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Kilometer-scale autonomous navigation in
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Norlab, Université Laval, Québec, QC, Canada G1V 0A6

Abstract: Challenges inherent to autonomous wintertime navigation in forests include lack of a
reliable Global Navigation Satellite System (GNSS) signal, low feature contrast, high illumination
variations, and changing environment. This type of o�-road environment is an extreme case of
situations autonomous cars could encounter in northern regions. Thus, it is important to understand
the impact of this harsh environment on autonomous navigation systems. To this end, we present a
�eld report analyzing teach-and-repeat navigation in a subarctic forest while subject to �uctuating
weather, including light and heavy snow, rain, and drizzle. First, we describe the system, which relies
on point cloud registration to localize a mobile robot through a boreal forest, while simultaneously
building a map. We experimentally evaluate this system in over18:8 km of autonomous navigation
in the teach-and-repeat mode. Over 14 repeat runs, only four manual interventions were required,
three of which were due to localization failure and another one caused by battery power outage.
We show that dense vegetation perturbs the GNSS signal, rendering it unsuitable for navigation
in forest trails. Furthermore, we highlight the increased uncertainty related to localizing using
point cloud registration in forest trails. We demonstrate that it is not snow precipitation, but
snow accumulation, that a�ects our system's ability to localize within the environment. Finally, we
expose some challenges and lessons learned from our �eld campaign to support better experimental
work in winter conditions. Our dataset is available online.1

Keywords: SLAM, extreme environments, winter, navigation, GPS-denied operation

1. Introduction

Autonomous navigation has enabled mobile robots to be deployed in a wide variety of areas
in order to support human operation. Speci�c examples include forestry (Oliveira et al., 2021),

1 https://github.com/norlab-ulaval/Norlab_wiki/wiki/Kilometer-scale-autonomous-navigation-in-subarctic-
forests:-challenges-and-lessons-learned

Received: 22 November 2021; revised: 22 May 2022; accepted: 7 June 2022; published: 15 July 2022.

Correspondence: Dominic Baril, Norlab, Université Laval, Québec, QC, Canada G1V 0A6,
Email: dominic.baril@norlab.ulaval.ca

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright © 2022 Baril, Deschênes, Gamache, Vaidis, LaRocque, Laconte, Kubelka, Giguère and Pomerleau

DOI: https://doi.org/10.55417/fr.2022050

http://�eldrobotics.net

https://orcid.org/0000-0002-7283-8406
https://orcid.org/0000-0003-0594-5487
https://orcid.org/0000-0003-3278-5650
https://orcid.org/0000-0002-1749-7207
https://orcid.org/0000-0003-3256-046X
https://orcid.org/0000-0002-2274-9835
https://orcid.org/0000-0001-8393-9969
https://orcid.org/0000-0002-7520-8290
https://orcid.org/0000-0003-1288-2744
https://github.com/norlab-ulaval/Norlab_wiki/wiki/Kilometer-scale-autonomous-navigation-in-subarctic-forests:-challenges-and-lessons-learned
https://github.com/norlab-ulaval/Norlab_wiki/wiki/Kilometer-scale-autonomous-navigation-in-subarctic-forests:-challenges-and-lessons-learned
mailto:dominic.baril@norlab.ulaval.ca
https://doi.org/10.55417/fr.2022050
http://fieldrobotics.net


Kilometer-scale autonomous navigation in subarctic forests: challenges and lessons learned· 1629

mining (Marshall et al., 2016), disaster search and rescue (Kruij� et al., 2014), and military
applications (Simon, 2015). Recently, Van Brummelen et al. (2018) have released a comprehensive
review of the state-of-the-art perception technologies for autonomous vehicles. In this review, the
authors identi�ed key future challenges that need to be addressed for safer systems. One of these
challenges is increasing the reliability of simultaneous localization and mapping (SLAM) algorithms
to external factors such as dynamic environments, poor lighting, and weather conditions. In this
regard, enabling true long-term autonomy for mobile robots will eventually require systems to be
resilient to any road and weather condition.

To progress towards solving the challenges mentioned by Van Brummelen et al. (2018), this
research study aims to examine the impact of subarctic environments and weather on the state-of-
the-art autonomous navigation approaches. Access to the Montmorency boreal forest, located70 km
north of Québec City, Canada, during winter enabled us to deploy an autonomous system in di�cult
meteorological conditions, which allowed us to conduct this study. Thus, we present a �eld report
on the deployment of an autonomous navigation framework in a boreal forest under harsh winter
conditions. Subarctic regions are mostly covered by the boreal forest biome, and are thus ideal for
this study. Boreal forests are characterized by dense, closed-crown conifer vegetation (Russell and
Ritchie, 1988) and harsh winter weather. In the forest, we distinguish two path types: forest roads and
forest trails, both shown in Figure 1. Forest roads are built to accommodate various vehicles, while
forest trails are narrow and are not built to accommodate typical road vehicles. The dense vegetation
surrounding forest trails is not traversable by most unmanned ground vehicles (UGVs), and thus
autonomous navigation error tolerance is low when navigating on these trails. Moreover, dense vege-
tation is known to cause problems for autonomous navigation due to interference of the canopy with
the global navigation satellite system (GNSS) signal (Kubelka et al., 2020). In addition to explaining
the path types, Figure 1 also demonstrates the meteorological conditions of this �eld deployment. It
was conducted over multiple days on a 0.7-m compacted snow cover, with varying precipitation and
in subzero temperatures. These conditions complicate the logistics of the deployment, diminish the
endurance both of the robotic system and the personnel, and require punctual planning. Yet, they
reveal weaknesses of the contemporary robotic technology and point to new research problems.

To generate observations on the impact of subarctic environments on autonomous navigation
technologies, we have built the Weather-Invariant Lidar-based Navigation (WILN) system. This

(a) Forest road. (b) Forest trail.

Figure 1. The main focus of this work is evaluating the impact of biome and weather on autonomous navigation.
We distinguish two distinct path types, namely forest roads and forest trails. (a) The system navigating on a
wide forest path, allowing greater system inaccuracies. (b) A forest trail, where the dense vegetation prevents the
robot from navigating outside the trail and blocks the GNSS signal. The error tolerance for forest trail navigation
is much lower than for forest roads. In this work, the majority of autonomous navigation is conducted in forest
trails, as highlighted by the red mark on the right picture.
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system is a minimal autonomous teach-and-repeat framework relying primarily on lidar sensor range
measurements and point cloud registration for localization. Teach-and-repeat systems require a
human operator to manually teach reference paths previously to repeating them autonomously.
Typical 2D localization approaches eventually fail in outdoor, three-dimensional terrain such as
boreal forest roads and trails (Krüsi et al., 2015). Sensor noise due to �oating particles is also
known to have a strong impact on 2D localization reliability (Ren et al., 2021). Thus, the WILN
system relies on 3D lidar scans to localize. Kilometer-scale environments are inherently challenging
for lidar-based localization, especially due to dynamically changing environments, lack of geometrical
constraints, and high computation cost related to registering point clouds within large environments.
The WILN system is speci�cally designed and tuned to overcome such challenges and enable us to
gather observations on autonomous navigation in boreal forests.

The speci�c contributions of this paper are (i) a comprehensive study of the impact of the boreal
forest biome on lidar- and GNSS-based localization and autonomous navigation; (ii) an overview
of the impact of snow accumulation on the reliability of lidar-based localization over multiple days;
and (iii) a description of the WILN system, designed to enable wintertime autonomous navigation
in a boreal forest. The remainder of this paper is organized as follows: Section 2 overviews the
related work and robotic deployments performed in winter weather conditions. It also compares
related GNSS-denied long-range autonomous navigation algorithms. Section 3 describes the WILN
framework in detail, including both our localization pipeline and the path-following controller.
Section 4 describes the environment in which we conducted our deployments and presents the
system hardware and the implementation parameters of the WILN framework. Section 5 provides
the results of the �eld trials and Section 6 discusses them in the context of the forest and subarctic
conditions. It also presents the lessons learned during this deployment. Finally, we conclude this
paper in Section 7.

2. Related Work

The aim of this paper is to present the impact of the boreal forest and winter conditions on
autonomous navigation technologies with the goal of enabling true long-term robot autonomy.
In this section, we show that while various o�-road robotic deployments in winter conditions are
documented in the literature, they mostly rely on the GNSS signal for localization (Lever et al.,
2013). Vision-based localization approaches have enabled autonomous navigation in GNSS-denied
environments. However, winter conditions have been shown to a�ect the performance of such
approaches (Paton et al., 2017). Wintertime autonomous navigation in a boreal forest requires
localization capabilities that are resilient to both winter conditions and GNSS-denied environments.
Active sensors such as lidars are ideal for solving this problem since they are robust to lighting
variation (Krüsi et al., 2015).

GNSS-based localization has been the standard for autonomous navigation in polar environments.
The �rst rover to have been deployed in polar regions isNomad, a gasoline-powered UGV weighing
725 kg. Nomad was stationed at Elephant Moraine, Antarctica, for a duration of four weeks with
the goal of autonomously identifying meteorites (Apostolopoulos et al., 2000). The robot reached
speeds upwards of0:5 m s while using di�erential GNSS as the primary method of localization.
The platform also used the stereo cameras and the lidar sensor for obstacle detection. However,
stereo vision was found to be ine�ective on blue ice and snow in Antarctica due to extreme
lack of texture (Moorehead et al., 1999). Additionally, several operators were required in order to
manually avoid undetected rocks. Expanding on this work,MARVIN I and MARVIN II were two
diesel-powered skid-steering mobile robots (SSMRs) weighing720 kg. MARVIN I and MARVIN
II were deployed in Greenland (Stansbury et al., 2004) and Antarctica (Gi�ord et al., 2009),
respectively. The goal of these robots was to increase survey safety in remote polar regions. The
requirement of heavy sensor payloads led to the selection of large vehicles.MARVIN I used real-time
kinematics (RTK) GNSS as the primary method of localization, achieving a centimeter-level
accuracy in open environments.MARVIN II did not rely solely on RTK GNSS. When navigating
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out of the RTK reference receiver range, it transferred from RTK to di�erential GNSS. Transfer from
RTK to di�erential GNSS increased rover oscillation with respect to the reference path. Through
the MARVIN I and II deployments, Stansbury et al. (2004) highlighted the fact that turning
maneuvers with SSMRs were linked to a high risk of immobilization in deep snow. Later,Yeti , a
battery-powered 81 kg UGV, was deployed to conduct ground penetrating radar surveys in order to
detect subsurface crevasses or other voids in 2010, 2011, and 2012 (Lever et al., 2013). Knowledge
about such crevasses would enable human operators to plan safer paths for larger vehicles.Yeti did
not include any obstacle detection system. During surveys,Yeti reached a top speed of2:2 m=s and
managed to acquire data on hundreds of crevasse encounters. It even located a previously undetected
buried building in the South Pole. No obstacle detection and avoidance system was implemented
on Yeti due to the open nature of ice sheets. Additionally,Yeti was deployed for further surveys
in the McMurdo shear zone in 2014 (Arcone et al., 2016) and 2015 (Ray et al., 2020), while still
relying on GNSS waypoint navigation. Based on the recorded data, the authors have presented a
method to estimate ice sheet velocity �elds by matching annual ground penetrating radar scans. The
aforementioned work on �eld robotics in polar regions allowed the identi�cation of various issues
related to autonomous navigation on snow-covered terrain. Due to the complex nature of localizing
in polar regions, GNSS is the most popular means of localization for such regions. However, subarctic
navigation includes cluttered environments such as boreal forests. Autonomous navigation in those
areas requires localization robust to GNSS-denied conditions, for which multiple approaches have
been presented in the literature.

Since the GNSS signal is not always reliable due to the multipath e�ect or signal absorption due
to tree canopy (Kubelka et al., 2020), approaches independent of these e�ects have been proposed.
Furgale and Barfoot (2010) were the �rst to show that visual teach and repeat (VT&R) approaches
are robust enough to perform large-scale autonomous navigation in GNSS-denied environments.
The authors have deployed their system in the Canadian High Arctic. This environment was
selected because of its similarity to lunar and Martian terrain. Most features consisted of rocks
located within the reference trajectory. In this work, they successfully repeated reference paths
up to 10 hours after they were manually driven. However, sensitivity to illumination change was
identi�ed as the main limit of the system. Thus, Churchill and Newman (2013) later introduced
experience-based navigationto increase the robustness of VT&R to scene appearance change, caused
by illumination variation or dynamic environment changes. This feature was added in VT&R through
multiexperience localization, with the added ability to use landmarks from previous experiences in
the same localization problem (Paton et al., 2016). In this work, the authors extend the allowable
time between teach-and-repeat runs from a few hours to multiple days. Paton et al. (2015) also
added color-constant image transformations to VT&R to mitigate the impact of illumination
variations. Color-constant image transformations have been used by Clement et al. (2017) to
perform autonomous route repeating by using the VT&R framework while relying solely on a
monocular camera. While vision-based localization was demonstrated to be robust to illumination
variation, Paton et al. (2015) have observed that localization frameworks relying only on passive
cameras fail to localize in dark conditions.

To enable nighttime vision-based navigation, McManus et al. (2013) have proposed to use an
intensity-based lidar to replace cameras for the VT&R framework. While this work demonstrates
that this system is resilient to low illumination conditions, it su�ers from motion distortion issues.
Using headlights, MacTavish et al. (2017) proposed a bag-of-words approach to prioritize experiences
most relevant to live operation. This in turn allows a growing number of robot experiences while
limiting computation requirements. In this work, the authors have successfully repeated paths over
a 31-h period, including day and night driving relying on headlights. Extending the experimental
evaluation of VT&R, Paton et al. (2018) have logged over 140 km of autonomous navigation in
an untended gravel pit, also including nighttime navigation. Clement et al. (2020) have used a
deep neural network to learn a nonlinear color transform mapping that maximizes vision-based
localization resiliency to appearance change. In this work, they successfully localized on routes over
a 30-h period by relying only on a single experience. However, Congram and Barfoot (2021) still
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observed vision-based localization failures in low illumination, even when using headlights. In this
work, the authors proposed to fuse vision-based localization with GNSS measurements to enable
VT&R systems to function in areas where vision localization fails.

Vision-based localization was tested on snow-covered terrain numerous times.Sno-mote Mk1
and Mk2 were deployed on Alaskan glaciers and Wapekoneta, Ohio (Williams and Howard, 2009).
Sno-motesare dual-drive 1:10 scale snowmobiles equipped with a single camera and GNSS. These
robots were used to conduct manually driven traverses of about100 m at a speed of1 m s� 1. The
data gathered with the Sno-moteswere then used to enhance visual simultaneous localization and
mapping (SLAM) feature extraction methods in snow. Despite improving feature detection methods
on snow, it was shown that snow is still feature sparse (Williams and Howard, 2009). Paton et al.
(2017) then showed that vision-based localization is robust to intraseasonal, daily scene appearance
change, by successfully repeating more than26 km over multiple days. In this work, VT&R was
also deployed on a 250-m path featuring a 0.3-cm snow cover. However, deep-snow path following
leads to unstable UGV behavior due to features almost only being observed on the horizon, leading
to inaccurate pose estimates, which led to path-following instability. MacTavish et al. (2018) have
used multiexperience localization to successfully repeat trajectories over 100 days through day,
night, winter, spring, and summer. In their work, the authors showed that vision-based localization
is resilient to signi�cant seasonal change as long as the UGV can repeat the path at a rate faster
than scene appearance change. In our paper, we investigate the performance of a complementary
approach relying on lidar measurements and observe its limitations under harsh winter weather and
in boreal forest environments.

On the other hand, lidar-based localization is resilient to illumination variation, which can lead
to localization failure for vision-based systems. Marshall et al. (2008) were the �rst to suggest a
lidar teach and repeat (LT&R) using encoders and 2D lidars. In their work, a sequence of locally
consistent and overlapping topometric maps (i.e., occupancy grids) are recorded along the path
using 2D lidar measurements to allow the robot to localize during the repeat phase. The system
was proven e�cient for repeating paths in underground tunnels on a 10 t capacity hauler. Still
relying only on 2D lidar scans for localization, Sprunk et al. (2013) have proposed to localize
directly on 2D lidar scans, removing the requirement to build a topometric map o�ine. This
system was deployed in an indoor, structured environment, resulting in a millimetric localization
accuracy. Later, Mazuran et al. (2015) improved this framework by introducing a trajectory
optimization step between the teach and the repeat phases, while still deploying the system in
a similar indoor environment. Maddern et al. (2015) have studied the use of multiexperience
localization, similarly to Churchill and Newman (2013), however, this time using scans measured
by a push-broom 2D lidar. Local 3D swathes are produced by fusing 2D scans with vehicle
odometry. These swathes are then matched to multiple prior experiences, allowing to deal with
structural change in an urban environment. We show that our approach requires less memory
as it relies on a single reference map and demonstrate its performance in an o�-road, complex
environment.

Related to o�-road environments, Nieto et al. (2003) have proposed the FastSLAM algorithm
relying on 2D lidar scans, which they have tested on the Victoria Park dataset. This dataset was
recorded within an urban park, on uneven terrain and through sparse vegetation. In this work, the
various trees in the park were used as landmarks to localize with the FastSLAM algorithm. Later,
Jagbrant et al. (2015) deployed a similar lidar-based localization system in an almond orchard.
However, an almond tree orchard contains signi�cantly sparser vegetation than the boreal forest.
Zhang and Singh (2018) have deployed a lidar and inertial measurement unit (IMU)-based framework
in a sparse forest environment. In this work, they have shown resilience to multiseasonal change by
merging a summer and winter map. However, due to the location where this work was conducted, no
analysis of the impact of snowfall is discussed. Recently, Ren et al. (2021) deployed a lidar localization
system in a desert biome. They identi�ed the lack of features and geometrical constraints as an issue
for point cloud registration. This issue is similar to the low feature contrast problem that a�ects
vision-based approaches in snow-covered terrain (Paton et al., 2017).
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As lidars are subject to noise created by precipitation in the environment, point cloud denoising
has been studied in the literature. Schall et al. (2005) and Jenke et al. (2006) have proposed
probabilistic approaches which tend to be computationally expensive. On the other hand, Schall
et al. (2008) have proposed a neighborhood-based approach that is viable for real-time point cloud
denoising. In a similar neighborhood-based approach, Charron et al. (2018) have proposed a dynamic
radius outlier removal �lter to denoise point clouds recorded by a self-driving vehicle during light
snowfall in an urban setting. Duan et al. (2021) later proposed a principal-component analysis
method to �lter lidar scans, yielding increased performance. Utilizing the progress made on semantic
segmentation, Heinzler et al. (2020) have proposed a learning-based approach to denoise point clouds,
allowing to use information from the entire scene rather than the vicinity of speci�c points. While
most point cloud denoising approaches work as input �lters applied to lidar scans, we apply a post
�lter on the map after point cloud registration to remove dynamic points, as proposed by Pomerleau
et al. (2014). We show through our results that our system is robust to real-time localization through
moderate snowfall. We also show that it is not snowfall, but rather snow accumulation, that a�ects
system performance, potentially leading to system failure.

Relying on the iterative closest point (ICP) algorithm, Krüsi et al. (2015) have deployed a
LT&R system in o�-road environments and busy city streets, successfully repeating paths of up
to 1:3 km. These deployments have shown the resiliency of lidar-based perception to o�-road and
urban environments, under high illumination variations. However, this deployment does not cover
the impact of dense vegetation and snowfall. In previous work, we have shown that, using the ICP
algorithm to register 3D lidar scans, we can produce large-scale maps of a boreal forest o�ine (Babin
et al., 2019). This paper aims to describe the �eld deployment of the WILN framework in a boreal
forest during 5 days, e�ectively subjecting it to weak GNSS signal, high illumination variations,
and low feature contrast. Such deployment conditions combine the challenges of navigation in
snow-covered and GNSS-denied constrained environments. We report the impact of dense vegetation
in forest trails and of snow accumulation on the performance of the WILN system.

3. Weather-Invariant Lidar-based Navigation (WILN) System Description

WILN is an autonomous teach-and-repeat system designed to be robust to kilometer-scale navi-
gation, severe weather, and GNSS-denied conditions. As a localization prior, the system relies on
IMU measurements and the wheel odometry, as described in Section 3.1. Registering 3D lidar scans
through the ICP algorithm is the primary means of localization (Section 3.2). Map maintenance
and tiling modules were added to enable kilometer-scale SLAM, both of which are described
in Section 3.3. As for most teach-and-repeat frameworks, two modes are de�ned: theteach phase
and the repeat phase(Section 3.4). A kinematic controller was selected to compute appropriate
commands to solve the path-following problem (Section 3.5). This section ends with a system
overview, including a visual representation of all WILN system components and their interactions
(Section 3.6).

Four coordinate frames are de�ned in the WILN system, as illustrated in Figure 2. First, the
global map frame G is de�ned, representing the world the robot navigates in. Second, the robot
frame R is de�ned with its origin in the base of the robot chassis. Thex axis of the robot frame
R is parallel to the longitudinal direction and the y axis is parallel to the lateral direction of the
robot. Third, the lidar frame L coincides with the lidar sensor origin. The rigid transform from the
robot frame to the lidar frame L

R T is assumed to be constant and found through system calibration.
The reading point clouds (i.e., input points) P are originally observed in the lidar frame L and
the reference point clouds (i.e., map points) are expressed in the map frameG. The transform G

R T
between the framesR and G is updated by the ICP algorithm and constitutes the robot localization.
For the path-following algorithm running in the repeat phase, the Frenet-Serret frameS is de�ned
directly on the path. Lastly, the reference trajectory recorded in the teach phase is expressed as a
vector of consecutive robot posesx ref = f G

R T1; G
R T2; : : : ; G

R Tn g, where n is the number of recorded
poses in the trajectory.

Field Robotics, July, 2022 · 2:1628–1660



1634 · Baril et al.

R

S

L

G

Figure 2. Coordinate frames used for WILN. In this instance, the robot is moving towards the path frameS.
The reference path that the robot aims to follow is drawn in light purple. The remaining relevant coordinate
frames are the map frameG, the lidar frame L , and the robot frameR.

3.1. Localization Prior: IMU and Wheel Odometry

The ICP algorithm requires high-frequency prior estimates ofGL �T that capture the motion between
every two consecutive lidar scans. In WILN, the prior G

L
�T is estimated through IMU measurements

and wheel odometry. The robot orientation is estimated using the Madgwick �lter2 (Madgwick
et al., 2011) based on gyroscope and accelerometer measurements. Linear displacement is based
on wheel odometry, while taking into account the estimated robot orientation. The prior G

L
�T is

generated synchronously with the IMU at a frequency of100 Hz. When subject to motion, it should
be noted that lidar sensors generate skewed reading point cloudsL Ps. Hence, we deploy a point cloud
deskewing �lter in our system. First proposed by Bosse and Zlot (2009), such algorithms correct
point cloud distortions by taking the lidar intrascan motion into account. Following the same idea,
our high-frequency G

L
�T prior is used to deskew the raw input point cloud. The resulting corrected

L P is the one used in the ICP algorithm.

3.2. Iterative Closest Point (ICP)

To localize the robot, the incoming deskewed reading point cloudsL P are registered to the reference
point cloud GQ using the ICP algorithm. This allows a map of the environment to be built during
the teach phase and enables the robot to be localized in this map during the repeat phase. An
overview of the ICP pipeline is shown in Figure 3. The ICP algorithm iteratively matches points
between two point clouds and looks for a rigid transform that minimizes the distance between each
pair of the matched points. Pomerleau et al. (2015) presented a comprehensive review of the state of
the art for the ICP algorithm. The WILN registration component is based on the modules presented
in this review. To increase robustness of the algorithm, we apply the following three input �lters to
the reading L P before registering it into the referenceGQ:

1. Random subsampling �lter parameterized by the ratio � s 2 [0; 1] of the points kept after
the subsampling. This subsampling is critical to reducing the computation time of the ICP
algorithm to allow the SLAM problem to be solved in real time (Pomerleau et al., 2011).

2. Bounding box �lter parameterized by the bounding box coordinates bi =
(xmin ; xmax ; ymin ; ymax ; zmin ; zmax ) 2 R6. It removes points originating from the robot body
that would otherwise cause a trail of points in the reference point cloudQ.

3. Radius �lter parameterized by the maximum radiusr around the lidar. Beyond this radius,
the reading points are discarded. This allows only the relevant vicinity around the robot to be
considered to further reduce the computation time.

2 https://github.com/bjohnson�/Madgwick_Filter

Field Robotics, July, 2022 · 2:1628–1660

https://github.com/bjohnsonfl/Madgwick_Filter


Kilometer-scale autonomous navigation in subarctic forests: challenges and lessons learned· 1635

L P
Reading

GQ
Reference

Input �lters

Matcher

Outlier �lter
Error

minimizer

Initial
transformation

L P0 GP0 M W

G
L

�T G
L T̂

GP0

Figure 3. The ICP pipeline. The reading point cloudL P is �ltered, and the initial transformation G
L

�T is applied
to it. The matcher �nds sets of neighbors inGQ for each point of GP0, which compose the set of matchesM .
An outlier �lter is then used to compute weightsW associated with the matchesM . The weights W and the
matchesM are then used in the error minimizer to compute an output transformationGL T̂ . The matching, outlier
�ltering, and error minimization steps are done iteratively until the error is beneath the settled threshold.

In our implementation, L P is observed in the lidar frameL and GQ is de�ned in the map frame G.
Thus, the ICP algorithm estimates the transform G

L T̂ by minimizing an error function e using

G
L T̂ = arg min

T

�
e

� GP; GQ
��

; (1)

whereGP is the reading point cloud P expressed in the map frameG. For the �rst iteration, the prior
G
L

�T is used to compute this rigid transformation. The prior computation is explained in Section 3.1.
To compute the error function, we associate points between the reading point cloud and the reference
point cloud. Following this step, the ICP algorithm computes the optimal transform by iteratively
minimizing the error between GP and GQ, as speci�ed in Equation 1. For better clarity, the remainder
of this section concentrates on a single ICP iteration step that would be repeated until convergence.

Point matching is �rst done by �nding the closest points in GQ for each point of GP0. Thus,
multiple points of GQ can be associated with each point ofGP0. Nearest-neighbor search is carried
out via the use of a kd-tree5 to decrease computation time. The matcher is parameterized by the
number of nearest neighbors for eachP point nm 2 Z> 0 and the maximum allowable distance for a
match, dmax 2 R> 0. In order to speed up the nearest-neighbor searches, the" 2 R> 0 parameter is
set to 1 to allow approximations, as described in Arya and Mount (1993). Subsequently, we apply
an outlier �lter to add binary weights to each matched point to remove the outlier matches from the
error function. The outlier �lter adds a positive binary weight to the � d 2 [0; 1] proportion of nearest
matches. Formally, let M all = match(P; Q) = f (p; q) 2 P �Qg be the set of matches betweenP and
Q. We also de�ne M � M all , which contains only the nm closest pairs ofM for each point of P with
a Euclidean distance belowdmax . Let W = outlier (P; Q) = f w(p; q) : (p; q) 2 Mg be the weights
associated with these matches. Our system uses the point-to-plane error function, de�ned by

e(P; Q) =
KX

k=1

w(pk ; qk )





 (pk � qk ) � n k








2
; (2)

whereK is the number of matches inM and k�k2 is the L2 norm. The normal vector n k around the
3D point qk in Q is computed prior to the ICP algorithm. The error in Equation 2 can be iteratively
minimized by recomputing the set of matched points M and their associated weightsw at each
iteration. Moreover, in the minimization process, we only optimize the translation and the yaw
rotation, assuming that the prior roll and pitch angles are already optimal. This holds in the case
of precise IMU calibration with respect to the robot frame R. Transformation checkers are added
to WILN to detect erroneous ICP solutions. An error is raised if the prior error exceeds prede�ned
thresholds in translation error " t min 2 R> 0 or angular error " � min 2 R> 0. Additionally, the iterative
process of the ICP algorithm is stopped after a maximum number of iterations,i max 2 Z> 0, is
reached, returning the last transform. The resulting transform G

L T̂ can be used to express the 3D
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Figure 4. The management of the map by thevoxel managermodule. The robot trajectory is represented by the
red line. Three distinct robot poses are represented byR t1, R t2, and R t3. The local mapGQ voxels are represented
by the light yellow, green, and blue colors and the nonlocal mapGQDB voxels by the dark gray color.

robot pose in G by chaining G
L T̂ L

R T since the latter was evaluated through system calibration. The
ICP algorithm also returns the reading point cloud in the map frame GP. Our implementation is
strongly based on thelibpointmatcher library (Pomerleau et al., 2013).3 This library allows fast
registration of large point clouds, which is essential to solving the SLAM problem in real time.

3.3. Large-Scale Mapping

The large-scale mapping subsystem uses the ICP implementation described in Section 3.2 to solve
the SLAM problem in large-scale navigation. At each time step, a lidar scanL P is measured and
registered to the reference mapGQ, yielding the transformed and �ltered reading GP and the
estimated transform between the lidar and map framesG

L T̂ . The registered scanGP is appended to
the reference point cloudGQ. To maintain a point density in the map, a point is only appended if
its distance to the closest point in the map exceeds the user-de�ned minimal threshold� 2 R> 0.
After merging the input point cloud into the map, two post-�lters are applied to the map:

1. The surface normal �lter computes the surface normals for all points required by the
point-to-plane minimization described in Equation 2. For each map point, the positions of the
nn 2 Z> 0 closest points are taken into account to estimate the local surface normal.

2. The dynamic point �lter removes points that are identi�ed as dynamic, originating from,
e.g., walking pedestrians, or falling snow. Its implementation is based on the one proposed
by Pomerleau et al. (2014). The dynamic �lter allows dynamic elements to be removed from
the map, allowing the map to be maintained for extended periods of time. To �lter out the
dynamic points, ray tracing is used. If an incoming scanL P point is located behind a map
point L Q, the probability of this map point being dynamic is increased. If this probability
surpasses the prede�ned threshold� d 2 [0; 1], it is e�ectively removed from GQ. To limit
computation time for this �lter, map points located further than the sensor range r do not
enter the �ltering process.

This new map GQ0 is sent to the voxel managermodule, illustrated in Figure 4. The purpose of the
voxel manager is to limit the computational complexity of the map maintenance, instead of letting it
grow with its size. Our implementation of the voxel manager module is similar to the one proposed
by Ren et al. (2021). It involves the following steps: the new mapGQ0 is divided into voxels, then
only the voxels that are close to the robot are kept in the random access memory (RAM). All points

3 https://github.com/ethz-asl/libpointmatcher
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located within those voxels are considered to be the local mapGQ. The remaining voxels represent
the nonlocal map GQDB and are stored in the database on the system hard drive.

The local map GQ voxels constitute a cube following the position of theL frame. The center of
this cube is maintained close to the origin of theL frame. The initial length of its edge is de�ned
as twice the lidar sensor ranger plus a margin of two voxels on each side. This margin gives the
manager enough time to load and unload voxels as the robot moves through the map. The loading
and unloading operations are triggered each time the robot crosses two distinct voxel borders,
preventing unnecessary computations if the robot oscillates on a single voxel border. The side e�ect
is the varying number of voxels in the local mapGQ, as can be observed in the example for the
second robot poseR t 2 in Figure 4. In this case, tile loading will be triggered once the sensor range
crosses the next voxel frontier, which explains why only one voxel separates the sensor range from
the local map edge. The voxel manager allows the maximum map maintenance computation time to
be limited, allowing the system to solve the SLAM problem for kilometer-scale environments. This
module is parametrized by the voxel sizevs 2 R> 0, in meters.

3.4. Teach and Repeat Phases

During the teach phase, the robot is driven along a speci�c path by a human operator. The large-scale
mapping framework presented in Section 3.3 is used to build the reference map. The localGQ and
nonlocal GQDB map voxels are saved to a map database. The sequence of robot posesx ref estimated
by the ICP algorithm is subsampled to keep only points that are at leastdref apart from each other.
This subsampled trajectory is also saved in the database and constitutes the reference pathx ref for
the repeat phase. The system can be taught various reference trajectories and maps, all of which
are stored on the robot's hard drive.

During the repeat phase, the complete reference map and the reference pathx ref are �rst loaded
from the database. The voxel manager then rebuilds the local mapGQ and the nonlocal mapGQDB

voxels according to the robot's position. In this phase, no points are appended to the reference map
and the ICP algorithm is only used to localize the robot in the local map. One should be cognizant
that snow accumulation is heterogeneous in nature, meaning that it is signi�cantly di�erent on dense
vegetation, buildings, and �at ground. Thus, dynamic map updates were not added to the repeat
phase to ensure system reliability during this deployment. The estimated pose of the robotGR T̂ is then
projected as a planar posex 2D and used by the path-following algorithm described in Section 3.5.
The path-following algorithm computes the output system commandsu to steer the UGV along the
x ref poses. Note that we rely on a metrically consistent map, contrarily to VT&R, which relies on
viewpoint-based localization (Furgale and Barfoot, 2010). This choice allows us to maintain a single
3D map, which is memory e�cient comparatively to viewpoint-based localization. Indeed, the latter
requires storing all experiences within a database, eventually leading to signi�cant memory usage.

3.5. Path Following

Once the robot's poseG
R T̂ has been estimated and the reference trajectoryx ref loaded from the

database, this information is used as the input to the path-following controller. The outputs of
the path-following algorithm are the commanded longitudinal and angular velocities, respectively
de�ned in the vector u = [ vx ; ! ] 2 R2. The WILN framework uses the orthogonal-exponential (OE)
controller to compute the command vector u . This controller computes angular velocity through
the orthogonal projection of the robot pose on the reference path and various heuristics to compute
linear velocity (Huski�c et al., 2017). For the WILN system implementation, we have used the Generic
Robot Navigation (GeRoNa)4 library proposed by Huski�c et al. (2019) to allow fast computation of
the command vectoru .

4 https://github.com/cogsys-tuebingen/gerona
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Figure 5. Main components of the orthogonal-exponential (OE) path-following algorithm used in this work. In
red is the reference trajectory. In blue is the predicted exponential trajectory. The Frenet-Serret frameS is located
on the referential trajectory.

At each time step, a control law is built to allow the robot to adjust its orientation to converge to
the reference pathx ref , as shown in Figure 5. A Frenet-Serret frameS is de�ned in the map frame.
Its origin lies in the orthogonal projection of the robot frame R on the reference path. After, an
exponential function is de�ned to allow the robot to converge to the reference path, drawn in blue
in Figure 5. The angle of this exponential function is de�ned by

� c = arctan( � kxn exp (� kx t )) ; (3)

where k 2 R> 0 is a constant that allows the regulation of the convergence speed of the robot to
the path. We also denotex t 2 R and xn 2 R as the current position of R in path frame S, along
the tangential ~x t and normal ~x n axes, respectively. Linear velocity is computed by modulating the
target vehicle velocity vn . Thus, the complete control law can be de�ned by

u =
�
vx

!

�
=

"
vn exp

�
�

�
K g

dg

��

K h (� c + � e)

#

; (4)

where � e 2 R> 0 is the error between the robot angle� r and the path frame angle � t in the global
frame G. The K h 2 R> 0 parameter is a gain on commanded angular velocity that was added in
order to reduce controller overshoot when subject to high reference path curvature� . In the original
implementation, a parameter exists allowing to reduce commanded longitudinal velocity in areas
with high path curvature � . However, this parameter was omitted due to noise in the teach phase
localization resulting in jerking motion for the UGV. The distance between the current robot pose
and the end of the trajectory is represented bydg 2 R> 0 and a goal proximity gain K g 2 R> 0 is
de�ned to gradually slow the robot as it reaches its goal. To respect the limitations of the robotic
platform, the commanded angular velocity is limited to ! 2 [� ! m ; ! m ]. The commanded linear
velocity is bounded to vx 2 [vmin ; vmax ]. A goal tolerance � g 2 R> 0 parameter is used to allow the
robot to �nish the path repetition when within an acceptable distance from the x ref end. Finally, a
safety tolerance� w 2 R> 0 parameter is de�ned to stop the robot if the distance between the origin
of the robot's frame R and the closest trajectory point of x ref exceeds the speci�ed distance� w .

3.6. System Overview

An overview of the entire WILN pipeline is shown in Figure 6. During the teach phase, an operator
drives the robot along the desired trajectory. Sensor measurements are used to solve the SLAM
problem and build a database containing all reference maps and trajectories. A point cloud deskewing
system is used to take intrascan lidar motion into account. This same system is used to produce a
transformation prior G

L
�T to allow the ICP algorithm to perform real-time point cloud registration.

A map maintenance module is used to append the latest registered lidar scanGP to the local map
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Figure 6. Overview of the WILN pipeline. The teach phase (in blue) takes as input the point clouds from the
lidar and the odometry. The information is then used by the deskewing algorithm and sent into ICP, which is used
to solve the SLAM problem. At the end of the teach phase, the localGQ and nonlocalGQDB maps are saved in
the database. The inputs of the repeat phase (in red) are the same as for the teach phase. The transformation
outputted by ICP is �nally used by the path follower to compute the commands sent to the vehicle.

GQ. This module is also used to compute surface normals and remove dynamic points from the
map, yielding the maintained map GQ0. Then, the voxel manager module is used to split the map
into the latest local map GQ and nonlocal map GQDB . At the end of the teach phase, the entire
map and reference trajectoryx ref are saved in the database for later use in the repeat phase. For
the repeat phase, the ICP algorithm registers incoming lidar scans identically as in the teach phase.
However, only the estimated robot poseG

L T̂ is used. The reference trajectoryx ref and current robot
poseG

L T̂ are then sent to the path follower, which outputs the command vectoru . Since no point
clouds are appended to the map, no map maintenance module is used during the repeat phase. The
voxel manager module is used to build the local and nonlocal maps; only the former is taken into
account by the ICP algorithm.

4. Experimental Setup

In this work, we conducted our deployment within the Montmorency boreal forest, located at a
latitude of 47� 1901500N and a longitude of 70� 90000W The deployment took place during winter,
creating ideal conditions to evaluate the impact snowfall and dense vegetation can have on
autonomous navigation. The hardware used to perform autonomous navigation is weatherproof
and can navigate steep and soft terrain. Section 4.1 describes the winter-resilient hardware used
to deploy the WILN system, including the UGV, sensing and computing hardware. Next, details
about the various implementation parameters are presented in Section 4.2. Lastly, Section 4.3 lists
the characteristics of the Montmorency boreal forest, the weather and conditions to which our
system was subjected when navigating.

4.1. Hardware Description

Our system was deployed on a modi�ed Clearpath Robotics Warthog UGV, as shown in Figure 7.
The Warthog is a SSMR using two drive units located on each side of its chassis. For SSMRs,
steering is done by rotating the wheels on each side of the vehicle at di�erent velocities to create a
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Characteristics Value
P

hy
si

ca
l

Mass 590 kg
Footprint 2.13 m x 1.52 m
Top speed 18 km/h
Steering geometry Skid-steering
Locomotion CAMSO ATV T4S Tracks
Suspension Geometric Passive

Articulation

S
en

so
rs Lidar Robosense RS-32 (10 Hz)

IMU XSens MTi-10 (100 Hz)
Wheel encoders 3 x Hall e�ect sensors (4 Hz)
GNSS Emlid Reach-RS+ (5 Hz)

C
om

pu
tin

g Computer Acrosser AIV-Q170V1FL
CPU i7-6700 TE (3.40 GHz)�

Number of cores 4�

Number of threads 8�

RAM 16 Gb

1

2 3

Figure 7. Experimental setup for the WILN system on our Clearpath Robotics Warthog UGV. Left: Detailed
speci�cations. Right: The numbers in red circles correspond to (1) Robosense RS-32 lidar, (2) XSens MTi-10
IMU, and (3) two Emlid Reach-RS+ GNSS antennas. The two GNSS antennas are not used for the localization
of the WILN system.

skidding e�ect, e�ectively turning the vehicle. Vehicle motion control is achieved through a sub-servo
system allowing each side's wheel velocity to controlled through Sevcon Gen4 drives and wheel
encoders signal. A kinematic linear mapping between wheel velocities and body velocities allows
body-velocity commands to be sent directly to the platform. Instead of wheels, the Warthog is
mounted on four CAMSO ATV T4S tracks to maximize mobility, as depicted in Figure 7. The
Warthog is also equipped with a di�erential suspension, increasing traction when navigating steep
terrain. A Robosense RS-32 3D lidar is mounted in front of the robot, with no pitch or roll inclination.
This lidar has a 200-m detection range and produces about640 000points per second. Three Hall
e�ect sensors are added to each motor to provide wheel odometry for the robot. Completing the
WILN sensor package, an XSens MTi-10 IMU provides angular velocity and body linear acceleration
measurements. Additionally, two Emlid Reach-RS + RTK GNSS receivers were added to the robot
chassis and a third was used as a �xed antenna to produce GNSS localization measurements. An
Acrosser AIV-Q170V1FL onboard computer is used to record sensor data and perform all of the
WILN system computations. All technical speci�cations for the platform are given in Figure 7.

4.2. Implementation Parameters

To allow the WILN framework to perform large-scale navigation, we hand-tuned the parameters
of each subsystem. All parameters are enumerated in Section 3. Without conducting extensive
calibration, we let the system repeat several short paths and manually adjusted parameters until
observing stable performance. For this work, parameters were tuned to reach a working state for the
WILN system, but no sensitivity analysis was conducted. Our goal was to evaluate the impact of
the boreal forest and winter conditions on the system without extensive e�ort on system calibration.
The mapping subsystem had three distinct goals: (i) enabling point cloud registration by computing
surface normals, (ii) maintaining the map to remove dynamic points, and (iii) splitting the map
into local and nonlocal through the voxel manager. This would prevent localization failures during
repeat runs. Path-following overshoot in tight curves and controller oscillations were also minimized
by adjusting the parameters. An overview of the tuned parameters is provided in Table 1.
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Table 1. Parameter values related to each function used in our system. No extensive tuning was conducted,
rather we have identi�ed a minimal working system. Functions and parameters are split between the registration,
mapping, and path-following subsystems. All functions and parameters are detailed in Section 3.

Function Parameters

R
eg

is
tr

at
io

n

Bounding box input �lter 1 b1 D [� 1.5 m, 0.5 m, � 1 m, 1 m, � 1 m, 0.5 m]
Bounding box input �lter 2 b2 D [� 10 m, � 1.5 m, � 2.5 m, 2.5 m, � 1 m, 1 m]
Random sampling input �lter � s D 0:7
Maximum radius input �lter r = 80 m

KD tree matcher nm D 7 " D 1 dmax D 2.0 m

Trimmed distance outlier �lter � d D 0:7

Di�erential transformation checker " � min D 0:001 " tmin D 0:01
Counter transformation checker imax D 40

M
ap

pi
ng Large scale mapping � D 0.1 m vs D 20 m

Surface normal points �lter nn D 15
Dynamic points �lter � d D 0:8

P
at

h-
fo

llo
w

in
g

Waypoint tolerance � w D 1.0 m
Goal tolerance � g D 0.15 m
Regulator path convergence k D 0:4
Compensation angular speed command Kh D 3:0
Max angular velocity ! m D 1.0 rad s� 1

Goal position factor Kg D 0:5
Linear nominal speed vnom D 1.5 m s� 1

Linear minimal speed vmin D 0.5 m s� 1

Linear maximal speed vmax D 1.5 m s� 1

Reference trajectory pose distance dref D 5 cm

4.3. Environment

For this work, autonomous navigation was conducted in the Montmorency boreal forest. This
environment is ideal to help highlight how dense vegetation and snow precipitation a�ects the
performance of lidar and GNSS-based autonomous navigation, which are the main contributions
of this paper. A digital terrain model of the deployment area, with a representation of the path
network, is shown in Figure 8. It can be seen that three di�erent paths were de�ned, all linking two
points of interest (POIs). The goal of de�ning three di�erent paths is to highlight the di�erence
in localization performance between the two path types. PathA links the Garage and Cabin POIs
through a cross-country ski trail and has the total distance of 1:4 km. According to guidelines, we
expect this ski trail to have a minimal width of 4:5 m (Ministère des Forêts, de la Faune et des Parcs,
2017). Path B also links the Garage and Cabin POIs and has a total distance of1:5 km. Path B is
identical to path A for the �rst third of the path and then diverts to a foot trail, where the width is
similar to the one observed on pathA. We observed that multiple areas of pathB have a lower width
than the expected4:5 m since this is a foot trail. To prevent UGV immobilization, the snow on paths
A and B had been compacted by a snowmobile operator prior to the experiment. PathC connects
the Garage and GazeboPOIs mostly through a network of wider roads and has a total distance of
0:5 km. Path C corresponds to a forest road, with a minimum width of 9:1 m according to o�cial
guidelines of the Montmorency boreal forest (Ministère des Forêts, de la Faune et des Parcs, 2021). It
should be noted that path C was conducted as a round-trip path, consisting of a forward pass and a
backward pass. This choice was made to increase autonomous navigation data and include data with
the UGV driving in both directions. Also, it can be observed in the above mean sea level (AMSL)
model in Figure 8 that the path network is located in a valley, surrounded by various mountains.

During the deployment week, the WILN system was subjected to �uctuating weather, including
light and heavy snow, hail, and drizzle. We have access to extensive data gathered through a
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Figure 9. Temperature and weather during the deployment. Teach runs are depicted as green squares whereas
repeat runs are depicted as red circles. Teach runs have been performed in relatively clear weather, while repeat
runs su�ered from rain and di�erent levels of snowfall.

meteorological station located at the Montmorency forest. The area temperature was measured
with a temperature probe of model 107 made by Campbell Scienti�c, which was covered by an
antiradiation screen 2 m away from the ground. The precipitation type was measured with a Parsivel2

disdrometer made by OTT. An overview of the meteorological conditions is illustrated in Figure 9.
Outside temperatures ranged from� 15:5 � C to 13:4 � C. The temperature �uctuated over and under
the water freezing point (i.e., 0 � C), meaning that snow in the environment melted on some occasions
and froze on others, e�ectively accumulating on the ground. Teach runs (i.e., TA, TB, and TC) were
conducted when there was no precipitation. Runs R1 through R7 were conducted in rainy weather,
while runs R8 through R12 were conducted in snowfall. The standard for weather codes shown
in Figure 9 is code table 4680 for automatic weather stations (World Meteorological Organization,
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2019). During runs R13 and R14, the system was not subject to any precipitation. While not shown
in this �gure, we performed autonomous repeats during both daytime and nighttime, with no impact
on system performance. More details on each run are given in Section 5.

5. Results

The main goal of this work is to evaluate the impact of the boreal forest and winter weather
on autonomous navigation performance. First, we document all three distinct reference maps and
trajectories that were built through the teach phase. Then, we report on all repeat runs that were
conducted over the deployment week. As a prior to further analysis, general information on all runs
conducted during the deployment is presented. A general performance report for the system is shown
in Section 5.1. Afterwards, we highlight the e�ects of the boreal forest biome, more speci�cally of
the dense vegetation, on GNSS-based and ICP-based localization in Section 5.2. Then, Section 5.3
describes how snow precipitation and accumulation induces signi�cant change in the environment
landscape, resulting in ICP localization failures. Finally, Section 5.4 explains the impact of the
environment on the OE controller path-following performance.

Teach runs were performed to record the reference mapsGQDB and the trajectories x ref for all
three paths. During these runs, we manually drove the robot, while the map and trajectory database
were built online. The resulting maps for each path are illustrated in Figure 10 with the coordinates
de�ned in the map frame G speci�c to each path. In this visualization, the z component of the
estimated surface normal vector is used to color each point. Thus, dark blue points represent walls,
as can be seen on pathC, green points typically represent vegetation, and yellow points represent
ground surfaces. PathsA and B are mostly located within dense vegetation. On the other hand,
path C is located on a much more open forest road. All reference paths in Figure 10 have been
divided into areas to facilitate upcoming discussion. Table 2 presents relevant details about each
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Figure 10. All reference maps recorded during the three teach phases for this work. The colormap represents the
z component of the surface normal for all points in the map. Yellow points are the ones with the surface normal
pointing upwards. Green and dark blue points have a surface normal pointing sideways. The red markers represent
the reference trajectory POIs. All maps have been rotated in order to allow visualization in the same �gure. The
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Table 2. Overview of all runs conducted in this work. All times are de�ned in the local Eastern Standard Time.
A' or B' means the run started at theCabin POI. The column 1 t de�nes the elapsed time since the teach run
of the associated path. The column #P shows the number of scans for each run. The illumination measured at
the start of each run is given. Teach runs are not accounted for in the total autonomous distance traveled.

Start time Duration 1 t Distance Illumination
ID Path (2021) (hh:mm) (hh:mm) # P (km) (W m � 2) Interventions

TB B' March 29th 15:46 00:27 00:00 15 715 – 283.35 –
R2 B March 31st 14:12 00:27 46:26 16 183 1.5 295.10 0
R5 B' March 31st 21:14 00:27 53:28 16 056 1.5 0.00 0
R6 B March 31st 22:05 00:27 54:19 16 163 1.5 0.00 0
R9 B' April 1st 10:27 00:27 66:41 16 093 1.5 123.90 2
R11 B April 1st 18:18 00:32 74:32 19 443 1.5 0.75 1
R14 B' April 2nd 07:28 00:27 87:42 16 073 1.5 188.42 0

TC C March 30th 07:29 00:21 00:00 12 762 – 102.58 –
R1 C March 31st 10:46 00:23 27:17 13 758 1.0 284.80 0
R10 C April 1st 11:03 00:20 51:34 12 162 1.0 159.23 0

TA A March 30th 11:06 00:25 00:00 15 142 – 586.38 –
R3 A' March 31st 15:04 00:26 27:58 15 535 1.4 101.55 0
R4 A March 31st 20:44 00:26 33:38 15 641 1.4 0.00 0
R7 A' March 31st 22:49 00:15 35:43 8862 0.8 0.00 1
R8 A April 1st 09:25 00:28 46:19 15 623 1.4 84.68 0
R12 A' April 1st 19:19 00:29 56:13 17 218 1.4 0.00 0
R13 A April 2nd 06:55 00:26 67:49 15 583 1.4 99.63 0

Total 14 runs – 07:13 – 258 012 18.8 – 4

of the teach and repeat runs conducted during the deployment. A total of 14 repeat runs were
completed, summing up to 18:8 km and 7 h 13 min of autonomous repeating over 5 days. The last
repeat run was started over87 h after its respective teach run on path B. A battery power outage
prevented us from completing run R7 ; it was therefore interrupted. The system also su�ered from
three localization failures in runs R9 and R11. For each run, the sun radiation measured by a CNR4
radiometer equipped with a CNF4 ventilation unit made by Kipp & Zonen located within the forest
is given.

5.1. General Performance Report

This section aims to give a general overview of our system's performance and show that we achieved
enough autonomy to generate observations on navigation in boreal forests. To characterize the
reliability of our system, we computed the cross-track error, which is the distance between the
robot frame R's origin and its orthogonal projection on the path, as de�ned by Mondoloni et al.
(2005). The cross-track error for every run is shown in Figure 11. It can be seen that this error
generally stays below1:0 m for all runs, with some peaks corresponding to the various turns in each
reference trajectory. This error is below the cross-country trail half-width of 2:25 m, as speci�ed
in Section 4.3. Note that UGV initialization was done using visual markers in the Garage area, but
not in the Cabin area. The resulting high initialization error explains the high cross-track error at
the end of pathsA and B. Additionally, it can be seen in the last column of Table 2 that a total of
four manual interventions were done through the deployment. The three interventions done through
runs R9 and R11 were due to localization failure. The localization failure on run R11 occurred in
the Trail area of path B. At this point, a large drift in localization caused the robot to divert from
the trail and hit a tree, leading to a cross-track error peak, as can be seen in Figure 11. Two more
localization failures occurred in theCabin area of pathB during run R9. For these failures, it can be
seen in Figure 9 that run R9 occurred during a snowstorm, leading to signi�cant snow accumulation
on the ground. An in-depth analysis of this event is presented in Section 5.3. The intervention done
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Figure 11. Cross-track error with respect to distance traveled for all runs. The results from pathsA, B, and
C are plotted in orange, green, and pink, respectively. The three localization failures from runs R9 and R11 are
depicted as red crosses. Run R7, which ended prematurely due to a battery outage, is depicted as a blue cross.
The shaded areas for each path correspond to those shown in Figure 10.

in run R7 was due to battery power outage. Excluding the intervention done due to battery power
outage, there has been an average of one intervention per4:7 km traveled during this deployment.
Thus, we conclude that the WILN system showed a satisfactory degree of autonomy to generate
observations on autonomous navigation in boreal forests.

5.2. Impact of the Boreal Forest Biome

The �rst main goal of this work is to evaluate the impact of dense vegetation inherent to boreal
forests on both GNSS and lidar-based localization for autonomous navigation. During all repeat
runs, the GNSS signal statistics were logged in both receivers mounted on the Warthog UGV.
Additionally, measurements were taken from a �xed reference receiver during each run to enable
RTK-GNSS positioning. The data were post-processed o�ine usingRTKLIB5 (Takasu and Yasuda,
2009) to produce the most accurate measurements possible. To estimate the GNSS localization error,
we compared the manually measured distance between the GNSS receivers mounted on the UGV
with the distance indicated by the GNSS localization, similarly as in Vaidis et al. (2021). This metric
does not take into account localization biases to which both receivers might be subjected; thus we
consider the error metric an optimistic one. The results of the GNSS error with respect to the mean
number of satellites between the two mobile receivers are presented in Figure 12. Our dataset does
not contain a su�cient number of data points with less than seven satellites; we therefore exclude
them from our analysis. This shows that for reliable GNSS localization on forest trails, the minimum
number of observed satellites,ncs , is 18. If a lower number of satellites is observed, the system is
at risk of collision with the vegetation at the edges of the path. Since the o�-road paths are wider,
they allow slightly lower ncs of 16:5 for safe navigation.

Based on the critical number of satellites determined in Figure 12, we have conducted an analysis
of all reference trajectories to determine the areas considered to be GNSS denied. Figure 13 shows
the mean number of observed satellites in a georeferenced satellite image. On pathsA and B, the

5 http://www.rtklib.com/
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Figure 12. GNSS error with respect to the mean number of observed satellites between the two receivers
mounted on the UGV over all runs. The thick black lines represent medians, the boxes represent the �rst and
third quartiles, and the whiskers represent the 10th and 90th percentiles. The expected forest road and forest trail
half-widths are 4.55 m and 2.25 m, respectively. The shaded blue area denotes the acceptable number of observed
satellites for reliable navigation in wood trails. The area in red is unacceptable for forest trail navigation, based
on the critical thresholdnc.

Figure 13. GNSS satellites coverage along the reference trajectories. The blue palette is used for the sections
where the GNSS accuracy would be su�cient for the width of the trail. The red sections would not allow pure
GNSS navigation. For RTK-GNSS localization, the distinct positions of the reference receiver are the A1, A2,
and A3 points. The radio signal range of the reference receivers is shown in olive. Image credit: Forêt ouverte.

mean number of satellites drops below the critical numbernc at several locations, mostly in areas
located within dense vegetation. The mean number of observed satellites increases overnc in the
open areas of the trail network. PathC is the only path that could be repeated reliably using GNSS
localization. This is due to the fact that its environment is considerably more open compared toA
and B, as shown in Figure 10. Additionally, it is necessary to stress that to achieve the presented
accuracy in real time, a stable data link between the mobile GNSS receivers and the reference
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Figure 14. Top view of a set of 500 lidar scansGP from runs R4, R5, and R1, conducted on pathsA, B, and
C, respectively. All of the scans are distributed evenly time-wise in their respective runs. The standard deviation
of the point-to-plane errore after applying perturbations is used to color each scan. A higher standard deviation
is linked to a higher localization uncertainty. Distinctive areas are highlighted by the green circles. The starting
and ending POIs for each trajectory are denoted by the red markers.

receiver must be maintained. In practice, this data link is usually implemented by a radio link or by
a mobile internet connection, which can be complex to set up in remote locations. In our case, the
reference receiver radio signal could not cover the entirety of theA and B paths. Yet, we con�rm
that the reference receiver positioned on an elevated spot which is not occluded by trees (i.e., A1)
provides better range compared to the locations A2 and A3 in the forest.

Furthermore, the ICP algorithm provided localization accurate enough to allow the robot to
complete each repeat run without colliding with obstacles. Yet, we observed that the corridor-
like nature of the boreal forest trails leads to a high localization uncertainty. To investigate this
phenomenon, we extracted 500 lidar scansP from runs R4, R5, and R1, uniformly distributed
time-wise, all of which are shown in Figure 14. These runs are the �rst repeat runs conducted
in the same direction for each reference path. For each lidar scanP, we expressed the mapQ
in the corresponding lidar frame L . The initially well-registered scans were perturbed along the
robot's longitudinal axis by translations from � 6 m to 6 m with increments of 0:05 m. The point-
to-plane error e, de�ned in Equation 2, was then evaluated for each perturbed scan with respect to
the referenceQ. It should be noted that the ICP algorithm was not executed to convergence for
the analysis. The unregistered error was computed for each perturbed point cloud. The standard
deviation of the error was used to color each scan.

The areas located within the cross-country skiing trails are related to a considerably higher
standard deviation. Indeed, the ICP error function, presented in Equation 2, is much �atter in such
areas. A pattern emerges: the standard deviation increases when the robot traverses long and narrow
forest corridors, and then decreases when driving through trail intersections. Moreover, the standard
deviation in the Bridge area, located in pathsA and B, decreases notably compared to its surround-
ings. The river breaks the line of trees in this area and provides additional geometrical constraints,
e�ectively improving the localization accuracy. A similar e�ect can be observed in the Swamparea
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in path B. A considerable amount of vegetation is perpendicular to the longitudinal direction of
the robot, better constraining the registration error function. Analogously, the results from path
C demonstrate that the standard deviation is much lower in the wide forest paths. The only place
where the localization uncertainty increases again is the narrow trail area marked by the green circle.

5.3. Impact of Snow Precipitation and Accumulation

Another important goal of the deployment is to study the impact of winter weather on autonomous
navigation. Paton et al. (2017) already mentioned illumination variation, low feature contrast, and
a changing environment as issues for vision-based navigation. Thus, in this work, we focus on the
impact of snow precipitation on lidar-based localization. While the system was deployed under
various weather conditions, as shown in Figure 9, we did not observe any correlation between the
precipitation and the immediate accuracy of localization. However, the snow accumulation led to
signi�cant changes in the environment, which a�ected the ability of our system to localize between
teach and repeat runs. More speci�cally, the WILN system failed to initialize its localization in
the reference map during two attempts to start run R9. The third attempt was successful, and
the system repeated the entire path without fail subsequently. As documented by Figure 9, run
R9 was conducted right after moderate snowfall, and there was thus a signi�cant amount of snow
accumulation in the environment.

To analyze the impact of snow accumulation on the reliability of the lidar-based localization, we
extracted 500 lidar scansGP from runs R5, R9, and R14. These scans were already registered with
the map and are distributed evenly with respect to time. All three runs were conducted on pathB
from the Cabin POI to the Garage POI. Then, we evaluated the overlap percentage for eachGP
scan, presented in Figure 15. A scan point was considered as overlapping the map if it was located
closer than 0:5 m to any Q point.

It is apparent that the scan overlap in run R9 is considerably lower than the scan overlap in
R5 and R14, except for theGarage area, where R14 has the lowest scan overlap. For theCabin,
Swamp, and Trails areas, the lower overlap ratio can be attributed to snow that accumulated in the
environment, which was signi�cantly higher in R9 due to snowfall. Speci�cally for the Cabin area,
the large drop in the scan overlap explains the multiple failed initialization attempts mentioned
earlier. Furthermore, looking at the Garage area, it can be seen that scan overlap decreases as

Figure 15. Overlapping percentage of lidar scansGP on the reference mapGQ. The results from runs R5, R9,
and R14 are plotted in blue, purple, and green, respectively. The median scan coverage for each run is written
between parentheses in the legend. The shadedC area represents theCabin area, S represents theSwamp area,
T represents theTrails area, andG represents theGaragearea.
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Figure 16. A detail of various parts of pathB. The satellite images in the top row illustrate the locations. In
the registered lidar scans from runs R5, R9, and R14, the points are colored blue if they have a counterpart in
the reference map. Contrarily, red points miss their map counterpart and mark a new feature or a change in the
environment.

time progresses. Indeed, intermittent snow plowing operations were conducted in this area. Growing
snowbanks at the edge of the road led to dynamic changes in the area landscape and consequently
to a progressive decrease in lidar scan overlap with the reference map, as shown in Figure 15.

As speci�c examples, we extracted four problematic areas related to snow accumulation, all of
which are shown in Figure 16. A red color mask was applied to the lidar scansP to highlight the
nonoverlapping points. In the Cabin area during run R9, it is apparent that snow accumulation led
to a variation in the terrain steepness, which a�ected the ability of the ICP algorithm to initialize
its localization within the reference map. The di�erence in the scan overlap between run R9 and
other runs is also noticeable in theSwampand Trail areas, although to a lesser extent. Following
what is shown in Figure 15, the overlap percentage in theGarage area was gradually decreasing as
time passed. This phenomenon was related to the aforementioned snow plowing operation taking
place in that area, e�ectively changing the snow landscape. During run R14, there was also a large
truck parked near the Garage, which contributed to the unmatched points. It should be noted that
while scan overlap reaches low values in theGarage area, the WILN system did not su�er from
localization failure during any run in this area. The location contains multiple buildings, resulting
in a higher number of geometrical constraints, allowing the ICP algorithm to localize the robot
despite variations in landscape. We assume that the scan overlap would continue to decrease as
more time is elapsed between a repeat run and its respective teach run.
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Figure 17. Cross-track error as a function of path curvature for all repeat runs. All errors were split into bins
representing di�erent path curvatures. The thick red lines represent medians, the boxes represent the �rst and
third quartiles, respectively, and the whiskers represent the 10th and 90th percentiles. The path curvatures on
abscissa are de�ned in a logarithmic scale. All data related to path curvatures smaller than 0.01 m� 1 are grouped
in the �rst bin. Similarly, all data related to path curvatures greater than or equal to 0.13 m� 1 are grouped in the
last bin.

5.4. Path-Following Performance

In this section, we have concatenated the cross-track error for all runs; the results can be seen
in Figure 17. The median cross-track error across allA, B, and C path runs is 0.083, 0.088, and
0:075 m, respectively. The maximum observed cross-track errors across all runs is1:19 m for path A,
1:17 m for path B, and 0:92 m for path C. These results suggest that the path-following performance
slightly decreases when navigating on a forest trail (i.e., pathsA and B), compared to the forest
road (i.e., path C). When comparing the results, we did not observe a correlation between weather
conditions and cross-track error.

Nonetheless, we did observe signi�cant correlation between path curvature and cross-track error.
To analyze this phenomenon, we estimated the path curvature� of each reference trajectory point. To
remove localization noise from the curvature computation, we took ten nearest reference trajectory
points into account. We then subsampled all repeat trajectories to keep points at a distance of
0:1 m from each other. For each point of the subsampled trajectories, we found the closest reference
trajectory point, computed the cross-track error � CT , and associated it with the reference point's
curvature � . This computation allows us to correlate path curvature with cross-track error, as shown
in Figure 17.

We detect that cross-track error increases proportionally to the path curvature. For low curves
(i.e., the �rst six bins), the 90th percentile of the cross-track errors remains below0:6 m. For straight
lines (i.e., the �rst bin), we attribute the excessive errors over 0:6 m to the initialization error in the
beginning of the repeat runs. When navigating in moderate turns (i.e., the last two bins), the 90th
percentile of cross-track errors reaches1:0 m. Due to limitations of the OE controller, the system
did not navigate in tight curves (i.e., turning on the spot). The high motion prediction inaccuracy
of the kinematic di�erential-drive model when turning at high angular velocities is the cause for
this high increase in cross-track error, as highlighted by Baril et al. (2020). While this error is below
the cross-country trail half-width of 2:25 m, which we consider the limit for safe navigation in forest
trails, it remains high. It should be noted that the repeat runs were conducted at a conservative
nominal velocity vnom of 1:5 m=s. Therefore, there is a signi�cant risk of hitting vegetation for
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autonomous systems relying on kinematic controllers when navigating in a boreal forest at higher
nominal velocities.

6. Challenges and Lessons Learned

In this section, we use the results presented in Section 5 to elaborate how autonomous navigation
algorithms should be improved to enable multiyear autonomy. We �rst explain the challenges
related to navigating tight forest trails with dense vegetation in Section 6.1. We also discuss
how localization algorithms should adapt to dynamic environments to be deployed all year long
in northern environments in Section 6.2. Moreover, we discuss the limitations of kinematic and
time-invariant path-following controllers and the risk associated with robot immobilization when
navigating in deep snow or through multiple seasons in Section 6.3. Finally, Section 6.5 presents the
lessons learned through this �eld report.

6.1. The Forest Corridor E�ect

We have highlighted the impact of the dense vegetation on GNSS signal reception in Section 5.2.
We observed that GNSS-based localization enables autonomous navigation on forest roads (i.e.,
path C), but the signal is not reliable when navigating boreal forest trails (i.e., paths A and B).
Indeed, the GNSS error can reach upwards to8 m in forest trails, as can be seen in Figure 12. This
e�ect is due to the signal being absorbed by the dense vegetation in forest trails, an example of
which is shown in Figure 1b. Additionally, fusing GNSS measurements with lidar-based localization
was investigated by Babin et al. (2019). The authors mentioned that a major issue for real-time
RTK-GNSS is that the range of the reference receiver is severely a�ected by the dense vegetation. In
this �eld report, we have observed the same radio signal range issue, as shown in Figure 13. Enabling
real-time RTK-GNSS within boreal forest trails would thus require to set multiple reference antennas
throughout the environment. Lastly, it is known that GNSS signal can be jammed, making systems
relying on this signal easier to disrupt (Ren et al., 2021). Thus, completely autonomous navigation
in a boreal forest requires a localization framework that is resilient to GNSS-denied conditions.

Moreover, we showed in Section 5.2 that featureless corridors are challenging for lidar-based
localization algorithms. As can be observed in Figure 14, the uniform nature of boreal forest
vegetation leads to low geometrical constraints in the robot's longitudinal direction. Low geometrical
constraints lead to high registration uncertainty for the ICP algorithm, as highlighted by Gelfand
et al. (2003). This lack of features makes the ICP registration cost function �at in the corresponding
direction and sensitive to noise in the lidar measurements. We observe a similar phenomenon in
the forest trails surrounded by dense vegetation. Since the lidar scans are not dense enough to
distinguish between single branches, the trees resemble large blobs of randomly distributed points
in the scans and ultimately in the map. Therefore, point cloud degradation is not limited to the
large open areas that were mentioned by Ren et al. (2021). In particular, we have observed that
point cloud degradation led to the ICP localization to jumps forward of up to 0:5 m. Such jumps in
ICP localization lead to instability and eventually to system failure. Also, they disrupt the function
of motion controllers, leading to jerky motion. A system aware of this phenomenon could potentially
reduce its velocity in the problematic areas to prevent system failure. A more accurate and adaptive
motion prediction model, similar to the one discussed in Section 6.3, could also allow prior error to
be reduced and improve localization resiliency in forest corridors. We also argue that future work
should investigate multimodal localization approaches. System reliability could be greatly improved
by relying on a heterogeneous sensor suite.

6.2. Impact of Snow Accumulation

Our initial hypothesis was that during snowstorms, the precipitation would a�ect the localization
accuracy of the ICP algorithm. Yet, as highlighted in Section 5.3, we found no correlation between
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Figure 18. The result of a failed localization initialization, during run R9. The high initial error in robot pose
resulted in the Warthog diverging from the reference path and heading towards vegetation. The robot reached a
2.25 m deviation before being manually stopped and driven back to the initialization position.

precipitation intensity and localization accuracy. One should note that while our system was subject
to moderate snowfall, no similar work documents the impact of whiteout conditions, which would
be caused by heavy snowfall and/or blizzard. We argue that a metric to quantify noise caused
by precipitation will be useful to compare various �eld reports and datasets in the literature.
Such a metric would allow to compare various localization approaches under extreme conditions.
Rather, we discovered that it was the snow accumulation that severely a�ected the lidar-based
localization. On certain surface types, such as the ground or rooftops, the snow keeps accumulating
during the snowstorms. Yet on other surfaces (e.g., trees or running water), only a limited amount
accumulates before it falls o� or melts. Our data show that lidar-based localization in areas located
within deep woods su�er from changes in terrain topology, while areas located near buildings are
resilient to this phenomenon. Various examples of the structural change in the environment can be
observed in Figure 16. Focusing on theCabin area shown in the �rst column, it is apparent that
terrain steepness changes signi�cantly when comparing run R9 with other similar runs. MacTavish
et al. (2018) have mentioned that multiexperience vision-based localization su�ered from fast scene
appearance change, such as what would be caused by a snowstorm. As mentioned in Section 3.4,
the reference map is not updated during the repeat phase for the WILN system. Thus, WILN is also
subject to localization failure when attempting to localize in deep woods after snowfall; an example
of the result is shown in Figure 18. In this case, the signi�cant structural change in the environment
leads to erroneous UGV localization and eventually to crashing with vegetation. However, future
work should enable dynamic map maintenance using either multiple maps, similarly to what is
proposed by Zhang and Singh (2018) and Maddern et al. (2015) or dynamic maintenance of a
single map, similarly to Pomerleau et al. (2014). We argue that using a metric similar to the one
presented in Section 5.3 would allow to identify signi�cant structural change in the environment,
thus requiring map maintenance. Nevertheless, autonomous systems should adapt their reference
maps when observing a mismatch between the current sensor measurements and the reference data
to ensure a complete, year-long autonomy.

6.3. Path Following in Snow-Covered Terrain

In Section 5.4, we described the performance of the OE controller when used on the Warthog SSMR.
We showed that when navigating at the target velocity vnom of 1:5 m=s, this controller is able to
repeat kilometer-scale paths, with an error that remains below the half-width of the forest trails.
This result is interesting considering that the OE requires little knowledge of the UGV properties
and has low computation time. We have observed that path curvature increases cross-track error,
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(a) Trimble S7 total sta-
tions.

(b) Fixed Emlid GNSS an-
tenna.

(c) Deep snow navigation.(d) Run R7 power outage.

Figure 19. Various lessons learned during this deployment. (a) Total stations that were intended to measure the
ground truth localization of the UGV in theGaragearea. Despite considerable e�ort to prevent sinkage, those
devices shifted signi�cantly, resulting in unusable data. (b) The �xed GNSS antenna to enable RTK-GNSS. This
device was placed in open areas to ensure good GNSS signal reception. (c) The Warthog UGV navigating in deep
snow. A 1:8 m tall human operator stands next to the robot for scale. The snow level is estimated at0:7 m in
this area. The bottom of the robot chassis is resting directly on snow, a�ecting traction and eventually leading
to UGV immobilization. (d) Warthog battery failure during run R7. A generator (in red) was used to recharge
the robot batteries and later drive it manually back to theGaragePOI.

as depicted in Figure 17. This suggests that SSMR motion is di�cult to predict when rotating at
higher velocities. Thus, we can assume that navigation at higher nominal velocities would potentially
lead to the robot crashing into the vegetation. As mentioned in Section 3.5, the original controller
implementation presented in Huski�c et al. (2017) as well as predictive controllers, such as the one
presented in Ostafew et al. (2016), include a parameter reducing vehicle longitudinal velocity when
crossing high path curvature. We initially planned to add a similar feature to WILN; however,
localization noise in the reference trajectory led to jerking motion in the repeat phase. Reference
trajectory smoothing should be investigated in the future to enable speed reduction relative to
reference path curvature. Additionally, the OE controller does not react to UGV immobilization.
This poses a high risk in o�-road navigation, as Figure 19c and Figure 21a demonstrate. A controller
based on a more accurate dynamic model that adapts to the various conditions would enable path
repeating at higher speeds without failing. A model that can adapt to the di�erences in UGV
behavior across the entire reference trajectory would also improve the path-following resiliency to
WILN navigation in steep and soft terrain. Furthermore, WILN is not a completely autonomous
system as it does not include obstacle avoidance and planning, as the one described in Krüsi et al.
(2015). As future work, it would be interesting to add precipitation-resilient obstacle avoidance. We
also argue that obstacle avoidance should include soft ground that prevents the UGV from reaching
the next part of the reference path.

6.4. E�ect of High-Speed Navigation on Localization

During our preliminary tests, we noticed that the WILN system was not robust to quick motions
of the robot. When the robot rotated too quickly, the localization would fail because of motion
distortions in lidar scans. To solve this issue, we added a point cloud deskewing step, as described in
Section 3.1, to correct motion distortions. This solution was su�cient in our case because the robot
was driven at the relatively low speed of1:5 ms� 1. However, at higher speeds, motion distortion
in lidar scans is more important and odometry accuracy is decreased because of slipping, skidding,
and potential robot immobilization. To solve this issue, we introduced an algorithm that computes
the uncertainty of each point of a lidar scan to know which points can be trusted (Deschênes et al.,
2021). Points which are likely to be more a�ected by motion distortion have a higher uncertainty than
others, and thus are given less in�uence during the registration process. Also, points which are too
uncertain can be completely removed from the map to make sure that it stays crisp. This uncertainty-
based algorithm, which can be used in combination with deskewing algorithms, would help to
preserve localization and mapping precision when navigating at high speeds with the WILN system.
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6.5. Lessons Learned from Field Deployments

Through the multiple deployments conducted in the completion of this �eld report, we have learned
various lessons that generally apply to deploying mobile robots in northern environments. We have
observed multiple issues related to robot navigation in deep snow, to localization uncertainty in
forest corridor, and to the winter weather a�ecting robot autonomy. We argue that autonomous
systems need to be resilient to these challenges to enable true long-term autonomy. Additionally, we
present various logistical di�culties that we encountered in the context of our deployments in the
Montmorency forest. The rest of this section will summarize the major lessons learned throughout
the realization of this �eld report.

Any static equipment slowly sinks in snow. In the beginning of our deployment, we installed various
static equipment to record position reference. A �xed GNSS reference receiver was installed to enable
the RTK-GNSS and three Trimble S7 robotic total stations were positioned to measure ground truth
robot poses in theGarage area, as shown in Figure 19a and Figure 19b. Since the precision of these
systems relies on the fact that the equipment remains static, we invested a considerable e�ort in
shoveling and stabilizing snow in the areas where this equipment was installed to prevent the sinkage
(see Figure 19a). However, despite our e�orts, we observed that the tripods carrying the equipment
had sunk in the snow by several centimeters. The movement caused by this sinking e�ect made
the a�ected ground truth measurements unusable. The outside temperature oscillating around the
water freezing point and the snow and rain precipitations shown in Figure 9 led to snow melting,
further increasing the tripod sinkage. Thus, signi�cant e�ort and potentially using �xed structures
is required to use such static equipment in winter conditions.

Deep snow signi�cantly a�ects UGV mobility. As highlighted by Stansbury et al. (2004) and
Lever et al. (2013), vehicle immobilization is a signi�cant hazard when navigating on snow-covered
terrain. We have attempted to manually drive the Warthog on a deep snow cover (i.e.,0:7 m), as
shown in Figure 19c. During these runs, we noticed that robot mobility was signi�cantly a�ected,
especially during turning maneuvers. Also, the UGV chassis would �oat in su�ciently deep snow,
resulting in reduced traction. At this point, turning maneuvers would make the robot sink even
deeper, eventually requiring a human intervention to recover the robot. To prevent immobilization,
backtracking maneuvers were necessary to compact the snow under the robot to maintain a minimal
level of traction. This experience shows that immobilization prevention and recovery are required
for mobile robot operation spanning multiple seasons in forest environments.

Winter weather signi�cantly a�ected the battery capacity of the Warthog UGV. Outside temper-
atures during this deployment reached a minimum of � 15:5 � C, as shown in Figure 9. In our
con�guration, the Warthog is equipped with lead-acid batteries, whose capacity is known to be
a�ected by low temperatures. Additionally, the CAMSO ATV T4S tracks that the robot used to
drive on snow-covered terrain signi�cantly increased energy consumption compared to using wheels
on solid ground. These factors contributed to a UGV battery depletion that occurred during run
R7, as captured by the photo in Figure 19d. The robot recovery required a gas generator to charge
the batteries, and the operators were required to drive back to theGarage POI in the middle of
the night. Thus, assuming that the vehicle battery capacity is stable for a period spanning multiple
seasons is false and will eventually lead to a system power outage. Autonomous vehicle traversal
planning should be conducted conservatively because the system recovery in remote environments
is a costly operation. Future planners should include safety margins to take autonomy loss into
account for mobile robots deployed in subzero weather.

Resiliency to il lumination variance is key to deploying mobile robots in northern environments.
Day length is subject to high variation in higher latitudes. To highlight this phenomenon, Figure 20
compares the sun radiation measured in the Montmorency forest during the deployment week and
during the summer and winter solstice weeks. The days of the winter solstice week are short and
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Figure 20. Sun radiation measured at the Montmorency forest for three distinct weeks. On top is the week
during which this deployment (D) was taking place. In the middle is the week containing the 2021 summer (S)
solstice. At the bottom is the week containing the 2020 winter (W) solstice. The coloring is proportional to the
measured sun radiation every hour.

receive minimum daylight. We argue that systems should be resilient to low- or no-illumination
conditions to enable year-long autonomy in the northern environments. In remote areas, no arti�cial
light sources such as streetlights or buildings are present to provide illumination for the robot. As
discussed by Congram and Barfoot (2021), vision-based localization is a�ected by low illumination
conditions, even when using headlights. However, making robots resilient to navigate in dark
environments is key to enable autonomy in the discussed environment. As highlighted by Krüsi
et al. (2015), lidar-based localization is resilient to high illumination variations, whereas vision-based
approaches may fail (Paton et al., 2017). This is due to the fact that lidars are active sensors that
do not rely on an external energy source to produce measurements. Moreover, the lack of daylight
has another practical impact. Deploying mobile robots in night conditions is di�cult due to low
visibility, low temperatures, and operator fatigue, as can be seen in the system recovery snapshot
shown in Figure 19d.

Resilience to multiseasonal change and unexpected events.In a later deployment during the fall of
2021, we attempted to repeat all paths by using the maps shown in Figure 10 as reference. We suc-
cessfully repeated pathsA and C by localizing in a map that was recorded209days before. However,
we had similar initialization problems as the ones discussed in Section 6.2 when attempting pathB.
After multiple trials, we managed to start a repeat run of B, but the robot became immobilized in
a mud pit, as shown in Figure 21a. The repeat phase was canceled at this point, and the robot was
manually driven to the Garage POI. This experience supports our insight that immobilization pre-
vention, recovery, and dynamic map adjustment are key to enable multiseasonal navigation. Later,
when attempting to repeat path C, we noticed that concrete blocks had been added to the path by
the forest management (see Figure 21b). The robot was manually driven to avoid collision with these
blocks and left to autonomously repeat the rest of the path. Once again, we argue that, to deploy a
robotic system in a boreal forest for a period spanning multiple years, autonomous navigation should
be adaptive to the signi�cant changes in the environment encountered during those deployments.
An interesting avenue for future work would be to use a global planning algorithm, similar to the
one presented by Guo and Barfoot (2019) that takes multiseasonal change into account. Such a
system could replan paths based on major dynamic events happening on a global path network.

7. Conclusion

This paper is a �eld report presenting over 18 km of autonomous path repeating in boreal forest
trails and paths, including runs under harsh weather and high illumination variations. We have
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(a) The Warthog stuck in a mud pit. (b) Previously unseen obstacles in pathC.

Figure 21. Issues related to multiseason path repeating. (a) The Warthog stuck in a mud pit that was undetected
during the teach phase of pathB. Traversable terrain varies between seasons. (b) Obstacles that were moved in
path C by human operators during summer. The presence of these obstacles required a human to take control
of the UGV to avoid a collision.

described the WILN system, designed to enable wintertime lidar-based navigation, and deployed it
in the Montmorency boreal forest to evaluate the performance of lidar-based and GNSS localization.
We have highlighted the impact of the boreal forest biome and winter conditions on autonomous
navigation technologies. Based on the data recorded during these runs, we have shown that forest
trails are GNSS-denied environments and that localization uncertainty is high in such trails due to
low geometrical constraints in the vehicle's longitudinal direction. Moreover, we have highlighted the
impact of snow accumulation and dynamic changes in the environment on lidar-based localization
over multiple days in wintertime. We have discussed the requirement to improve the adaptiveness
of autonomous navigation to enable multiyear robotic deployments in boreal forests.

While we have shown that our WILN system is able to autonomously repeat paths through a
boreal forest in harsh winter conditions, more work remains to enable true long-term autonomy.
Lidar-based localization adaptive to changes in the environment is key to allowing mobile robot
deployment in boreal forests throughout an entire year. The ability to detect large variations in
traction conditions will be key to preventing system failures from vehicle immobilization. Improving
interaction between the localization and control systems would also be bene�cial to the system
adaptability. For example, modulating controller commands based on the localization uncertainty
could prevent localization and mapping failures. Furthermore, we have observed through data post-
processing that the reference maps built through the teach phase were close to global consistency.
In the future, we would like to improve the mapping system to create globally consistent maps
and enable localization initialization at any place in the map. This would in turn allow repeating
kilometer-scale loops without requiring the UGV to stop for re-initialization at the end of each loop.
Another interesting feature would be to enable global localization within the map. Such a feature
would enable to solve the robot kidnapping problem and reset the robot localization at any point
in the reference path.
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