel-
oped in igraph.

Statistical analysis
To compare the ITS and the shotgun approaches, 
weighted UniFrac distances [65] were calculated using 
the phyloseq package [66]. Distances were compared 
between methods using a Student t test [67], as the values 
belonged to a normal distribution, proved beforehand by 
doing a Shapiro test [68]. Spearman correlations of die-
tary data or metadata with microbiome alpha diversities 

or microbiome taxonomic and functional compositions 
were computed using the cor.test from the stats R pack-
age (v4.0.2). The p-values for all the correlations were 
adjusted using the Benjamini and Hochberg FDR. We 
considered significant correlations with an FDR < 0.05. 
In the heatmaps for partial correlations, the asterisk indi-
cates that the correlation index for the corresponding 
species metadata pair is significant.

Results
Shotgun metagenomics sequencing provides higher 
accuracy than ITS amplicon sequencing in mycobiome 
profiling at the species level
Inaccuracy in the genome assembly of the ribosomal region 
of the fungal genomes
To analyze the copy number variability of the ITS region, 
we recovered 260 assembled fungal genomes covering 
seven fungal species, known to be relevant in human 
microbiome studies: Saccharomyces cerevisiae, Aspergil-
lus flavus, Candida albicans, Candida glabrata, Cryp-
tococcus neoformans, Rhodotorula mucilaginosa, and 
Rhizopus oryzae [11]. From each of these genomes, we 
calculated the copy number of the ITS regions using 
Hidden Markov Models (CN-HMM) and an in-house 
bioinformatic pipeline. All species, except S. cerevisiae, 
presented a very low copy number of ITS (average of 2) 
and this did not vary much across species. This obser-
vation is not in agreement with a previous study that 
reported a high number of ITS copies, ranging from 14 
to 1442 [16] (Additional file  6: Data S4). Furthermore, 
we recovered only one copy for most of the C. albicans 
strains. However, C. albicans is well-studied and has 
been shown to carry 21 to 200 copy numbers (CN) per 
genome [69–71]. The other five species presented also a 
very low mean CN-HMM value (Additional file  6: Data 
S4). Together, these results suggest an inaccuracy in the 
assembly of fungal genomes, at least in the region of the 
ribosomal genes.

High inter‑ and intra‑species variability in the ITS copy 
number
Genomes that contain many repetitive sequences have 
usually been difficult to assemble when short sequence 
reads have been generated. Indeed, during assembly, 
repetitive regions such as the ITS regions are algorith-
mically collapsed into only a few sequences due to their 
similarity, leading to a potential bias in the CN-HMM 
estimation. To circumvent the bias introduced by the 
incomplete fungal genomes, we used a mapping depth 
method for estimating ITS copy numbers (CN-MD) 
(Fig.  1a), for which more details are described in the 
Methods section. Before estimating the ITS copy num-
ber, we first validated the mapping pipeline. Ten genome 

https://manichanh.vhir.org/funomic/
https://manichanh.vhir.org/funomic/
https://huttenhower.sph.harvard.edu/humann/
https://huttenhower.sph.harvard.edu/humann/
https://igraph.org
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assemblies of S. cerevisiae were selected for this valida-
tion, and their ITS copy numbers were retrieved from the 
NCBI nucleotide database to work as the expected ITS 
copy number. At the same time, we generated 15 million 
simulated shotgun sequencing reads of the 10 assemblies 
using the InSilicoSeq tool [46]. The simulated reads were 
then used as the input of the mapping pipeline for calcu-
lating the CN-MDs for each of the genomes. At last, the 
calculated CN-MDs were compared with the reference 
copy numbers, by applying the Student t-test. The com-
parison between the two values did not show significant 
differences (Additional file  7: Data S5, p value = 0.28), 
which indicates that the pipeline could reliably recover 
the expected ITS copy numbers from whole genome 
shotgun sequencing reads.

Next, we applied the mapping pipeline to estimate the 
CN-MDs of the 260 assembled fungal genomes using 
their shotgun sequencing reads downloaded from NCBI 
or JGI. The resulting CN-MD ranged from 7 to 170, with 
an average of 60 (Additional file 8: Data S6). We observed 
that both the intra- and inter-species variability was high 
for the ITS copy numbers of the analyzed genomes which 
cover seven species and three phyla (Fig.  1b). The copy 
numbers of the ITS region of the 32 collected S. cerevi-
siae strains were widely distributed, ranging from 15 to 
137 (Fig. 1c) and those of the 182 C. albicans strains var-
ied from 11 to 74. The variance between C. albicans and 
S. cerevisiae was significantly different (p value = 8e−10; 
Levene’s test). These findings indicate that possible bias 
could be introduced when profiling the fungal commu-
nity by using ITS amplicons without normalizing by the 
actual strain level ITS copy numbers.

Shotgun data are more accurate than ITS data for taxonomic 
profiling at the species level
To compare the accuracy of the species-level mycobi-
ome profiling generated by ITS sequencing and shotgun 
sequencing, we created in silico mock communities with 
different groups of fungal species. A total of 27 artificial 
fungal genomes with known ITS copy numbers were 
used to create five in-silico mock communities. We ran-
domly generated relative abundances for the species 
in each of the five communities (Additional file  3: Data 
S3). The artificial genomes and their ITS sequences were 
used to simulate the shotgun sequencing reads and the 
ITS sequencing reads, respectively. An additional mock 
community mimicking the gut mycobiome was also cre-
ated using the 14 most abundant gut fungal species and 
their observed relative abundance based on a previous 
study [11] (Additional file  3: Data S3). The annotations 
for both sequencing methods were done using QIIME2 
and FunOMIC pipelines for ITS and shotgun reads, 
respectively.

To compare the efficiency of the two methods in per-
forming taxonomic profiling, we calculated weighted 
UniFrac metrics, which then allowed us to test whether 
phylogenetic lineages between samples were signifi-
cantly different. The metrics were calculated between 
the observed taxonomic profilings generated from both 
sequencing methods and the fixed relative abundances 
of the six mock communities, at the species and genus 
levels. At the genus level, the results showed that the two 
methods were not significantly different (p value = 0.623, 
Student t test). The ITS method exhibited a mean dis-
tance of 0.263 and the shotgun method exhibited a mean 
distance of 0.213 (Additional file 9: Data S7), which indi-
cates that both methods showed similar accuracy in taxo-
nomic profiling at the genus level. However, at the species 
level, the mapping results (Fig. 1d) showed that the two 
methods differed significantly (p value = 0.005, Student 
t-test). The ITS method exhibited a mean distance of 
0.616 and the shotgun method a mean distance of 0.237 
(Additional file  9: Data  S7, Additional file  10: Fig. S3), 
indicating that the shotgun method was able to recover 
the expected fungal community compositions more reli-
ably at the species level. The same analysis at the strain 
level was also employed, however, the results revealed 
that neither shotgun nor ITS sequencing was accurate 
enough to detect the specific strains.

A fungal enrichment protocol effectively concentrates 
fungal cells in human fecal samples
As demonstrated by previous studies [11, 26], the pro-
portion of fungal sequences obtained upon shotgun 
sequencing of DNA prepared from human fecal samples 
consists of less than 0.08% of the total sequences, which 
limits the accuracy of the recovered fungal community 
composition results if the sequencing depth is not high 
enough. However, the cost of deep shotgun sequencing is 
still not easily affordable by all researchers. We thus pro-
posed an enrichment protocol based on a series of cen-
trifugations to separate fungal and bacterial cells prior to 
the regular DNA extraction method.

To evaluate the practical efficiency of this enrichment 
protocol, we collected fecal samples from six healthy 
volunteers that included three females and three males. 
Each of the volunteers donated their fecal samples 
weekly during an 8-week span, making up a batch of 
48 fecal samples. Then, for each of the 48 samples, two 
aliquots of 500  mg were kept, from which one aliquot 
underwent the enrichment protocol to be separated 
into a fungal enriched partition and a bacterial enriched 
partition, while the other aliquot did not pass any fur-
ther operation and was used as the unenriched control. 
Finally, a total of 143 partitions (one of the volunteers 
did not provide enough feces for two aliquots) of fecal 
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samples were sent for shotgun sequencing using the 
Illumina Novaseq 6000 platform (Fig. 2a). The sequenc-
ing provided an average of 6.4 Gb, and 21.5 million pair 
reads which are comparable with other studies using 
shotgun sequencing [5, 72, 73]. Next, we annotated the 
bacterial and fungal communities for all 143 samples 
using HUMANn [57] and FunOMIC pipelines [11]. A 
total of 411 bacterial species and 208 KEGG pathways 
were found in the bacterial community, and 91 fungal 
species and 154 KEGG pathways were found in the 
fungal community. To assess whether the sequencing 
depth was sufficient to recover the majority of both 
fungal and bacterial richness, we selected eight samples 
that had the highest number of Gb to perform rarefac-
tion curves. Each sample was subsampled and anno-
tated with a gradient of sequencing depths. With the 
cutoff of the 6.4  Gb, around 80% of fungal taxonomic 
richness, more than 70% of fungal functional richness, 
100% of bacterial richness, and almost 100% of bacterial 
functional richness were recovered, showing that our 
shotgun sequencing run was able to capture most of 
the microbiome information (Fig. 2b, Additional file 11: 
Fig. S4). The plateau was reached at 7.5  Gb for fungal 
taxonomy, 15  Gb for fungal functions, and 6.7  Gb for 
bacterial functions. Together, these results showed that 
a sequencing depth of 15 Gb would allow the capture of 
the entire bacterial and fungal communities.

Then, we mapped each of the 143 samples to fungal 
and bacterial databases [11, 57] to calculate the enrich-
ment efficiencies and meanwhile get their fungal and 
bacterial, taxonomic, and functional profiles. Notably, 
the fungal profiling was annotated with the unpublished 
updated version of the FunOMIC database that con-
tains 2 million single-copy marker genes and 21 million 
protein sequences extracted from more than 3000 fun-
gal species. In total, we have detected fungi in 96 sam-
ples out of 143 (67%). We observed that by applying the 
enrichment protocol, the proportion of samples that 
have fungi detected increased from 58.3 (28 out of 48) to 
95.8% (46 out of 48). We then calculated the ratio of the 
reads that were mapped to the fungal database against 
the reads that were mapped to the bacterial database for 
all 143 samples. Then, we used this ratio in the fungal 
partition and divided by this ratio into their correspond-
ing control partitions to estimate the extent to which the 
fungal sequences have been enriched. The ratio increased 
on average 18.47 times (ranging from 0.07 to 235) after 
applying the enrichment protocol, and the fungal alpha 
diversity in fungal enriched partitions was found signifi-
cantly higher than in both bacterial (q = 4.3e−5 Shan-
non index, q = 2e−7 Chao1 index) and control partitions 
(q = 5.2e−5 Shannon index, q = 3.7e−6 Chao1 index) 
(Fig. 3a, b).

Similar but less significant results were found in the 
bacterial partitions (Additional file  12: Fig. S5a, b). 
Genus-level taxa bar plot of the fungal and bacterial 
communities grouped by different time points can also 
be found in Additional file  13: Fig. S6. Since bacterial 
reads were still present in the fungal partitions, they 
were merged with those in their corresponding bacte-
rial partitions. After applying a paired Wilcoxon test 
between the bacterial alpha diversities before and after 
merging, we found the Chao1 index after merging had 
a trend of being higher than that of before merging 
(p = 0.06, Additional file  12: Fig. S5c). This result was 
not observed for the fungal alpha diversity. For the pur-
pose of capturing more information, in the subsequent 
analysis, the merged bacterial microbiome profiling was 
used to represent the bacterial community, and the fun-
gal microbiome profiling in fungal partitions was used to 
represent the fungal community in each sample.

Keystone bacterial and fungal species in the human gut
To determine the keystone species in the human gut 
microbiome, we constructed networks based on the 
SparCC correlation matrix and the corresponding BH-
adjusted P-values matrix. In each network, the nodes 
represent the microbial species that were included in this 
network, and the edges connecting the nodes represent 
the significant inter-kingdom correlations (FDR < 0.001). 
This network captured 625 associations among 199 
microbial species which includes 111 bacterial spe-
cies, 87 fungal species, and 1 Archaea species (Fig.  4a). 
Among the 625 associations 349 were positive and 276 
negative associations. This network consisted of only one 
large connected group (199 out of 199 microbial species 
(100%)). The global network had an average node degree 
(number of edges adjacent to the node) of 6.28 (7.66 for 
bacteria and 4.5 for fungi), and it perfectly followed a 
scale-free degree distribution (power law) (Fig. 4b), indi-
cating that most nodes had low-degree values, and only a 
few nodes had the highest degree values, which are often 
called “hubs”, and are thought to serve specific purposes 
in the networks. In this network, “hubs” are microbial 
species that have a much higher number of correlations 
among all the species, indicating that they are more 
active within the gut microbiome context.

Two fungal species Eremothecium sinecaudum and 
Candida albicans, were found to have the highest 
betweenness centrality (the number of shortest paths 
going through a node) (945), and high node degree (11) 
among all the fungal species in this network (Fig.  4c), 
suggesting a critical role in the gut microbial commu-
nity. Among them, C. albicans is a known fungal patho-
gen [74], was found to form in the gut microbiome seven 
cross-domain associations with Ruminococcus gnavus, 
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Fig. 2 Study design and quality of shotgun sequencing. a Design and workflow of this study. b Rarefaction curves of the shotgun sequencing, 
x‑axis represents the depth of sequencing, y‑axis represents the percentage of richness. The rows of the panel are different microbial communities, 
and the columns of the panel represent the taxonomic or functional level richness. The black solid line is the average percentage of the richness 
of the 8 samples at the specific depth of subsampling. The red vertical solid lines represent the average sequencing depth 6.4 Gb, the blue 
horizontal dotted lines represent the threshold of 80% richness
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Firmicutes bacterium CAG 110, Streptococcus salivar-
ius, Holdemanella biformis, Eubacterium sp CAG 274, 
Proteobacteria bacterium CAG 139, and Alistipes inops. 
From the species analysis (using betweenness centrality 
and node degree), we identified one fungal species and 
13 bacterial species as potential gut keystone species 
(Table 1) as they were the species that appeared in both 
the list of the top 20 highest node degree and the top 20 
highest betweenness centrality (top 20).

Short‑term dynamics of the human gut microbiome
To determine the intra- and inter-individual variabil-
ity of the volunteers’ gut microbiome, we measured the 
pairwise dissimilarities using the Bray-Curtis dissimilar-
ity values between longitudinal samples donated by the 
same volunteer and between samples donated by dif-
ferent volunteers for both fungal and bacterial microbi-
omes. The results revealed that both bacterial and fungal 

communities exhibited higher inter-individual than intra-
individual dissimilarities (Fig.  5a), while this difference 
was significantly more pronounced in the bacterial com-
munity. We then compared the dissimilarity between 
fungal and bacterial communities; the variabilities in the 
fungal community were significantly higher than in the 
bacterial community (Fig. 5b).

Then, to investigate the stability of the gut microbi-
ome over time, we considered the first time point as a 
baseline, and for each of the individuals, we measured 
the Bray-Curtis dissimilarities of other time points 
against the baseline. In both taxonomy and func-
tion, despite the high degree of short-term longitu-
dinal change in both communities, we found that the 
fungal community displayed increased dynamics as 
compared to the bacterial community (Fig.  5c). Nota-
bly, the mean Bray-Curtis values calculated from data 
of the six individuals were significantly higher for the 

Fig. 3 Enrichment efficiency in fungi. a The genus‑level taxa bar plot of the fungal community compositions in bacterial, control, and fungal 
partitions. b Boxplots of the species‑level fungal community alpha diversities (observed species, Shannon, and Chao1 indices) in control, bacterial, 
and fungal partitions (n = 96), ordered by their mean from smallest to largest (left to right)
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fungal microbiome than bacterial microbiome (Wil-
coxon, p < 0.01 for both taxonomy and functions). To 
determine whether dietary changes drove the dynam-
ics of the gut microbiome, we correlated the pairwise 
Bray-Curtis dissimilarity of the microbiome (fungal and 
bacterial, taxonomy and function) with the pairwise 

Bray-Curtis dissimilarity of dietary data (nutrient mac-
romolecules and food groups). However, no signifi-
cant correlations were found, which may indicate the 
absence of an effect of the diet on the microbiome com-
position and function at the global level but does not 
exclude the effect of specific food groups or nutrients.

Fig. 4 Inter‑kingdom network and keystone species. a Network of the SparCC correlation between the fungal and bacterial taxonomic 
composition at the species level (FDR < 0.01). Each node shows a unique microbial species, each edge showing the SparCC correlation 
between the two nodes linked. The edges connecting the nodes represent significant correlations (FDR < 0.001). The color of the nodes 
represents the kingdom of the specific species and highlights the keystone species. The size of the nodes represents the node degrees for each 
node. The color of the edges represents the symbol of the correlation, and the width of the edges represents the intensity of the correlation. b 
Degree distribution of the network following a scale‑free distribution. c Candida albicans, one of the fungal species that has a high node degree 
and the highest betweenness centrality
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Microbial diversity and composition are associated 
with habitual diet
We then assessed the correlation between habitual diet 
(nutrients and food groups) and the alpha diversity of 
the human gut microbiome to get a broad view of how 
habitual diet could modulate microbial communities. 
Interestingly, using the Spearman correlation coefficient, 
we detected 21 significant associations (FDR < 0.05) with 
fungal taxa while no significant associations were found 
with bacterial taxa (Fig. 6a). Furthermore, 31 significant 
associations were found with fungal functions, and five 
significant associations with bacterial functions (Fig. 6b, 
c). The overlapped associations found with fungal taxa 
and fungal function were all consistent, whereas the 
overlapped associations detected with fungal function 
and bacterial function were all opposite, indicating that 
fungal and bacterial communities are likely to act com-
petitively for some dietary products (Fig. 6d).

Next, we calculated the Spearman correlation coeffi-
cients between a habitual diet, specific gut microbiome 
components, and functional pathways. We found 23 
fungal species were significantly correlated with one or 
more dietary categories. Among them, the strongest cor-
relations were Lactarius pseudohatsudake with biscuits 
(rho =  −0.32, FDR = 0.027), Penicillium lancoscoeruleum 
with fish (rho = 0.31, FDR = 0.027), Candida albicans 
with iron (rho =  −0.29, FDR = 0.038) (Fig. 7a). More sig-
nificant correlations were detected in the bacterial com-
munity. At a broad level, we found three apparent groups 
of species clustered to a group of foods mainly classi-
fied as related to more animal-based foods (fish, sauces, 
sausages, processed food, dairy products) and two oth-
ers related to less animal-based foods (fruit, vegetables) 

(Fig.  7b). Similar but less obvious groupings were also 
found when correlating habitual diet with microbial 
functions (Additional file  15: Fig. S8; Additional file  16: 
Fig. S9b).

Discussion
In this study, we took advantage of our recent implemen-
tation of the most comprehensive fungal databases that 
contain 2 million single-copy marker genes and 21 mil-
lion protein sequences extracted from more than 3000 
fungal species [11] as well as a fungal community enrich-
ment protocol in order to propose a robust approach 
integrating bacterial and fungal shotgun metagenomics 
data and characterize the human gut microbiome and its 
modulation by dietary components.

First, a series of in silico simulations led us to con-
clude that shotgun sequencing provides higher accuracy 
than ITS sequencing in mycobiome profiling at the spe-
cies level. Indeed, we have evidenced the high intra- and 
interspecific variabilities of the fungal ITS region at the 
strain level. Similar results have also been reported previ-
ously, where 14 to 1442 ITS copies were found in 91 fun-
gal taxa [16], 22 to 227 copies across the 788 S.cerevisiae 
isolates [18], and 38 to 91 18S copies in 8 Aspergillus 
fumigatus strains [14]. Given that the highest resolu-
tion of the ITS region barely reaches the species level 
[75], normalization of the ITS counts cannot reach the 
strain level, thus, accurate quantification of the fungal 
community in a complex ecology is impossible. Shot-
gun metagenomic sequencing plus the annotation using 
fungal single-copy marker genes offers an alternative. 
Our comparison of the performance of the ITS sequenc-
ing and the shotgun sequencing with in silico simulated 
mock community reads has supported this hypothesis. 
Though ITS sequencing is always considered a more 
cost-effective approach in analyzing fungal microbiomes, 
with the rapid development of next-generation sequenc-
ing technologies, the cost of shotgun sequencing has 
dropped to a more affordable level, taking into account 
that shotgun sequencing skips the amplification and 
amplicon purification steps. In sum, the total cost of both 
sequencing methods can differ slightly, while shotgun 
sequencing is able to capture more information includ-
ing the functions of the fungal communities, and the tax-
onomy and functions of the bacterial communities. Thus, 
we strongly recommend researchers in this field switch 
to the usage of shotgun metagenomic sequencing when 
studying the fungal microbiome in the future.

To reduce the bias introduced by the low proportion of 
fungal cells in human fecal samples, we proposed a fungal 
enrichment protocol that effectively concentrated fungal 
cells. This protocol successfully increased the detected 
fungal counts and richness based on the separation 

Table 1 Keystone microbial species in the human gut

Keystone species Betweenness 
centrality

Node degree

Faecalibacterium prausnitzii 1199.25 25

Bacteroides fragilis 864.43 15

Enorma massiliensis 1100.07 17

Alistipes inops 995.29 17

Prevotella sp AM42 24 654.86 18

Collinsella aerofaciens 789.85 20

Akkermansia muciniphila 1334.21 22

Alistipes putredinis 821.04 16

Dorea formicigenerans 829.1 18

Coprococcus comes 1286.18 20

Holdemanella biformis 1279.61 18

Prevotella copri 817.2 21

Bifidobacterium pseudocatenulatum 961.73 15

Debaryomyces hansenii 832.15 16
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provided by the centrifugation method. A membrane 
filter approach was also tested in parallel to assess the 
centrifugation method. Both methods utilized the nature 
that most bacterial cells are smaller than fungal cells. 

Several cellulose nitrate filters with different pore sizes 
(0.65 microns, 3 microns, and 5 microns) were used indi-
vidually to intercept the fungal cells and release the bac-
terial cells. Nonetheless, the membrane method was hard 

Fig. 5 Dynamics of the human gut microbiome. a Intra‑ and inter‑individual beta diversity (Bray‑Curtis) in fungal and bacterial communities 
at taxonomic and functional levels. b Comparison of the beta diversities between fungal and bacterial communities intra‑ and inter‑individually 
at taxonomic and functional levels. c Dynamics of fungal and bacterial communities at taxonomic and functional levels. The x‑axis represents 
different time points, the y-axis represents Bray‑Curtis values
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to implement, for the intercept fungal cells and other 
impurities that failed to be removed immediately blocked 
the pores.

The network analysis has suggested candidate keystone 
microbial species including 13 bacterial species and 1 
fungal species in the human gut environment. The only 

fungus identified as the keystone species, Debaryomyces 
hansenii, has been implicated as a fungus that is found in 
Crohn’s disease tissue and can lead to dysregulated heal-
ing. Crohn’s disease is usually characterized by the dysbi-
osis of the gut microbiome, bacterial species correlating 
with D.hansenii might play crucial roles in keeping the 

Fig. 6 Microbial taxonomic and functional alpha diversities are associated with habitual diet. a Significant (FDR < 0.05) Spearman correlations 
found between the fungal taxonomic alpha diversity and diet categories. The x‑axis is the value of the correlation coefficient, the y‑axis is the name 
of the diet categories. b Significant (FDR < 0.05) Spearman correlations found between the fungal functional alpha diversity and diet categories. 
The x‑axis is the value of the correlation coefficient, the y‑axis is the name of the diet categories. c Significant (FDR < 0.05) Spearman correlations 
were found between the bacterial functional alpha diversity and diet categories. The x‑axis is the value of the correlation coefficient, the y‑axis 
is the name of the diet categories. d Network of the fungal functional alpha diversity, bacterial functional alpha diversity, and diet categories 
detected to be significantly (FDR < 0.01) correlated with them. The r values are labeled for the overlapped diet categories. The edges are 
the Spearman correlation coefficients between the two nodes linked. The color of the edges represents the symbol of the correlation. The size 
of the nodes represents the node degree values
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gut microbiome in a healthy balance. Among the bacte-
rial species correlating with D.hansenii, Faecalibacterium 
prausnitzii, Enorma massiliensis, Collinsella aerofaciens, 
and Prevotella copri were also identified as the keystone 
species. F. prausnitzii is well known as one of the most 
abundant and important bacterial species in the human 
gut, it is also an important butyrate and other short-chain 
fatty acid producer in the gut microbiome.

We found that the mycobiome was much more 
dynamic than the bacterial community at the taxo-
nomic and functional levels, which is consistent with 
the results found in other studies [73, 76], indicat-
ing that the fungal compositions in human gut shift 

rapidly instead of level off to a stable status such as 
the bacterial community. Since the habitual diet was 
found to have an influence on the composition of the 
fungal microbiome in both human and mice mod-
els [77–81], we sought the relationship between the 
dynamics of habitual diet and the dynamics of the gut 
microbiome. Although the microbiome changes were 
not driven by global dietary changes, we showed that 
microbial diversity, composition, and functions were 
associated with habitual diet composition. We have 
found that bacterial alpha diversity and fungal alpha 
diversity were oppositely correlated with three diet 
categories, sweets, protein, and iron. The level of iron 

Fig. 7 Microbial taxonomic compositions are associated with habitual diet. a Heatmap of all the detected significant correlations between fungal 
taxonomic compositions and diet categories. b Heatmap of all the detected significant correlations between bacterial taxonomic compositions 
and diet categories. The asterisk indicates that the correlation index for the corresponding species metadata pair is significant. For better 
visualization, this plot with higher resolutions can be found in Additional file 14: Fig. S7
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in the habitual diet was found to negatively correlate 
with the fungal functional alpha diversity. To the best 
of our knowledge, this is the first demonstration of the 
effect of iron on the fungal functional alpha diversity, 
though some studies have discussed that high iron lev-
els promote the growth of specific fungal species [82]. 
Our study indicates a potential competitive inter-king-
dom interaction between bacteria and fungi for food 
foraging.

The data that have been generated for six healthy indi-
viduals sampled over a 2-month period provide a new 
vision of the link between the diet and the composition 
of the bacterial and fungal microbiomes. Altogether, our 
present work proposes an efficient workflow to study the 
human gut microbiome integrating robustly fungal, bac-
terial, and dietary data.

Conclusion
The data that have been generated for six healthy individ-
uals sampled over a 2-month period provide a new vision 
of the link between the diet and the composition of the 
bacterial and fungal microbiomes. Together, our present 
work proposes an efficient workflow to study the human 
gut microbiome integrating robustly fungal, bacterial, 
and dietary data. With this workflow, our findings dem-
onstrated the interkingdom association between intesti-
nal bacteria and fungi at taxonomic and functional levels 
and their correlation with diet.
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