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Abstract: In the context of autonomous vehicles on highways, one of the first and most important
tasks is to localize the vehicle on the road. For this purpose, the vehicle needs to be able to take into
account the information from several sensors and fuse them with data coming from road maps. The
localization problem on highways can be distilled into three main components. The first one consists
of inferring on which road the vehicle is currently traveling. Indeed, Global Navigation Satellite
Systems are not precise enough to deduce this information by themselves, and thus a filtering step is
needed. The second component consists of estimating the vehicle’s position in its lane. Finally, the
third and last one aims at assessing on which lane the vehicle is currently driving. These two last
components are mandatory for safe driving as actions such as overtaking a vehicle require precise
information about the current localization of the vehicle. In this survey, we introduce a taxonomy
of the localization methods for autonomous vehicles in highway scenarios. We present each main
component of the localization process, and discuss the advantages and drawbacks of the associated
state-of-the-art methods.

Keywords: survey; autonomous vehicles; localization; intelligent transportation systems

1. Introduction

Since the last decade, autonomous vehicles start to roam the road alongside human
drivers on highways. In the context of Advanced Driver-Assistance Systems (ADAS),
a fundamental aspect of a fully autonomous vehicle is its ability to properly perceive
its environment and localize itself on the road. As pointed out by Bresson et al. [1] in
their survey on Simultaneous Localization And Mapping (SLAM) algorithms, the use of
such algorithms is challenging for autonomous vehicles in outdoor environments. In the
context of highways, the very high velocity of the vehicle do not allow standard SLAM
algorithms to perform well. Indeed, rapid motions severely hamper these techniques,
as the lidar would not be able to capture enough overlapping features and the cameras
would be significantly affected by the blur resulting from the speed. Intelligent vehicles
must therefore rely on the available information, namely the road markings as well as the
surrounding vehicles. In addition, in most applications, not only the position of the vehicle
is required, but the number of lanes and the road on which the vehicle is traveling are often
valuable information. Nevertheless, SLAM algorithms do not give such data even if this
information is available in the environment. In light of these considerations, localization
algorithms meeting these constraints have been designed, relying heavily on the structural
properties of highway environments.

In this survey, we present and compare the state-of-the-art methods of localization
methods for ADAS in highway scenarios. For surveys about more generic urban localiza-
tion, the reader can refer to Kuutti et al. [2], Elhousni and Huang [3], Badue et al. [4].
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The localization aspect on highways can be distilled in smaller components, that are

Road Level Localization (RLL): The road on which the vehicle travels;
Ego-Lane Level Localization (ELL): The position of the vehicle in the lane in terms of
lateral and longitudinal position; and
Lane-Level Localization (LLL): The position of the host lane within the road (i.e., the
lane on which the vehicle travels).

For the RLL, digital maps (e.g., Google, OpenSteetMap (OSM), Waze) are used to
perform this task. Global Navigation Satellite Systems (GNSS) receivers are used to retrieve
the geographic coordinates (i.e., latitude, longitude, and altitude), and a Map-Matching
procedure is performed to match the position of the ego-vehicle with the correct road.
However, the accuracy of the localization obtained is in the order of meters. Indeed,
according to the Federal Aviation Administration GPS Performance Analysis Report [5],
the accuracy of a standard GPS device is within 3 m with a 95% confidence, which is not
sufficient for most ADAS that require a more precise localization.

For some applications like lane-keeping, knowing the road on which the vehicle is
traveling is not sufficient. These systems must be informed about the position of the host
lane in the road to provide adequate maneuver instructions and maintain the vehicle’s
safety. Furthermore, autonomous vehicle applications need a more accurate localization,
which can be translated by the knowledge of the lateral and longitudinal positions of the
vehicle in the ego-lane. For instance, overtaking maneuvers need a faultless knowledge
of the lateral position of the ego-vehicle with respect to the ego-lane marking in order
to decide whether the vehicle should overtake the obstacle or not. The task of vehicle
localization is still challenging for an autonomous vehicle, as a complete ego-vehicle
localization framework must perform all the three key aforementioned components.

We present sequentially the three identified components that an autonomous vehicle
requires to safely localize itself in a highway environment, that are the Road Level Lo-
calization (RLL), Ego-Lane Level Localization (ELL) and Lane-Level Localization (LLL)
components. For each component, we present the most performing methods at the time of
the writing of this survey and discuss their main advantages and drawbacks.

2. Road Level Localization (RLL)

The ubiquity of positioning devices on the vehicles allows the drivers to know the
vehicle’s position in the world. However, this estimation is very noisy due to the inherent
inaccuracy of these positioning devices. To address this problem, a correcting procedure
is required, that matches the vehicle position with a road network coming from a map.
This technique is called Map-Matching. As stated by Quddus et al. [6], Map-Matching
not only enables the physical location of the vehicle to be identified, but also improves
the positioning accuracy if good spatial road network data are available. This means that
Road Level Localization knowledge is determined by Map-Matching algorithm. The RLL
is also a prerequisite component of several applications. An exhaustive list of applications
is available in [7]. This section details and classify the state of the art on the Road Level
Localization (RLL) techniques.

2.1. Terminologies

Before presenting the Map-Matching techniques, we start by formalizing the Map-
Matching problematic. The Map-Matching problematic have been studied over two
decades, and thus several formalizations have been proposed. In the following, the defini-
tion presented inherits from the one presented in [8].

Definition 1. A trajectory Tr is a sequence of chronologically ordered spatial points Tr =
{p1, p2, . . . , pn} sampled from a continuously moving object. Each point pi consists of a 2-
dimensional coordinate (xi, yi), a timestamp ti, a velocity vi (optional) and a heading θi (optional),
namely pi = {xi, yi, ti, vi, θi}.
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Definition 2. A map is a directed graph G = (V, E), in which each vertex (x, y) ∈ V represents
an intersection or a road end, and each edge (s, e, l) ∈ E is a directed road starting from vertices s to
the vertex e, connected by a path l represented by a sequence of consecutive segments (polyline).

Definition 3. The Map-Matching is a procedure that finds a route MR(Tr) for a given map
G(V, E) and a trajectory Tr. The route MR(Tr) represents the sequence of roads traveled by
the trajectory.

2.2. Online Map-Matching

Due to the importance of the Road Level Localization (RLL), Map-Matching has been
subject of ongoing research since the emergence of Global Positioning System (GPS) in
the 1990s [9]. According to the literature, Map-Matching techniques can be divided into
two categories, namely, online and offline modes. In online mode, the Map-Matching
procedure is performed in a streaming fashion, meaning that for each point pi, a Map-
Matching is performed. Consequently, the procedure has to be adequate for real-time
applications. In contrast, offline Map-Matching waits until the trajectory Tr is completed in
order to perform the Map-Matching on its entirety. Hence, this procedure is not concerned
about the real-time requirements. In this survey, we will focus on online Map-Matching as
localizing the autonomous vehicle at each sample time is the most common use in intelligent
transportation systems. However, one can note that the majority of the techniques which
will be presented can be used in both online and offline modes.

Considering online Map-Matching methods, the most complete and cited survey
about the subject was presented by Quddus et al. [6], followed by Kubicka et al. [9].
The authors classified the Map-Matching techniques from a methodological perspective
into four categories, namely geometric, topology, probabilistic and advanced. However,
after several years of research on Map-Matching methods, most of the methods mentioned
in these surveys have been outperformed and new technologies have emerged, rendering
the classification out of date. With a view to bringing up-to-date Map-Matching techniques,
Kubicka et al. [9] proposed a survey that classifies the Map-Matching methods depending
on the application. To the best of our knowledge, there is still no consensus on how to
classify the Map-Matching methods. However, from our point of view, the classification
presented in the survey [8] is the most up-to-date and accomplished. Indeed, it summarizes
most of the existing solutions and provides guidance to future research. Therefore, we
propose to enhance the proposed classification in [8]. We classify the existing Map-Matching
methods into two different classes, namely (1) Deterministic Models and (2) Probabilistic
Models. Each class is itself decomposed in subclasses. In the following, we will detail each
category depicted in Figure 1.

Map-Matching

Deterministic Models

Geometric
Point-to-Point
Point-to-Curve
Curve-to-Curve

Pattern-Based
Historical analysis
Learning methods

Probabilistic Models

Hidden Markov Model

Conditional Random Field

Particle Filter

Weighted Graph

Multiple Hypothesis

Figure 1. Map-Matching classification, splitting the techniques into two main parts that are the
deterministic and probabilistic approaches.
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2.3. Deterministic Model Approaches

In these approaches, the Map-Matching returns the link that is the closest to the
trajectory geometrically or topologically. In a perfect world, the vehicle’s trajectory matches
the closest road network topology. Hence, in this model, the main focus is on how to define
the closeness between the trajectory and the road.

2.3.1. Geometric Algorithms

The geometric algorithms are the most commonly used and oldest methods [10].
These methods were introduced in 1996 by Bernstein et al. [11]: the authors denominate
the methods as point-to-point, point-to-curve, or curve-to-curve. The most elementary
approach, the so-called point-to-point, matches each position sample to the nearest node in
the map. The point-to-curve approach projects each position sample to the geometric-closest
road. Lastly, curve-to-curve methods match the vehicle’s trajectory Tr to the geometric-
closest link in the road-network. In [10], the authors compared four basic Map-Matching
methods based on geometric algorithms. The first one is the classical point-to-curve with
no consideration of the vehicle state or the road-network. The second one is a modified
version of the point-to-curve: in this version, the vehicle’s heading was taken into account
in the matching process. The third method is an upgrade of the second one, taking into
consideration the topology of the road network. The last one is the curve-to-curve method
as presented before. The experiment was conducted on four routes that were traveled
in the town of Mercer County in New Jersey. None of these routes involved highways
or arterials. The results have been summarized and reported in Table 1. The matching
accuracy correspond to the proportion of correctly matched samples over the whole dataset.
As expected, methods taking into account more context, e.g., the heading or the route
contiguity, lead to better results.

Table 1. Performance of four Map-Matching methods, from [10]. The accuracy represents the
percentage of correctly matched samples. Each interval depicts the worst-to-best performance range.

Method Matching Accuracy

point-to-curve 53–67%
point-to-curve, considers heading 66–85%

point-to-curve, enforces route contiguity 66–85%
curve-to-curve 61–72%

All the mentioned methods follow the same paradigm. Indeed, the differentiation
appears in the definition of the closeness. In the literature, similarity metrics earned a lot of
attention. Quddus and Washington [12] proposed a compound metric by fusing several
distances, such as the distance from the curve and the difference of heading directions.
Nonetheless, the most popular metric is the Fréchet distance. The Fréchet distance was
first defined in [13]. This distance can be illustrated by the following example: a person
is walking on a certain curve, and a dog is walking on another one. We assume that both
have free control over their speeds but are not allowed to go backward. In this example,
the Fréchet distance of the curves is the minimal length of a leash between the person and
the dog that is required to cover the curves from start to finish. Mathematically, the Fréchet
distance was defined as follows [13]:

δF( f , g) = inf
α,β

max
t∈[0,1]

‖ f (α(t))− g(β(t))‖, (1)

where ‖·‖ is the standard euclidian distance, f , g are two parametric curves, and α (respec-
tively β) is a continuous, monotonic, increasing reparametrization from the domain of f
(respectively g) to [0, 1]. Alt et al. [14] pioneered the Fréchet distance for Map-Matching.
They were able to find a route whose Fréchet distance to the trajectory is minimal. However,
they pointed out one of the major counterparts of the distance: as the distance relies on
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the maximum distance between the two curves, any outlier in the trajectory would lead
to a wrong estimation. Following this work, Brakatsoulas et al. [15] presented a relaxed
version of the Fréchet distance called the weak Fréchet distance, lifting assumptions on
the reparametrizations α and β. Using the weak Fréchet distance, the authors were able
to lower the computational requirements. In the same context, further works have been
presented with the objective of speeding up the Fréchet distance [16–18].

2.3.2. Pattern-Based Algorithms

Pattern-based methods are well-known in the literature. The assumption is that given
a start and an endpoint, people tend to travel on the same trajectory [19]. In that sense,
giving a pair of a start and endpoint, and taking into account historical Map-Matching
results, the method will find the most similar trajectories that the vehicle will travel on.
Finally, the algorithm will decide on the optimal route based on a scoring function. Recently,
Li et al. [20] were the first ones to propose a deep learning approach that is able to create
representations of trajectories. The objective is to capture the route information of each
trajectory. In the same manner, Zhao et al. [21] presented DeepMM: a deep learning Map-
Matching system. The main drawback of the pattern-based algorithms is the sparsity and
disparity of the historical data. In that sense, the historical data may not cover all the new
queried trajectories, which can lead to false Map-Matching results.

2.4. Probabilistic Model Approaches

Although the position data is necessary, it cannot be taken as the sole predictor of
the vehicle’s path. Indeed, naively matching this noisy path to the nearest road using
deterministic metrics presented in Section 2.3 will eventually result in irrational paths
involving counterintuitive driving behaviors. Hence, a Map-Matching algorithm has to
consider the reasonableness of a given path in relation to the vehicle dynamics. In that
sense, the Map-Matching algorithms presented in this section share the same paradigm,
which is the probabilistic reasoning, whether it is for the reasonableness of the path, or for
the vehicle’s dynamic state.

2.4.1. Hidden Markov Model (HMM)

Hidden Markov Model (HMM) models for Map-Matching have been the subject of
numerous research studies in connection with tracking problems. The architecture of the
Map-Matching made it suitable to model the road network topology. The enthusiasm for the
HMM in the Map-Matching problematic was initiated by Hummel [22], resulting in dozens
of methods using Map-Matching. Most of them were designed for offline Map-Matching.
However, as claimed by Newson and Krumm [23], online Map-Matching is possible using
the sliding window technique. Basically, the aim of the framework is to find the most likely
road given a trajectory Tr = {p1, . . . , pn}. To perform such a task, the standard method is
based on the Viterbi algorithm [24]. The algorithm runs on O

(
nm2), with n the number of

observations (i.e., the vehicle’s estimated positions pi) and m being the number of states
(i.e., the possible roads lj). As said earlier, using the sliding window technique can reduce
the time complexity. Therefore, the majority of the studies do not differ in the architecture or
the representation of the Map-Matching task using the HMM. Nonetheless, they do differ in
the definition of the emission probability and the transition probability. Historically, HMMs
were first used by Hummel [22] for offline Map-Matching. The transition probabilities
were uniformly distributed while taking into account the turn restriction. The method is
tributary to the vehicle’s heading estimation, which is estimated by taking into account two
consecutive GNSS measurements. In the case of Map-Matching with inaccurate GNSS data,
this can be pathological. In particular, when the distance between two GPS measurements
is small, the errors on the vehicle’s heading can be considerable [9]. The method was
later extended by Pink and Hummel [25], resulting in a more robust method. A Kalman
Filter was introduced to filter the initial trajectory obtained in order to eliminate outliers.
However, the most important contribution was the structuring of the road network using
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cubic spline interpolation instead of linear interpolation. The motivation behind this
modeling is to make the method more robust against the heading errors, which was the
main issue with the previous method [22]. Besides, it better reflects the trajectory shapes
that vehicles normally follow. Following, instead of relying on the vehicle’s heading
estimation, Newson and Krumm [23] proposed a HMM in which the transition probability
is governed by a “route distance”. The assumption made by the authors is that the correct
route has the smallest difference between two consecutive estimated vehicle positions with
the distance along the road-network. The same method was adapted and extended later
by Luo et al. [26]. Jagadeesh and Srikanthan [27] enhanced a HMM with the concept of
“drivers’ route choice”. The authors use a route choice framework that models the fact that
the driver have preferences for certain paths compared to others (e.g., a shorter path is
always preferred). Finally, Kasmi et al. [28] proposed to use a low precision GNSS sensor to
perform Map-Matching, relying on several probabilistic criteria. They enhanced their work
in [29] by using a HMM based on [26] to model the time-dependency of the road estimation.

The HMM-based Map-Matching achieved an accuracy comparable to the state-of-the-
art geometric models [18]. However, HMM based methods suffer from mainly two main
drawbacks. The first one is the selection bias problem, as pointed out by Hunter et al. [30],
which is a side effect of the HMM when giving more weights to long disconnected segments
of road. For instance, it is particularly troublesome in the case where a highway is close
to a network of smaller roads: the HMM will give a higher weight to the highway and
considerably smaller weights to the road network because of the transitions between the
smaller paths and their possible large number, decreasing each other probabilities. As such,
the highway may be preferred by the HMM even if the vehicle is closer to the road network.
The second one is that these methods are not robust against missing trajectory samples.
Indeed, the structure of the transition model in a HMM takes into account the connectivity,
physical, and logic between two consecutive sets of route candidates. The discontinuity
in position frames will jeopardize the travel possibility between these route candidates.
To overcome these issues, more sophisticated methods have been developed and are
presented below.

2.4.2. Conditional Random Field (CRF)

The Conditional Random Field (CRF), unlike HMM, is a probabilistic framework
that is not restricted by the Markov independence assumption. In theory, CRF models
higher-order interactions between more than two states. In other words, it can model
the interactions between the observation at the current state and its predecessor. That is
from a theoretical point of view, as in the literature, the existing CRF are confined to the
first-order dependencies between adjacent states. Hunter et al. [30] introduced a CRF for
Map-Matching as an alternative to the classical HMM. The overall sophisticated methods
model the spatial and temporal relationship as well as the classical HMM. Furthermore,
the authors integrated the driving behavior in addition to the vehicle speed. Using the
same paradigm, Yang et al. [31] characterize a CRF model for Map-Matching. To verify
the effectiveness of the model, the authors performed the Map-Matching on a dataset
from Shanghai taxis. Even if the overall accuracy reached was significant, the CRF used
considered only first-order dependencies between states. Therefore, the CRF share the same
inability as the HMMs to take into account contextual information. In addition, a learning
procedure is required for the CRF to model the interactions between these states, which
makes the CRF easy to utilize but heavy to structure.

2.4.3. Weighted Graph Technique

More sophisticated techniques have been developed to take into account the spatial
geometric and topological structures of the road network, in addition to the temporal and
speed constraints. One of these techniques is referred as Weighted Graph Technique [8].
The matching process is performed through a weighted candidate graph. Lou et al. [32]
introduced the st-matching algorithm, in which the Weighted Graph Technique process is
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summarized as three steps: (1) Candidate Preparation: In this step, the candidate graph is
initialized. Similar to most Map-Matching techniques, the candidates are selected based
on a radius of measurements from the estimated position (GNSS position). (2) Spatial and
Temporal Analysis: This step is composed of two components. First, similar to HMM-
based method, an observation probability and a transition probability are emitted to each
candidate. These two probabilities are inferred from a scoring function that takes into
account the distance between the position and the candidate, in addition to the road
topology. The second component is a temporal analysis in which the speed of the vehicle is
compared with the typical speed constraints on each candidate path. The objective of the
spatial and temporal analysis is to weigh edges in the graph. (3) Result Matching: In this
last step, the path is inferred based on the constructed weighted graph.

Globally, methods that fall into this category share the same design as the one pre-
sented by Lou et al. [32]. They only differ in the scoring function in the spatial and temporal
analysis. Hu et al. [33] consider more sophisticated parameters. Authors took into consider-
ation the reciprocal effects between adjacent candidates, the reasonableness of travel time,
and other road characteristics such as traffic lights.

2.4.4. Particle Filter

Instead of dealing with an estimated position as an independent element, some
researchers focus their attention on the trajectory of the vehicle. The idea is to filter
the trajectory by coupling internal information from the microelectromechanical device
(MEMS) such as gyroscopes and accelerometers, with GNSS. In essence, there exist two
types of filters, namely the linear and non-linear. For the linear filters, errors due to the
imperfection of the model and sensors are represented by Gaussian white noises and are
linearized using first order Taylor approximations. Based on the assumption of additive
Gaussian white noises, the estimation of these error states can be obtained with an Extended
Kalman Filter, for instance. In contrast, a non-linear filter does not require linearization,
therefore, from a theoretical point of view, no errors result from such a step. In the context of
Map-Matching, Dmitriev et al. [34] acknowledged that during a vehicle turn, the posterior
distribution of the vehicle position on the road is non-Gaussian. Because of that, non-
linear filtering methods are required to solve this problematic. Tackling this non-linear
problematic, Particle Filter-based methods are used. Initially, the Particle Filter has been
used as support prior to the Map-Matching process, by fusing sensors information to
estimate the vehicle’s state. For example, Toledo-Moreo et al. [35] proposed a Lane-level
localization Map-Matching where he introduced a Particle Filter to fuse sensors information
in order to estimate the vehicle a priori position. In general, the Particle Filter is structured
as follows. In the initial phase, Np particles are sampled. These particles represent the
different hypothesis of the vehicle’s localization, and they all receive the same weight.
For each particle, its associated weight is updated accordingly to its likelihood of existence,
as soon as a new observation is received. Afterward, a resampling stage starts: particles
with low weights are likely to be erased, and the ones with higher weights are used in
a vehicle cinematic model in order to feed particles of the next cycle. Therefore, all the
methods that fall into this category share the same strategy [36], they only differ in the
definition of the weighting function for the particles. However, one major drawback of
these methods is that they employ a vehicle dynamical model that does not work for data
that have a low sampling rate (i.e., a rate of the order of magnitude of several seconds).

2.4.5. Multiple Hypothesis Technique

Historically, Multiple Hypothesis Technique methods were aimed for military track-
ing aircraft like airplanes and missiles. Indeed, in 1979, Donald B. Reid, a U.S. Military
engineer, developed a tracking multiple targets and multiple hypothesis algorithm [37].
The algorithm was adapted by Pyo et al. [38] into single target tracking with multiple
hypotheses. The authors demonstrated that although the initial algorithm was designed
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for aircraft, it can easily be adapted to Map-Matching. The authors proposed a Multiple
Hypothesis Technique in which each hypothesis is associated with a probability.

The Multiple Hypothesis Technique, as the name suggests, holds a set of candidates
or hypotheses during Map-Matching. The set of hypotheses is generally initialized based
on a simple geometric metric. Afterward, the set of hypotheses keeps evolving as further
observations are received. According to Kubicka et al. [9], the evolving process consists
of two processes, namely, hypothesis branching and hypothesis pruning. A hypothesis
is branched or replaced when the vehicle travels the candidate and therefore arrives at a
crossroad. The original parent hypothesis is then replaced by new child hypotheses. The
new child hypotheses are an extension of the parent hypothesis by taking into account all
the directions that the vehicle can take at the crossroad, which guarantees that there will
be at least one hypothesis covering the correct candidate in which the vehicle will travel.
Another advantage of the method is that some failures are intuitively spotted. If there are no
hypotheses, it necessarily implies that a problem has occurred at some points. Hypothesis
pruning consists of the elimination of the unrealistic hypothesis. The process is based on
a pruning criterion: in the state-of-the-art methods, this pruning criteria differs from one
author to another. However, the main idea is to model criteria that allow to keep the most
likely hypothesis and simultaneously eliminate the most unlikely hypothesis.

The pruning strategy consists of eliminating the hypothesis for which the probability
goes under a certain defined threshold. The authors also considered the hypothesis with
the highest probability and compared it to a predefined threshold to know if the hypothesis
is confirmed. The presented method showed significant results with a range of 4% to
17% of a miss-match. However, this method is not optimal in the sense that optimal
Map-Matching technique does not require any hand-tuning. Continuing on the same
paradigm, Marchal et al. [39] and Kubička et al. [40] proposed their own version of Multiple
Hypothesis Technique. The contributions are essentially based on making the framework
simpler and faster. In addition, Kubička et al. [40] presented a framework that does
not require access to the vehicle odometry and gyroscope data. Compared to HMM
models, Multiple Hypothesis Techniques are more robust to mismatches since the current
Map-Matching is not governed by transition state that is related to the previous solution.
However, in worst-case scenarios, the set of hypotheses can grow exponentially, and
therefore, the pruning process is critical. The pruning strategies have to be robust to outlier
hypothesis, but, at the same time, have to be flexible in order not to eliminate the hypotheses
that are likely to be correct. On the one hand, the pruning process is more prone to errors, if
not treated properly. On the other hand, there exists no formal proof for pruning strategies,
or criteria, that ensure this condition. To overcome this issue, Quddus [41] introduced
the notion of “integrity monitoring”, which was inherited from aerial navigation where
it was used to verify the reliability of critical aerial navigation systems like satellites and
missiles. In the context of Map-Matching, the need for “integrity monitoring” emerges
from the fact that correct Map-Matching is not always possible when there are some strong
ambiguities and some incongruities between the path and the map. In these situations,
it is necessary to report the reliability of the Map-Matching output to the user. To this
end, Jabbour et al. [42] followed by Li et al. [43] proposed different metrics to ensure that
the output of the Map-Matching is coherent, and more importantly, to report false Map-
Matching results. Jabbour et al. [42] proposed to monitor the coherence of the system by
checking that the sum of the weights (i.e., likelihoods) of the hypothesis remains above
a certain threshold, ensuring that some hypotheses are rightfully following the true state
of the vehicle. Li et al. [43] chose to control the integrity of the estimation by tracking
the innovation in the filtering process. In the case that a fault occurs in the system, the
innovation will be greater than usual and such a technique will detect the fault and raise
an alarm.
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2.5. Conclusion of Road Level Localization

In the light of the investigated literature, we discuss what are the main requirements
that need to be necessarily addressed by a Map-Matching algorithm. Despite more than
twenty years of development on Map-Matching, there is not yet a solution that deals with
all scenarios. To the best of our knowledge, there exists no consensus on how Map-Matching
methods should be rated. Indeed, the majority of the authors utilize their own dataset.
Nevertheless, according to the literature reviews [8,9], the majority of the Map-Matching
algorithm reaches an accuracy of around 95%. Accordingly, the accuracy of the Map-
Matching will not be discussed in details. Indeed, the major bottleneck in Map-Matching
algorithms development is the absence of a unanimous agreement on one publicly accepted
dataset. For that reason, the comparison between algorithms is still an open problem. With
that background, we propose a different type of comparison, taking into account the most
essential aspects of a Map-Matching that are uncertainty-proof, matching break, integrity
indicator, and run time.

• Uncertainty-Proof is the ability of the Map-Matching algorithm to take into account
inherent uncertainties that come from the raw data;

• Matching Break describes the capability of the Map-Matching algorithm to propose a
solution where there is a break in the GNSS data;

• Integrity Indicator is a trust indicator on the validity of the output of the Map-Matching
algorithm, which can be relevant for the ambiguous cases; and

• Run Time of the frameworks: in order to be used in an autonomous vehicle, the
Map-Matching algorithm has to fulfill real-time requirements.

Based on these criteria, we rated each method based on the previous analysis, and we
reported the evaluation in Table 2. The notation ranges from −− to ++, respectively being
the worst and best notations.

Table 2. Summary of Map-Matching algorithms in terms of uncertainty-proof, matching break,
integrity indicator and run time.

Methods Uncertainty-
Proof

Matching
Break

Integrity
Indicator Run Time

DETERMINISTIC METHODS
Geometric − −− −− ++

Pattern-Based − −− −− ++

PROBABILISTIC METHODS
Hidden Markov Model + 0 + +

Conditional Random Field + + + 0
Particle Filter + − ++ +

Weighted Graph Technique + −− + +
Multiple Hypothesis Technique + + ++ −

On the one hand, deterministic methods are straightforward techniques that do not
require complex computation. As a result, the running time of the algorithms is very low
compared to the other methods. However, these methods are very tributary to the quality
of the raw data used. Therefore, they suffer from the incapability to handle uncertainties
and ambiguities. On the other hand, probabilistic methods are analytically different from
each other. They are capable to handle uncertainties and matching break situations. The
backlash is that they are complex and require more computations. In that sense, a hybrid
architecture including a preprocessing step based on a deterministic method and a selection
stage based on a probabilistic method has the utility of dealing with the limitations raised
from each one of the methods. Indeed, the processing stage is straightforward and does not
necessitate extra computations. Therefore, it has the strength to deal with the majority of
the nominal case. On the other side, the ambiguous cases can be solved using a probabilistic
method, which has the ability to deal with these situations. By doing so, the complexity of
the Map-Matching problematic is reduced. We believe that finding the optimal equilibrium
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between deterministic and probabilistic approaches will yield a powerful Map-Matching
algorithm. In the next sections, we investigate local localization methods which constitute
two of the three main components of a localization architecture.

3. Ego-Lane Level Localization (ELL)

For some applications like lane-keeping, being aware of the road on which the vehicle
is traveling is not sufficient. These systems must be informed about the position of the
host lane in the road to provide adequate maneuver instructions and maintain the vehicle
safety. Furthermore, autonomous vehicle applications need a more accurate localization
which can be translated by the knowledge of the lateral and longitudinal positions of the
vehicle in the ego-lane. For instance, overtaking maneuvers need a faultless knowledge
of the lateral position of the ego-vehicle with respect to the ego-lane marking in order to
decide whether the vehicle should overtake the obstacle or not.

McCall and Trivedi [44], Zhu et al. [45] summarized and illustrated the main objectives
of lane position-detection algorithm systems in their researches. The characteristics of these
systems are distilled as follows:

• Lane-Departure-Warning Systems: It is essential to accurately estimate the position of
the vehicle with respect to the ego-lane marking.

• Adaptive Cruise Control: Measures such as the smoothness of the lane are crucial for
this monitoring work.

• Lane Keeping or centering: The aim is to keep or center the vehicle in its host lane.
As a result, a faultless estimation of the lateral position is required (e.g., [46]).

• Lane Change Assist: It is mandatory to know the position of the ego-vehicle in its host
lane. The lane change has to be done without any risk of colliding with an obstacle
(e.g., [47]).

Under these considerations, we propose in this section a classification of the algorith-
mic techniques independently on the various modalities used (e.g., camera, lidar, radar) in
order to detect the ego-lane marking.

Leafing through the literature, it appears that most researchers use lane marking
detection to provide an accurate ego-lane level localization. Lane marking detection has
been an active field of research for the past three decades and great progress has been
made in the past few years. It is possible to categorize existing approaches to lane marking
detection into modular pipelines, or model-driven and monolithic end-to-end learning
approaches. As shown in Figure 2, both approaches are juxtaposed at a conceptual level.
The standard approach to lane marking detection is the model-driven approach. The
main concept is to break down the lane marking detection into modules that can be
independently developed and tested. Modular pipelines have the main advantage of
deploying human-interpretable intermediate representations to understand system failure
modes. A significant drawback to modular methods is that intermediate representations
built by humans are not inherently suitable for tasks such as the identification of lane
markers. An alternative to modular pipelines is end-to-end learning-based models based
on neural networks. The network parameters can be learned via a training dataset or using
a learning transfer technique from trained networks. These approaches reach significant
accuracy in several computer science domains. However, most networks are trained and
validated on one dataset, which makes the network less generalized to other datasets.
Moreover, as claimed by Janai et al. [48] neural network-based approaches are often hard
to interpret as they present themselves as “black boxes” to the user which does not reveal
why a certain error has occurred.

The survey presented by Hillel et al. [49] focused on the lane marking detection. The
authors presented a review of ongoing research on road and lane detection, and covers
a large part of the lane marking techniques used at that time. In addition, the authors
presented the techniques without differentiating on the sensor used. Nonetheless, this
study was published in 2014, at a time when the prevalence of neural networks was
not as pronounced as it is now. Therefore, their study presented only model-driven
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approaches without learning ones. Concerning the learning approaches, there has been
an considerable amount of effort invested in deep learning techniques for autonomous
vehicles and especially for the perception task. In that sense, the survey presented by
Fayyad et al. [50] covers most of the recent deep learning techniques. Contrary to the
study presented by Hillel et al. [49] and other works presented in [44,51], the focus and the
ambition of this section are to emphasize the recent studies that dealt with lane marking
detection, which included deep learning algorithms. The first part of the section is dedicated
to the main existing model-driven approaches. Then, the second part will present the
learning approaches used for the ELL. Finally, this section concludes by highlighting and
summarizing some current trends approaches in lane marking detection, and a comparison
between the methods is given.

Model Approach

Learning Approach

Sensor inputs
Pre-

processing
Feature

detection
Fitting

procedure
Tracking
procedure

Neural
network

Lane markings

Figure 2. Classification of the algorithms used for ego-lane marking detection. Model approaches
dissect the problem into independent submodules, whereas learning approaches are based on end-to-
end methods.

3.1. Model-Driven Approaches

Inspection of model-driven lane marking detection literature brings to light that most
approaches share the same functional architecture. Therefore, we depict the commonalities
between all the encountered algorithms into a generic system, whose components are
divided into four steps, namely, a pre-processing step, succeeded by a road marking feature
detection, then a fitting procedure, and finally a tracking procedure. An illustration of
these components are illustrated in Figure 2 (top). We use this generic system as a skeleton,
enabling comparison between different algorithms according to their functional parts.
Naturally, feedback connections also exist between higher modules (e.g., fitting procedure)
that guide lower module (e.g., pre-processing).

3.1.1. Pre-Processing

In general, a set of several operations that can be applied to a frame input before
feature extraction is called pre-processing. The frame used is commonly called the world
frame, which embraces both lidar data and camera image. This pre-processing block is
generally the first process of lane marking detection. The objectives of pre-processing are to
enhance features of interest, reduce clutter, and remove misleading artifacts. Thereafter, the
cleaned image is used for feature extraction. According to Hillel et al. [49], the methods that
fall under this module’s scope can be clustered into two classes: handling of lighting-related
effects, and pruning of non-relevant or misleading parts of the image.

A robust lane marking should be capable of handling different lighting conditions,
which are constantly changing because of the effects of the time of day and weather
conditions. These lighting conditions can vary from sunny midday to nighttime artificial
illumination. In addition to these natural changes, the lane marking solution might be
confronted with a drastic lighting switch when entering or exiting a tunnel, or while being
under a bridge that covers the sunlight. Another illumination phenomenon that has to
be brought seriously to the table is the illumination of the lens flare caused by the sun’s
rays hitting the camera’s field of view. Huang et al. [52] used the “absolute calibration” of
the camera to allow the computation of solar ephemeris, which allows deducing the sun
location on the image and hence suppress the line estimations that point toward the sun
location on the image.
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Furthermore, a major source of clutter is the shadows cast on the surface of the road.
Their edge intensity can be ambiguous for some gradient feature extractors. To circumvent
this illumination-related issue, several researchers tackled the subject and propose several
solutions. In a global manner, color-space transformations are performed on the image.
The main techniques are the Hue Saturation Lightness (HSL), Lightness and A and B
(LAB), the Luma component (Y), and the Blue-difference and the Red-difference Chroma
Components (YCbCr). The general assumption made for these color manipulations is
that hue information does not change in the shadowed region of the image, implying that
the hue information is not affected by the level of illumination of the image, or that the
effects can be compensated. With a color extraction procedure, Cheng et al. [53] was able to
remove moving vehicles and their light reflections on the image to extract the lane marks
on the road. Katramados et al. [54] worked on color extraction and texture information
with a temporal analysis to eliminate map lighting and water artifacts, including shadows,
reflections and water prints. Álvarez et al. [55] proposed a segmentation using a grey–scale
illuminant invariant image, which is computable in real time using a color camera, to find
the road area.

The second category of image pre-processing techniques includes the pruning of
non-relevant or misleading parts of the input sensor that can miss-lead the lane detection
process. The apparent difficulty of the methods that fall into this category is to insulate the
artifacts in the image sensor. To archive this objective, many studies have been developed
over the years. In that context, objects like cars and pedestrians are treated like obstacles
for lane detection. Therefore, several techniques have followed in order to detect them and
remove them. Huang et al. [52] enhanced the detection process with 3D data from lidar.
The lidar point clouds facilitate rapid removal and rejection of off-ground points that are
considered as obstacles. One can notice that differentiation between obstacles is not made.
A similar approach was presented by Hernández and Marcotegui [56] who were able to
segment static or mobile elements from buildings and grounds using the 3D point cloud of
a lidar transformed into a range image. Li et al. [57] used also the lidar’s point clouds to
detect the free space in front of the vehicle, and then doing the lane detection in this free
space. Using 2D flow of image points, Yamaguchi et al. [58] proposed a method based on
the alignment of two successive images. The Structure-From-Motion technique was applied
to infer the road region depending on the image motion. However, these techniques were
later abandoned due to high false-positive rate [59].

The most utilized approach for the pruning part consists in defining some Region Of
Interests (ROI). Hence, only these regions will be focused on the feature extraction. Several
works have addressed the issue of how to determine these ROI. The most simple technique
consists of taking the lower half of the image as ROI [60]. The naivety of these techniques
makes it very limited. Therefore, other researchers use the correlation between the 3D
world model and 2D image in order to delineate the ROI. To achieve this goal, it is required
to know the camera pose with respect to the ground surface. Huang et al. [52] claimed
that the pose is constant and hence the calibration was made beforehand. The same idea is
shared by Nava et al. [61]. The authors proposed a ROI delimitation using the vanishing
point of the road. But, as claimed by the authors, this method does hold only for small roll
angle conditions. However, this strong assumption does not hold for curved roads in the
case of two-wheeled vehicles. Therefore, Aufrère et al. [62] proposed a probabilistic road
model that links the geometry of the road and the uncertainties about the camera pose.
By doing so, the uncertainties about the model defined the ROI in the image. This idea
was extended in [63]. Following, Kasmi et al. [64] proposed a top-down approach that first
computes focused ROI using coarse maps such as OSM, then uses these ROI to perform
coherent line detection.

The depth computation on an image can be used to determine the vanishing point on
the image and hereby the delimitation of the ROI. Pomerleau [65] used a camera in front of
a vehicle to extract the curvature of the lanes based on the intensity of the pixels, and then
detected the vanishing point. The position of the vehicle into these lanes is also extracted
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with the pixel’s intensities. Zhang et al. [60] used also the pixel’s intensities into an image
to detect the lanes and roads by segmenting the image. The segments are then divided into
two classes: road and non-road. The vanishing point is then detected by extracting the
edges of the road segments through a Hough transform.

As claimed before, feedback connections do exist between the higher functional
blocks and the lower blocks. To illustrate that, an interesting approach is presented by
Alvarez et al. [66]. It relies on the use of road priors and contextual information coming
from a digital map in order to determine the shape of the road in the image. Depending
on the number of lanes and the width of the lane, the road skeleton is built and smoothed
using cubic interpolation. The retrieved road skeleton is then projected onto the bird’s eye
view image by taking into account uncertainties related to the vehicle’s pose. Contrary
to the previous methods, Cáceres Hernández et al. [67] emphasized on the collision risk
region, which is extracted taking into account the vehicle speed, and therefore, the ROI size
increases as the speed increases and vice versa.

3.1.2. Feature Extraction

Once the irrelevant parts of the input sensor are discarded, the remaining relevant
part of the input sensor is supposed to contain pieces of the lane marking. These pieces
gathered together should contain all the necessary information needed in order to fit the
lane marking. Throughout this work, these pieces are often called primitives or features.
Indeed, feature extraction is a crucial step of lane marking recognition. Hence, in the
majority of the works that fall in the model-driven approach, the fitting procedure is
tributary of the outputs of the feature extraction. Therefore, in case of a momentary failure
from the feature extraction module, recovery becomes almost impossible.

The study of this corpus of literature reveals that the majority of the approaches
presented rely on bottom-up feature extractions. Indeed, lane markings are easily discrimi-
nated by shape and color in the image, and it is possible to determine whether a lidar beam
has intercepted asphalt or road painting regardless of the lighting conditions [68]. Lane
marks can be detected either based on their shape, color, or their combination [49]. To that
end, several strategies have sprung up. The main assumption made is that lane markings
are distinguished by their appearance from the rest of the road surface. This assumption
leads to a whole family of filters based on gradient detection [62,69–71].

Another branch of solutions is to filter the edges that are not in the vertical direction.
These filters are known as steerable filters [44]. Steerable filters enable to follow the
orientation’s change along the lanes marking in the image by convolution with only three
kernels. Following the same spirit, several hand-crafted filters were proposed to extract
fragments of lane marking, namely, Sobel filters [72], Statistical Hough Transform [73],
top-hat filter [74], and histogram-based filter [75]. A comparison of these features extractors
have been presented by Veit et al. [76], the authors applied different feature extractions
on the same input. Regardless of the type of gradient filter used, the kernel of the filter
has to be adjusted before applying it to the image. However, the perspective distortion
of the camera makes these adjustments not suitable for the entire image. To bypass this
problem, a common approach is to transform the image into another perspective called
the “inverse-perspective” image, also called the bird’s-eye view, as done in [44,70,77–79].
In the bird’s-eye view, the width of the lane markings is equidistant. This property has a
lot of advantages, as for instance it is a convenient common space to fuse multiple sensor’s
information. The representation facilitates some fitting produce that will be discussed below.
However, these advantages come with a cost in terms of computational time and loss of
resolution. When dealing with lidar data, the main assumption made is that lane marking
can be distinguished based on their reflectivity. Therefore, authors in [80] presented a
threshold in order to discriminate lane markings. This approach was extended in the work
of Hata and Wolf [68]. The authors presented a thresholding method that separates the
lidar point clouds into asphalt and road marking.
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3.1.3. Fitting Procedure

The main objective of the fitting procedure is to extract high-level representations of
the path. This high-level representation is the sine qua non to a higher block of autonomous
vehicles like decision-making and control. Thereby, the choice of the type of lane model is
crucial. In practice, when fitting a model to noisy data there exists a compromise between
over-restrained models that do not tolerate all the existing geometries and under-restrained
models that tend to over-fit on noisy features.

Going down the timeline, preliminary works on lane detection focused on highway
scenarios where the curvature’s change is small enough to be neglected. In that context,
pioneering work on the road model was initially proposed by Dickmanns and Zapp [81]
in 1986. The latter presumed building a mathematical 2D model that describes the lane
geometries, yielding to a high-level representation of the lane marking with the use of a
clothoid road model for planar roads. Dickmanns [82] extended the approach by using a
3D model lane representation that included a clothoid parameter and a curvature in the
vertical direction. These works lay the foundations of several works with the objective to
know what kind of lane model can represent accurately the lane marking and which fitting
strategies should be adopted consequently.

Scrutinizing this body of the literature, the lane models can be clustered into three het-
erogeneous modeling techniques, namely parametric, semi-parametric, and non-parametric:

• Parametric model: Methods that fall into this category make the strong assumption
of a global lane shape (e.g., lines, curves, parabola). These models tend to fail when
dealing with non-linear road and lane topologies (merging, splitting, and ending lanes).
Indeed, the geometric restrictions imposed by the parametric model does not tolerate
such scenarios. Concerning the fitting strategies, several regression techniques have
been used (e.g., RANSAC, least-squares optimization, Hough transform, Kalman filter)

• Semi-parametric model: Contrary to the parametric model, semi-parametric models do
not assume a specific global geometry of the road. On the downside, the fitting model
can over-fit or have unrealistic path curvature. The lane marking is parametrized by
several control points. Different spline models with different control points have been
used (e.g., Spline, B-spline, Cubic spline). The appearing complicatedness of these
models is in choosing the best control points. Indeed, the number of these points
affects the curve complexity. In addition to that, these points should be homogeneously
distributed along the curve of the lane marking in order to prevent unrealistic curves.

• Non-parametric model: These models are the less conventional approach. The main
needed prerequisite is continuous but not necessary differentiable. This model has
more freedom to model the lane marking. Meanwhile, it is more prone to erroneous
modeling, leading to unrealistic curves.

Such a classification allows a clear understanding of the distinctiveness of certain
techniques. Furthermore, the assumptions made for each category help to understand the
failures of some of these techniques. In the following, we propose in Table 3 a categorization
of works regarding the aforementioned classification. We provide a summary of all the
different categories presented and classify them according to their geometric methods,
their fitting methods and their advantages or disadvantages. Although there are numerous
modeling techniques for lane detection, none of them in able to correctly model lanes in all
the cases encountered. The choice of a model is a trade-off between the complexity of the
road scenarios and the complexity of the chosen lane model.
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Table 3. Classification of lane fitting models presented in the literature, dissected into three main
categories that are the parametric, semi-parametric and non-parametric approaches.

Categories Geometric
Methods

Fitting
Methods Advantages Disadvantages References

Parametric

Straight lines
Hough
transform and
its variants

Straightforward
approach shows good
approximation for short
range lane marking and
can be valid in
highway scenarios

Unfit for curves roads
which is the cases in
most rural roads

[60,65,77,79,83,84]

Polynomial
model

RANSAC, least
squares
optimization

The spectrum of
application is greater
than the linear model. In
addition, Polynomial
models has the ability to
estimate the parameters
of the road.

Can not handle abrupt
change of curvature.
The geometrical
assumptions are not
always correct (e.g.,
taking 3–3.5 m as a
width lane)

[52,62]

Cloithoid Extended
Kalman filter

Can handle situations
where there is a abrupt
change of the steering
angle (e.g., at the
junction of a straight
and curved roads)

The clothoid model is
generally made of some
simplifications in order
to get a viable model

[85,86]

Semi-
parametric

Splines Energy-based
optimization

Capable of dealing with
a large range of curved
road using control
points if
accurately chosen

The inconvenience of
this model appears in
the choice of the control
points. Undoubtedly, the
position of these control
points will affect the
general curve of the lane.
A wrong choice of theses
control points leads to
unrealistic road shape.

[58,87]

Non-
parametric

Isolated points Particle filter

The model is not
governed by geometric
restrains, which allows it
to model more
challenging road
lane marking.

With no geometric
restrains imposed, the
fitted model can leads to
unrealistic road model.
Indeed, geometric
correlations between
lane marking are
not considered.

[88]

3.1.4. Tracking Procedure

The vast majority of lane marking detection system integrates tracking mechanics
that use knowledge from the previous frame to improve the knowledge on the present
frame. According to Hillel et al. [49], this mechanics has three major goals: improving the
accuracy of correct detection, reducing the required computation, and correcting erroneous
detections. A tracking procedure can be used in a lane marking detection system in two
different modes, that are using the detection results from the previous frame, or using
tracking systems that enable the definition of ROIs in the current frame. By doing so,
it will reduce the size of the ROIs. Aufrère et al. [62] used the vehicle’s information in
order to update a probabilistic model, which contains all the ROIs delimitations. To do so,
authors integrated these proprioceptive information in an Extended Kalman Filter. The
same idea was adopted by Wu et al. [63]. These approaches can successfully decrease
the signal-to-noise ratio by updating the ROI after each iteration. However, it should be
noted that the main assumption made is that the model is capable of capturing the motion
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between two consecutive frames. At the same time, they assume that the latest detected
lane marking is correct. Hence, no recovery strategy is made. Alternative approaches
consist of fusing the lane marking detections and a digital map of the road that contains
the position of the left and right lanes.

3.2. Learning Approaches

Historically, the concept of deep learning was founded in 1943 by Walter Pitts and
Warren McCulloch [89]. However, it was not until the 2010s with the development of
powerful computing machines with the arrival of Graphics Processing Units (GPUs),
combined with the availability of the “big data” that was needed to train the models, that
deep learning techniques became popular. The scope of applications of such methods
extends to finance [90], healthcare [91], and self-driving vehicles [92].

One of the major challenges in estimating the lane marking is the need to have an
accurate model that fits the detected features. Unfortunately, providing an accurate model
that covers every road scenario is a complex task due to the singularity of some road
scenarios (i.e., merging, splitting, and ending lanes). Moreover, inherent uncertainties
coming from sensor data cannot be mathematically modeled in the model-driven pipeline
system. Along these lines, monolithic end-to-end learning approaches have the advantage
to abstract the mathematical modeling for each functional block, as presented in Figure 2.
As a consequence, learning approaches, if treated properly, are a powerful tool to correctly
detect lane markings.

On that subject, several studies have been deployed. In their study, Kim [87] reviewed
the performances of classical machine learning methods for features extraction, namely,
Artificial Neural Networks, Naive Bayesian Classifiers, and Support Vector Machines. Nev-
ertheless, the fitting model was still performed using the Spline model. On the same topic,
Gopalan et al. [93] introduced a learning-based approach based on a boosting algorithm
to detect lane markings without requiring a predefined road model. The algorithm was
validated on several data collected on daytime and nighttime, proving that the classical
machine learning methods can be useful for lane detection marking.

Going back in time, the Convolutional Neural Network (CNN) gained notorious
popularity in 2012 when Krizhevsky et al. [94] proposed AlexNet and won the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC). Following the success of CNN meth-
ods in computer science, researchers considered its uses to tackle lane detection. In that
regard, Huval et al. [95] were the first to use deep learning technique to identify pixel
locations of the single lane on highways. Their model is based on OverFeat, a CNN devel-
oped by the team of Sermanet et al. [96]. They trained their CNN on a private collected
dataset on a highway in San Francisco (USA). The ground truth labels were generated using
a camera, Lidar, Radar, GPS, and human annotations. The network showed successful
results in terms of lane detection. However, the CNN was restricted to the detection of only
the ego-lane on which the vehicle was traveling. Indeed, the general assumption made
is that the vehicle is always traveling in the center of the lane. Building on this success,
He et al. [97] proposed a Dual-View Convolutional Neural Network framework for lane
detection. The bird’s eye view images and the output of the network give line probabilities,
which are fed to an optimizer in order to find the right lane marking. The network shows
promising results but requires image pre-processing and post-processing.

Moreover, companies showed interest in this problematic. In that regard, researchers
from Ford released an end-to-end framework called DeepLanes [98]. Unlike most of the
works, the network detected lanes based on images coming from two laterally-mounted
cameras looking downward onto the lane markers. Despite the good results, the network
was not widely adopted due to the fact that the network was trained on a private database.
Reproducibility was the watchword on the lane detection challenge which was held in
CVPR’17 and in which the Tusimple database was released. The winner of the challenge
was Pan et al. [99] with the Spatial Convolutional Neural Network, a deep learning tech-
nique designed for lane marking detection in traffic scene. The structure of this network
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allows it to exploit the spatial information in the image. On the same topic, Li et al. [100]
proposed a network called Line-CNN. The network had slightly better results than the
Spatial Convolutional Neural Network. The authors adapted the strategy of the regional
proposal network, which exists in Yolo [101] for instance, to the lane marking detection.
They also trained their network with an additional dataset which was not publicly released.
A succession of neural networks has been released after that. However, as pointed out by
authors in [102], many of the published works on deep learning for lane marking detection
do not share their code, thus hindering the comparison.

The detection of lane markings using deep learning is an ongoing research topic, with
multiple networks released every year dealing with the subject. The majority of these
algorithms are benchmarked. Currently, the Tusimple benchmark, of which an excerpt
is shown in Table 4, is saturated with high values in accuracy and F1 score. This can be
explained by the fact that the dataset is not complex and the metrics are permissive [102].
In that regard, a database called CULane was released. The objective of this database is to
offer a more complex and larger public dataset for lane detection. Considering the abun-
dance of literature on the subject, tracking every deep learning algorithm proposed for lane
detection is beyond the scope of this survey. However, a database named paperswithcode
https://paperswithcode.com/ (accessed on 1 November 2021) reviews all the lane mark-
ing detection methods that has been benchmarked on either Tusimple or CULane. In
Tables 4 and 5, we provide an overview of the five best performing methods with available
code on each benchmark, at the time of writing of this manuscript. Compared to the
available tables on paperswithcode, we added whether extra training data were required
in the CULane benchmark, and added the reference [103]. The difference between the top
algorithms in both tables is only by a few percentages, whether it is based on the accuracy
score in the Tusimple benchmark, or based on the F1 score in both benchmark. This means
all of these algorithms are equivalent in terms of performance for lane detection.

Table 4. Excerpt from the best performing deep learning algorithms benchmarked in Tusimple in
terms of accuracy and F1 score.

Models Accuracy F1 Score Extra Training Data Paper Title

RESA 96.82% 96.93% No
RESA: Recurrent
Feature-Shift Aggregator
for Lane Detection [104]

PINet 96.75% 97.20% No

Key points estimation and
point instance
segmentation approach
for lane detection [103]

ENet-SAD 96.64% 95.92% No
Learning lightweight lane
detection cnns by self
attention distillation [105]

HarD-SP 96.58% 96.38% No

Towards Lightweight
Lane Detection by
Optimizing Spatial
Embedding [106]

CondLaneNet 96.54% 97.24% No

CondLaneNet: a
Top-to-down Lane
Detection Framework
Based on Conditional
Convolution [107]

https://paperswithcode.com/
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Table 5. Excerpt from the best performing deep learning algorithms benchmarked in CULane in
terms of F1 score. The results showed stands for the total of all classes of the CULane.

Models F1 Score Extra Training Data Paper Title

CondLaneNet 79.48% No

CondLaneNet: a Top-to-down
Lane Detection Framework
Based on Conditional
Convolution [107]

LaneAF 77.41% No
LaneAF: Robust Multi-Lane
Detection with Affinity
Fields [108]

SGNet 77.27% No Structure Guided Lane
Detection [109]

LaneATT 77.02% No
Keep your Eyes on the Lane:
Attention-guided Lane
Detection [110]

RESA 75.3% No
RESA: Recurrent Feature-Shift
Aggregator for Lane
Detection [104]

3.3. Conclusion of Ego-Lane Level Localization

This section discussed the major algorithms for ELL. We emphasized methods that
are based on the detection of the ego-lane markings. Accordingly, model-based approaches
have a strong ability to detect the ego-lane marking in various scenarios. The sequential
pipeline of these methods allows a better partition of the ego-lane marking detection task
into blocks, where each one is responsible for a specific task. Therefore, the formalization of
the whole problematic is enhanced, and the intermediate block representations allows a bet-
ter system failure identification. Furthermore, such methods possess a systematic modular
architecture that enables them to improve or incorporate new functionalities that were not
supported in the initial design without requiring significant modifications. Regardless of
the method used, a model is required to fit the detected features to a predefined road model.
As a consequence, the generalization of these methods is complicated and challenging for
highly complex road scenarios. As claimed by Hillel et al. [49], the model-based methods
does perform well in the majority of road scenarios. On the other side, the monolithic
learning approach based on Neural Networks reaches a better accuracy for the detection of
lane marking as the majority of benchmarks’ leaders are deep learning methods, as shown
in Tables 4 and 5. Besides, they perform well when a model cannot be formalized or is
not available. The learning approach requires a learning phase that is performed on an
annotated dataset. The procedure is performed offline, preliminary to the deployment
of the network. However, in real-world applications, data is limited in quantity and is
usually gathered for a specific task and for a specific configuration (e.g., same city, same
camera). Therefore, a change between the dataset and the validation test leads to a decline
in the accuracy obtained. In addition, the learning procedure is time-consuming, and the
output can not be predicted in advance. The major drawback of the methods based on this
paradigm is that the network-based algorithm is hard to interpret as it is represented as
“black boxes” to the user, which does not reveal why a certain error has occurred [48].

In the next section, we will discuss the last component of the algorithm localization,
which is the Lane-Level Localization (LLL). A review of the literature is given, presenting
the works and the techniques used to this end.

4. Lane-Level Localization (LLL)

A fundamental aspect of a fully autonomous vehicle is its ability to properly evaluate
the situation of the ego-vehicle in regard to the road environment. Part of this situation
evaluation is the knowledge about some key localization level components. In previous
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sections, we presented two components needed to fully fit this fundamental evaluation: the
road level localization, or the knowledge of which road the vehicle is currently traveling on,
and the ego-lane level localization, namely the knowledge of the position of the ego-vehicle
in its lane. For the majority of the ADAS applications, a partial understanding of the
observed road scene is enough, and therefore the knowledge of these two components
is sufficient for the system to behave appropriately. However, the road understanding
demands in terms of precision and false alarm rate [49] vary from one application to another.
Therefore, for some tactical higher-level intelligent safety systems, the knowledge of the
lane on which the vehicle is traveling is critical. Indeed, knowing the host lane can serve
the autonomous navigation system in providing the most adequate instructions depending
on this lane. For instance, such information can provide a better overtaking strategy.

In the broadest sense, Lane-Level localization is a meaningful concept that can refer to
two distinct topics. The first goal is to determine the ego-lane, namely the lane on which
the vehicle is currently traveling. Secondly, it may refer to the estimation of the lateral
position of the vehicle inside the overall road. While the latter definition is an estimation
problem of a real variable, the former one can be interpreted as a classification problem.
The two paradigms lead to the same knowledge, which is the LLL or the localization of
the host lane. There exist abundant systems that can help the autonomous vehicles to
obtain the LLL. Some systems are using a GNSS receiver to locate the ego-vehicle in the
road. The lack of accuracy provided by a classic GNSS, which can be caused by poor
satellite signals, high dilution degree of precision, or multi-path in urban scenes, is first
compensated with proprioceptive sensors such as the Inertial Measurement Unit (IMU).
These methods are known as Dead Reckoning [111]. The position of the host lane is
inferred by combining the obtained localization with a coarse digital map. Unfortunately,
the accuracy of the localization obtained is in the order of several meters. Indeed, according
to the Federal Aviation Administration [5], the accuracy of a standard GPS device is within
3 m with a 95% confidence, which cannot be sufficient for some ADAS that require a more
precise localization. Moreover, when a road has multiple lanes, the problem becomes more
complicated. Indeed, the localization obtained from the Dead Reckoning technique is not
enough to precisely infer on what lane the vehicle is traveling. Hence, further information
are used in order to refine this knowledge. This information can be produced by visual
sensors or digital maps.

In practice, the localization of an autonomous vehicle can be performed by locating the
vehicle with respect to some visual features, such as lane markings or traffic signs. These
visual landmarks can either be detected using on-board sensors, or be already stored in
digital maps. Concerning the Lane-Level Localization (LLL), the current literature abounds
in solutions that address this issue in a variety of manners. However, two techniques stand
out as the most fitting for this task. The first approach depends on very precise maps: these
High Definition (HD) maps store the accurate position of landmarks (e.g., lane marking).
As such, the system has to match the detected landmarks with the one stored in the maps.
The second technique depends solely on the detection of visual landmarks such as lane
marking with on-board sensors. For instance, lane marking systems are used to detect
all the lanes on the road. Nevertheless, it is sometimes not possible to detect all the lane
markings on the road due to occlusions from other vehicles. In the following, we present
the state-of-the-art methods that are classified into two categories, that are the map aided
approaches and the landmark approaches.

4.1. Map Aided Approaches

To reduce sensor dependencies, digital maps can store contextual information about
the road. The amount of information stored depends on the scale of accuracy and detail
displayed on the road network. In that sense, Du and Barth [112] described three scales of
maps commonly used for autonomous vehicle systems, that are:

• Macroscale maps represent the road network with a metric accuracy. These maps are
used for route-planning problems and high guidance routines. They provide the user
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meta information such as speed limitations or the number of lanes present on a given
road. The road network is smoothed using clothoid curves, which can give a general
intuition of the shape of the road.

• Microscale maps correspond to the most accurate maps. These maps have centimeters
accuracy, representing the road network with dense information. Generally, lidars
are used to gather maximum information. The fundamental benefit of these maps,
which is their great information richness, is also their biggest disadvantage. Indeed,
the density of information makes the handling of these maps difficult while trying to
isolate points of interest, and keeping them updated is a laborious task.

• Mesoscale maps are a trade-off between the two aforementioned types of map. Mc-
Master and Shea [113] claimed that a map has to provide enough details about the
environment without cluttering up the user with unneeded information. As such, this
kind of map has more accurate information compared to macroscale maps while not
burdening itself with precise information as done by the microscale maps.

In the context of intelligent transport systems, mesoscale maps are the most used (e.g.,
Lanelets maps [114]) since they are the most suitable scale for intelligent vehicles, as it
carries accurate information without being too dense. In addition, mesoscale maps have
the merit of being easier to maintain compared to microscale maps. Therefore, a strong
effort is currently made by the map providers to meet these requirements.

In recent decades, several researchers have deeply investigated the idea of using
cameras and HD maps to have a successful and precise localization algorithm [115–117].
Generally speaking, the vision-based map matching localization is a process that aligns
the perceived environment landmarks, such as lane lines, with the stored landmarks in the
map. In this context, Li et al. [118,119] presented a lane Map-Matching algorithm using
a mesoscale map with lane-level accuracy. The lane Map-Matching method is based on
Multiple Hypothesis Technique, and no external sensor has been used to perform the
Map-Matching. The experimental results were conducted in terms of lane Map-Matching
accuracy. Within the same paradigm but in a different manner, Kang et al. [120] proposed
a lane map-based algorithm for lane-level localization using a mounted camera on an
autonomous vehicle. The method relies on the detection of lane markings in the image
frame. The detected lane marking was matched using the GPS trajectory with the map
database that contains the center-line of each lane. The map matching method was based on
an Iterative Closest Point (ICP) based rigid map. The results showed an improvement in the
accuracy in terms of localization. Indeed, the average error obtained by the state-of-the-art
devices and GPS was 2.340 m, and this error was reduced to 0.475 m.

In the same manner, Ghallabi et al. [121] presented an approach in which a lane-
level localization is performed using mesoscale map that is composed of many links (lane
markings) represented by polylines. The objective of their work is to match a polyline
(i.e., lane marking) detected with an onboard sensor to the corresponding lane markings
stored in the map. To perform such a task, a lidar sensor is used to detect the lane marking.
Afterward, the detected lane markings are matched with the corresponding map. The used
map-marking strategy relies on a Particle Filter algorithm. In terms of evaluation, several
experiments have been conducted and a cross-track metric has been used to evaluate the
accuracy of the matching strategies. The results represented the error between the matched
lane marking in the map and the ground truth lane marking stored in the map. Finally, the
authors came to the conclusion that their current framework is promising and sufficient for
highway use-cases. However, the authors did not explicitly explain how the errors in lane
marking position will affect the ego-vehicle localization. In addition, the errors that can be
stored in the map are not taken into account, which can also affect the accuracy obtained as
pointed out by Welte et al. [122].

Nevertheless, the majority of the lane-based Map-Matching techniques only consider
the ego-lane marking lane in order to perform the map-matching. To overcome this issue,
Suhr et al. [123] propose to include all the lane markings in the lane-based-Map-Matching
algorithms in which a Particle Filter (PF) is used. The performance of the general solution
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is considerably stable even in urban crowed scenarios. Indeed, the experiments showed
that the average lateral error is about 0.50 m which is less than the width lane (3 m in
Korea) which led the author to conclude that it is sufficient to recognize driving lanes. In
the same spirit, Cui et al. [124] proposed to incorporate the lane-type information to the
lane-based-Map-Matching algorithm with the type of lane marking. These techniques claim
a lane-level localization. However, none of these techniques consider the ego-lane index
for map matching which is questionable if we take into consideration that in some cases,
typically highway scenarios with multi-lanes, ambiguities may exist in distinguishing the
true lane. Indeed, all the lane marking shapes are identical, which results in increasing the
difficulty for choosing the correct lane since there exists a strong ambiguity on choosing the
right lane.

To address this issue, Lee et al. [125] proposed an atypical approach, using a sequential
framework that is composed of two sequential deep learning blocks. The first deep learning
block detects all the lane marking present in the image. The second block is a Long Short-
Term Memory (LSTM) network that identifies and remembers the lane on which the vehicle
is traveling. Finally, the lane information, which is the output of the latter block, is used in
a lane-based Map-Matching.

4.2. Landmark Approaches

In these approaches, relevant road level features are extracted from images. Once these
features are extracted, they are fed into a high-level fusion framework that assesses the
number of lanes and on which one the vehicle is travelling. In that context, Lu et al. [126]
estimated the probability of belonging to a lane using lane change information and lane-
marking detectors. In the quest of LLL, Nieto et al. [71] presented a LLL based on multiple-
lanes detection. First, an ego-lane detection is performed to detect the ego-lane marking
and the lane geometry (curvature and lane width). Afterward, based on the estimation of
the vanishing point, reconstruction of the geometry of the road is estimated, which gave
an indication of the number of lanes. In addition, an assumption on the geometry of the
road is made. This assumption formulates that the lanes on the same road share the same
curvature and the same lane’s width. Taking into account these considerations, adjacent
lanes are hypothesized and tested. The verification of these hypotheses is performed by a
confidence level analysis, which is based on distance measurement.

Popescu et al. [127,128] presented a probabilistic formulation of the problematic, first
on intersection [127], and then on more general road situations [128]. The lane marking
information, together with some relevant visual landmarks like arrows in the lane, are
fused in a semi-fixed Bayesian Network. The main objective of this network is to estimate
instantaneous probabilities for each lane position hypothesis. The semi-fixed structure
of this Bayesian Network allows the addition of more observations, such as adjacent
lane marking and more arrows in the road. Eventually, the experimental results showed
promising results in identifying the ego-lane. In the same manner, Ballardini et al. [129]
proposed a LLL method based on a Hidden Markov Model (HMM) to filter the outcome of
a marking-lane detector based on stereo images. To do so, the HMM is modeled based on a
lane detector, for which some score functions are introduced depending on the reliability of
the detector. Results on real datasets show very good results. Nevertheless, lane-changing
situations have not been addressed. In addition, the probabilistic HMM calculation and
formalization were not explicitly defined, leading to a non-intuitive definition for the
emission and transition probabilities. Kasmi et al. [130] proposed an improvement of the
latter work by defining a formalization of the HMM that avoids empirical definitions and
thus leads to a better understanding of the system. Furthermore, they use the knowledge of
surrounding vehicles to better infer the correct number of lanes. Following this idea, a recent
approach presented by Volvo researchers Svensson and Sörstedt [131] takes advantage of
the surrounding vehicle. The method is based on a Bayesian Filter that fuses the position
of surrounding vehicles detected, a map that provides the lanes number, and an ego-
lane marking that gives the ego-lane geometry. The objective of the Bayesian filter is
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to infer the position of the ego-lane. The early tests show promising results. However,
the main drawback of this technique is that it is tributary to the presence of vehicles.
Furthermore, real-world experimental results are missing to assess the efficiency of the
approach, especially when there is no surrounding vehicle.

4.3. Conclusion of Lane-Level Localization

In this section, literature about Lane-Level Localization has been studied and most
relevant works have been presented. In the broadest sense, Lane-Level localization is a
meaningful concept that can be related to two different problematics. The two paradigms
lead to the same knowledge, that is the position of the vehicle on the road, but differ in
the methodology.

The first is the knowledge of the lateral position of the autonomous vehicle with
respect to the road. The solutions of this problem yield a lateral position that is a real
number, and are usually computed using a map-aided approach. In this paradigm, lane-
level Map-Matching algorithms are used to match the estimated position of an ego-vehicle,
which can be estimated using Bayesian filters (e.g., Kalman filter) with the proprioceptive
sensors. This estimated position is then matched with a map. Generally speaking, the
type of map used for this kind of task is the mesoscale map [118,119] using a lane-level
Map-Matching algorithm. Contrary to the Map-Matching methods presented in Section 2,
this kind of algorithms faces more difficulties in ambiguous cases. Typically, for highway
scenarios with multi-lanes, strong ambiguities exist as all the lane marking shapes are
identical. The second limitation of such a paradigm is in the type of map used. Indeed,
these maps are relatively complex to build and cost-intensive, in addition to being difficult
to use as they are oftentimes not open-source.

The second paradigm uses a different methodology in order to solve the LLL prob-
lematic. The methods that belong to this group of paradigm articulate the knowledge
of LLL as a classification problem. To do so, these methods rely on the relevant features
that are present in the road scene, especially lane markings and adjacent vehicles. These
relevant features are first detected and then fused in high-level fusion frameworks that
are essentially based on a graphical probabilistic model, namely, Bayesian Network [127]
or Hidden Markov Model [129]. These probabilistic frameworks have the ability to take
into consideration uncertainties of the detected relevant features. Contrary to the first
paradigm, these methods rely solely on the exteroceptive sensors that are embedded in
most of autonomous cars. Furthermore, they do not use expensive maps and thus are
more flexible.

5. Overall Conclusions

In this survey, we presented a taxonomy of the state-of-the-art methods for local-
ization of autonomous vehicles on highways. The task of localization is split into three
components that are the Road Level Localization (RLL), Ego-Lane Level Localization (ELL)
and Lane-Level Localization (LLL). The Road Level Localization part aims at finding
on which road the vehicle is currently traveling on. Techniques to perform such a task
are named Map-Matching methods and can be divided into two categories that are the
deterministic and probabilistic models. Without surprise, deterministic models offer lower
computational demands at the cost of being less accurate than their probabilistic coun-
terparts. Indeed, the probabilistic methods can keep multiple hypothesis or take into
account the temporal dependencies of the estimation (e.g., the vehicle cannot switch roads
between two timestamps), leading to more solid frameworks. Once the vehicle is able to
pinpoint itself in a map, its second goal is to locate itself in its lane. This task is called the
Ego-Lane Level Localization (ELL), namely the task of localizing oneself relatively to the
ego lane. Two main approaches exist to tackle this problem, that are the model approach
and the learning approach. In the first one, the estimation is conducted by splitting it into
submodules that pre-process the sensors data, extract features, fit them to lane markings
and finally track the detections between the frames. This approach allows good failure
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detection, as each block is simple enough to supervise them. In the learning approach, a
neural network is trained on road data to be able to directly extract the lane markings (and
thus the robot position relatively to them). The inherent nature of the neural networks
allows to better take into account the context of the scene, thus reaching better results
than model approaches. However, by this same nature, learning approaches suffer from
their little explainability, and require considerable training sets to contain all possible road
scenarios. Finally, the last part named Lane-Level Localization (LLL) consists of finding
on which way the vehicle is currently driving. Two options are possible, that are either
locating the robot relatively to the overall road or apprehend the problem as a classification
exercise to extract on which lane the robot is traveling. The first solution uses maps to aid
it in the localization, but suffer from ambiguities in the case where several identical lanes
are detected. The second solution chooses to classify each lane and selects the most likely
among them. To do so, the methods take advantage of features extraction from the sensors
data and from the adjacent vehicles. Furthermore, they have the benefit of not using maps
that are costly to produce.

In our opinion, several research directions are worth exploring. First, the use HD maps
is appealing because of the inherent resulting precision of localization. However, these
maps are not easy to build or maintain. Indeed, they require high computational power
and considerable amounts of storage, while their quality heavily depends on their update
frequency. Thus, researches about collaborative construction and update of such maps can
lead to a decreased cost as well as a better coverage around the world [132]. Second, deep
learning techniques also prove themselves useful, despite a lack of guaranties and their
appetite for expansive databases. As such, works aiming at reducing their data consump-
tion and monitoring their outputs would lead to safer and more resilient systems [133].
Finally, the classical methods still have a role to play because of their simplicity and their
detection guarantees. In a world where power consumption is becoming a fundamental
consideration, small, resilient systems are as much attractive as complex systems, even at
the cost of a slightly lower accuracy.
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