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Abstract

Smallholder farmers rely on their farm earnings to cover operating costs and generate income. That is
not an easy task because of the pests, which reduce yields and generate plant protection costs. The farm
yield and plant protection depend on the budget capacity of the farmer. In this work, we want to explore
conditions for a sustainable and self-financing cabbage farm. We propose then a non-linear mathematical
model for cabbage crops by considering the current account of the plantation as a dynamic variable. We
assume that this variable increases due to the sale of cabbages, and provides for the seedling purchase,
the plant protection costs, and the grower’s income. In the first part, we analyze the model without pest
management. We determine how the budget must be spent and we show the existence of a double transcritical
bifurcation. We quantify the seasonal yield and income, and estimate the damage due to pest herbivory. In
the second part, we analyze a slightly simplified version of our model and obtain the existence of a backward
bifurcation. Furthermore, we show that botanical pesticides can be used to prevent and eradicate the pest
spread with relatively low plant protection costs.

Keywords: Dynamic system, Reproductive number, Self-financing smallholder, Vegetable crop, Botan-
ical pesticide, Plutella xylostella

Highlights:

• Bio-economic modeling is more adapted for understanding agricultural issues.

• Cabbage is a robustly sustainable and self-financing crop.

• Using botanical pesticides is an affordable pest management technique.

1 Introduction

Agriculture occupies a crucial place in the development and research programs of many countries. The added
value generated by agriculture, forestry, and fishing increased by 73% between 2000 and 2019 with a peak of
around USD 3.5 trillion in 2018 [1]. In Africa, this increase is around USD 234 billion. In 2020, primary crops
production was around 9.3 billion tonnes. Vegetables represent 12% of primary crops production, that is 1,128
million tonnes [2], cabbage being the fourth most widely cultivated vegetable, with a 6% share of the overall
vegetable production [2]. Cabbage (Brassica oleracea varieta capitata) is used for human consumption [3, 4] and
features in several diet programs [5, 6]. Furthermore, cabbage crops constitute a substantial source of income
for African smallholder farmers [7, 8].

FAO estimates that annually up to 40% of the global crop production is lost due to pests, which results in
costs over USD 220 billion, including at least USD 70 billion due to invasive insects. As for the diamondback
moth (Plutella xylostella), it attacks cruciferous crops [9]; it is the most destructive pest of cabbage crops
worldwide [10, 11, 12, 13]. The insect can be found in Senegal [10], Benin [14], Ghana [15], South Africa [16],
Togo [17], Brazil [18], India [12], Canada [19]. Its development cycle in tropical regions such as India allows
for up to 16 generations in a single year [12]. The most significant damage is observed during the third larval
stage. The larvae feed on the soft parts of cabbage leaves [10, 9] and can cause the death of the host in the case
of heavy infestation [20]. Controlling this pest is hence a major issue.
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Pest management based on synthetic pesticides has its limits, as the pest developed resistance to most of the
active substances in commonly used pesticides [21, 9, 22]. In addition, an excessive use of synthetic pesticides is
harmful to the environment and causes significant health problems for human [17, 23]. In this context, botanical
pesticides based on crude extracts from locally-growing plants are a viable alternative [24, 25, 12, 15]. The use
of these pesticides is safe for humans and their environment [17, 26, 27]. In addition to their biocide properties,
botanical pesticides have repellent and antifeedant effects [28, 15, 27], and attract natural enemies of plutella
xylostella [29]. Furthermore, botanical pesticides can be produced locally using simple methods. This has the
direct effect of reducing treatment costs and therefore, substantially increasing profits for smallholder farmers
[30, 31]. In general, smallholder farms must be self-financing; that is, the income generated by the farm must
cover all expenses incurred by the farm, as well as the owner’s living expenses.

Bio-economic models have been extensively studied (see [32, 33] and references therein). In these models, the
net economic revenue is given by the Gordon’s algebraic equation [32] and resources growth following natural
laws [34]. This classic approach cannot adequately address our self-financing concern. In fact, the farm yield
and plant protection depend on the budget capacity of the farmer. A model that incorporates this budgetary
constraint as a dynamic variable is therefore more appropriate [35, 36].

Thus, we developed a bio-economic model with a threefold purpose: to quantify the damage caused by the
attack of plutella larvae in a cabbage field; to assess the effectiveness of using botanical pesticides in controlling
pest; and to evaluate the sustainability and the profitability of such systems. While taking into account the
specific features of the interaction between cabbage and its pest, our model presents how a smallholder farmer
can distribute the income from his farm to not only sustain his farming activity but also make a living from it,
with or without pest management based on botanical pesticides.

This paper is organized as follows. Section 2 describes the self-financing model formulation and establishes
the positivity and boundedness properties of its solutions. In Section 3, we study the uncontrolled model.
Different equilibria and their stability conditions are obtained together with some numerical simulations. In
Section 4, we study a slightly simplified controlled model, which has the same dynamical properties as the
complete model presented in Section 2. Pest management is based on the use of botanical pesticides, both as
treatment and prophylaxis. In this setting, the model exhibits a backward phenomenon. Theoretical results are
then illustrated by numerical experiments. Finally, the conclusion is drawn in Section 5.

2 Mathematical model and basic properties

In this section, we build the mathematical model and establish some of its basic properties.

2.1 Model formulation

As young cabbages are more susceptible than adult ones [10], the biomass in our model is split into a young
susceptible biomass and a resistant adult biomass, denoted by By and Ba respectively. We assume a logistic
growth for each biomass with growth rates r0y and r0a, and an aging rate γ, where 1/γ represents the average
susceptibility duration. We assume that the cultivated soil land contains enough nutrients to allow normal
growth of plants. This situation is observable with volcanic soils which are very fertile, as its is the case of
in the West region in Cameroon[37, 38]. Adult biomass is harvested at rate h. We assume that, without
investment in replanting, the plantation is inevitably doomed to disappear. In mathematical language, this
natural assumption is described by the following conditions:

αy := γ − r0y > 0 and αa := h− r0a > 0. (1)

In order to evaluate the plantation sustainability, we introduce the plantation current account as a dynamic
variable M . This account is credited as a result of sales of mature biomass harvested and sold at unit price q.
The money is withdrawn from this account at rate k to invest to buy new plants, to protect the plantation from
pests and finally to cover the farmer’s living expenses. The young biomass plantation rate is represented by the
bounded function k1M/(1 + δMM), where k1 and δM represent the investment rate in young biomass and the
fear cost of biomass competition, respectively. We chose a bounded function for the plantation rate as a large
account balance does not necessarily directly translate into larger fields and manpower. The plant protection
cost is αM where α represents the investment rate for pesticide acquisition such that:

k > k1 + α. (2)

We denote the smallholder farmer’s total income by a variable T , and its dynamics is modeled by the following
equation:

Ṫ = kM − k1M

1 + δMM
− αM.
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Figure 1: Schematic diagram for system (3). Parameter values are given in Table 1. Young (By) and Adult
(Ba) biomass growth at the rate r0y and r0a. Young biomass age at the rate γ. Adult biomass harvested
at the rate h and sold (at the unit price q). The money from the sale is transferred to the current account
(M). This money is withdrawn at the rate k and used for young biomass acquisition (parameters k1 and δM ),
pesticide acquisition (parameter α) and farmer daily income (T ). Larvae (L) feed young biomass (parameter
ψ). Botanical pesticide (P ) is used for pest management with an antifeedant effect (parameter b). Pesticide is
absorbed by larvae (parameter ϕ) which leads to a lethal effect (parameter λ). All biomass, larvae and pesticide
undergo mortality (µy, µa, µL, ϕL, ϕP ).

We represent the pest compartment by the variable L. The larvae functional response is modeled by the
Holling type I function ψBy, where ψ is the consumption rate. The growth of larvae is assumed to be logistic-like
with the modified growth rate cψByL and the competition term µLL

2 where c and µL represent the conversion
efficiency and the per capita competition death rate of larvae respectively. In addition, a linear mortality is
taken in account with the rate ϕL.

The most remarkable features of botanical pesticides are repellent and antifeedant effects. We modified the
larvae functional response of cabbage attack by adding a bP +1 denominator to represent the antifeedant effect
of botanical pesticides. Botanical pesticides purchased and sprayed in the plantation are also absorbed by larvae
following a functional response ϕP . This absorption is responsible for an additional larvae mortality rate λϕP
where λ represents the efficacy of pesticides. Furthermore, botanical pesticides decay naturally at a rate ϕP .

According to the above considerations, we obtain the following model which describes our self-financing
system:

Ḃy = r0yBy − µyB
2
y +

r1k1M

1 + δMM
− ψLBy
bP + 1

− γBy,

Ḃa = γBy + r0aBa − µaB
2
a − hBa,

L̇ = c
ψLBy
bP + 1

− λϕPL− µLL
2 − ϕLL,

Ṗ = aPαM − ϕPL− ϕPP,

Ṁ = qhBa − kM.

(3)

For model (3), the initial conditions are given by:

By(0) ≥ 0, Ba(0) ≥ 0, L(0) ≥ 0, P (0) ≥ 0, and M(0) ≥ 0. (4)

A complete description of model parameters is given in Table 1 and model schematic diagram in Fig. 1.

2.2 Positivity and boundedness of solutions

Local existence, uniqueness and non-negativity of the solutions of the Cauchy problem (3–4) are direct conse-
quences of Cauchy-Lipschitz ’s theorem and a simple analysis of the vector-field on the boundary of the positive
orthant R5

+ [39]. The following theorem establishes the boundedness and global existence of the unique solution
of system (3).
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Table 1: Description of parameters in system 3. The estimation procedure is explained in Appendix A

Parameters Descriptions Values Units

r0y Growth rate of young biomass 1.6× 10−2 day−1

µy Competition rate of young biomass 1.07× 10−6 kg−1.day−1

r1 Inverse of the unit purchase price of young biomass 2.17 USD.kg−1

k1 Investment rate for young biomass acquisition 0.8 day−1

δM Fear cost of biomass competition 10−5 or 1.17× 10−2‡ USD−1

γ Aging rate of young biomass 0.02 day−1

r0a Growth rate of adult biomass 1.6× 10−2 kg.day−1

µa Competition rate of adult biomass 1.68× 10−6 kg−1.day−1

h Harvest rate 0.03 day−1

c Conversion efficiency 0.6 larvae.kg−1

ψ Biomass consumption rate by larvae 4.46× 10−5 larvae−1.day−1

b Pesticide antifeedant effect 0.01 l−1

λ Efficacy of botanical pesticide 0.04 larvae.l−1

ϕ Uptake rate of botanical pesticide by larvae 0.05 larvae−1.day−1

µL Competition rate of larvae 2× 10−6 larvae−1.day−1

ϕL Natural mortality rate of larvae 0.07 day−1

aP Inverse of the pesticide unit price 2.16 l.USD−1

α Investment rate for pesticide acquisition 1.35× 10−2 day−1

ϕP Natural decay rate of botanical pesticide 0.1 day−1

q Unit selling price of adult biomass 0.69 USD.kg−1

k Plantation self- financing rate 0.9 day−1

Theorem 1. The domain Ω defined by

Ω =

{
(By;Ba;L;P ;M) ∈ R5

+|By ≤ Ky, Ba ≤ γKy

αa
, L ≤ cψKy

µL
,

M ≤ qhγKy

kαa
, P ≤ apαqhγKy

kαaϕP

}
, where Ky =

r1k1
δMαy

,

(5)

is positively invariant for the flow of the system (3) and attractive.
Furthermore, the solution (By(t);Ba(t);L(t);P (t);M(t)) of system (3) with initial conditions satisfying assump-
tion (4) is uniquely defined for all t ≥ 0.

Proof. See Appendix B.

3 First case study: self-financing uncontrolled model

In this section, we assume that the smallholder farmer does not apply any pest management strategy. Under
this assumptions, we set α = 0 and P = 0 in system (3) and obtain the following self-financed uncontrolled
model:

Ḃy = r0yBy − µyB
2
y +

r1k1M

1 + δMM
− ψLBy − γBy,

Ḃa = γBy + r0aBa − µaB
2
a − hBa,

L̇ = cψLBy − µLL
2 − ϕLL,

Ṁ = qhBa − kM.

(6)

3.1 Equilibrium and stability analysis

3.1.1 Equilibria

Sub-model (6) potentially admits three equilibria:

• the extinction equilibrium E0 = (0; 0; 0; 0);

• the pest-free equilibrium (PFE) E1 = (By1 ;Ba1 ; 0;M1) when RB > 1;

• the endemic equilibrium E⋆ = (B⋆y ;B
⋆
a;L

⋆;M⋆) when RB > 1 and R0 > 1;
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where

RB =
k1γr1qh

kαyαa
and R0 =

cψ (αa + µaBa1)Ba1
γϕL

. (7)

The biomass reproductive number RB indicates if cabbage production is financially sustainable for the farm
given a cabbage price and the investment policy. The basic reproductive number R0 gives the number of larvae
produced by one larvae during its lifetime when introduced in a healthy plantation. R0 can be obtained directly
by applying the standard next-generation matrix approach [40].

The existence of E0 is trivial. Thereafter, we show the feasibility of equilibria E1 and E⋆.

Pest-free equilibrium We obtain the coordinates of E1 by solving the following algebraic equations:

r1
k1M

1 + δMM
− µyB

2
y − αyBy = 0, (8)

γBy − µaB
2
a − αaBa = 0, (9)

qhBa − kM = 0. (10)

Using (9) and (10) in (8) and the fact that Ba ̸= 0, we obtain the following equation in Ba:

G1(Ba) =
r1k1qhγ

k + δMqhBa
−
(
αy (αa + µaBa) +

µy
γ

(αa + µaBa)
2
Ba

)
= 0. (11)

From Equation (11), we have :

(i) G1(Ba)
′ = − r1k1δMq2h2γ

(k+δMqhBa)
2 − αyµa−

µy

γ

(
(αa + µaBa)

2
+ 2µa (αa + µaBa)Ba

)
< 0 for all Ba ≥ 0;

(ii) G1(0) = αyαa (RB − 1) > 0, if and only if RB > 1;

(iii) G1

(
γKy

αa

)
< r1k1αa

δMKy
− αaαy = 0.

Thus, equation G1(Ba) = 0 has a unique positive solution denoted by Ba1 in the interval
(
0;

γKy

αa

)
if and only

if RB > 1. The remaining components of E1 are obtained as follows: By1 =
(αa+µaBa1)Ba1

γ and M1 =
qhBa1

k .

Endemic equilibrium The components of E⋆ are obtained by solving the following algebraic equations:

r1
k1M

1 + δMM
− µyB

2
y − ψLBy − αyBy = 0, (12)

γBy − µaB
2
a − αaBa = 0, (13)

cψBy − µLL− ϕL = 0, (14)

qhBa − kM = 0. (15)

Plugging (13) in (12) we obtain for all Ba ∈ (0;Ba1):

L(Ba) =
G1(Ba)

ψ (αa + µaBa)
, (16)

where G1 is given by (11).
Similarly, plugging (13) and (15) in (14), we obtain for Ba ≥ β, where β denotes the positive root of the

right hand-side of equation (17):

L(Ba) =
cψ (αa + µaBa)Ba − γϕL

µLγ
. (17)

Equating (16) and (17), we have G1(Ba) = G2(Ba) where

G2(Ba) = ψ (αa + µaBa)

[
cψ (αa + µaBa)Ba − γϕL

µLγ

]
.

It is clear that G2(Ba)
′ > 0 for all Ba ≥ β, as it ensures that both factors are positive and increasing.

Since G1(Ba) > 0 if and only if Ba < Ba1 and G2(Ba) > 0 if and only if Ba > β it comes that the two
curves G1 and G2 intersect with L(Ba) > 0 if and only if β < Ba1 . This intersection is unique as G′

1(.) < 0
and G′

2(.) > 0 in the [β,Ba1 ] interval. Using Equation (7), the condition β < Ba1 is equivalent to R0 > 1. Let
B⋆a be the interception point of G1 and G2. Substituting Ba by B⋆a in (13), (15), and (16), we obtain positive
values of B⋆y , M

⋆ and L⋆, respectively. Thus, sub-model (6) has a unique endemic equilibrium E⋆ if and only
if RB > 1 and R0 > 1.
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3.1.2 Stability

Regarding the local stability of the equilibria of sub-model (6), we have the following main result.

Theorem 2. • The extinction equilibrium E0 is always feasible. It is locally asymptotically stable provided
RB < 1 and unstable whenever RB > 1.

• The PFE E1 is feasible if and only if RB > 1; it is then unique. It is locally asymptotically stable if
R0 < 1 and unstable if R0 > 1.

• The endemic equilibrium E⋆ is feasible if and only if RB > 1 and R0 > 1; it is then unique. Moreover,
whenever this equilibrium exists, it is locally asymptotically stable.

Proof. See Appendix C.

Moreover, we have a global stability result for the extinction equilibrium, stated in the following theorem.

Theorem 3. The extinction equilibrium E0 is globally asymptotically stable in Ω if and only if RB ≤ 1.

Proof. We consider the following positive definite function:

V = kαaBy + qhr1k1Ba +
kαa
c
L+ r1k1αaM.

Differentiating the above function V with respect to time, t, along the solutions of sub-model (6), after some
algebraic simplifications, we obtain

V̇ = kαaαy (RB − 1)By − kαaµyB
2
y − qhr1k1µaB

2
a

− kαa
c

(
µLL

2 + ϕLL
)
− r1k1αaδMM

2

1 + δMM
.

Thus, V is a strict Lyapunov function for equilibrium E0 if RB ≤ 1. We conclude that E0 is globally asymp-
totically stable in Ω if and only if RB ≤ 1.

Let us now investigate the bifurcations of sub-model (6). The following result holds.

Theorem 4. Sub-model (6) presents a double forward transcritical bifurcation: the first one at RB = 1 and
the second one at R0 = 1.

Proof. The forward transcritical bifurcation at RB = 1 follows from Theorem 2 and Theorem 3. Indeed,
equilibrium E0 changes from stable (RB ≤ 1) to unstable (RB > 1), while the pest-free equilibrium E1 becomes
positive from E0 and asymptotically stable.

Similarly, when RB > 1, equilibrium E1 changes from stable (R0 < 1) to unstable (R0 > 1), while the
endemic equilibrium E⋆ becomes positive from E1 and asymptotically stable.

The typical bifurcation diagrams near bifurcation points RB = 1 and R0 = 1 are illustrated in Fig. 2(a)
and Fig. 2(b), respectively.

We establish the following main result.

Theorem 5. The domain

Ω′ =
{
(By;Ba;L;M) ∈ R4

+|By ≤ By1 , Ba ≤ Ba1 ,M ≤M1

}
(18)

is positively invariant. Furthermore, the pest-free equilibrium E1 = (By1 ;Ba1 ; 0;M1) is asymptotically stable in
Ω′ if and only if R0 ≤ 1 < RB.

Proof. See Appendix D

3.2 Simulations

In this section, we perform some numerical simulations to substantiate the theoretical results. All parameter
values are given in Table 1. With these values, the biomass reproductive number RB = 3.21 and the basic
reproductive number R0 = 1.64.

The stability results obtained show that the asymptotic behavior of sub-model (6) is entirely defined by
thresholds RB and R0. The condition for a sustainable agroecosystem is RB > 1. Fig. 3(a) shows, for an array
of purchasing prices of young plants from the nurseries, how the smallholder farmer should fix the unit selling
price of its cabbages and what level of sustainability it ensures. Starting from the reference parameter values
in Table 1, the selling price can drop or the purchase price can increase, but still the production generates a
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Figure 2: Bifurcation diagrams for sub-model (6), according to the biomass reproductive number RB and the
basic reproductive number R0 defined in (7). (a) RB-bifurcation diagram, obtained by varying parameter
q and (b) R0-bifurcation diagram, obtained by varying parameter ϕL, with RB = 3.21 > 1. All remaining
parameter values are given in Table 1. The red, blue and orange lines represent the extinction E0, pest-free E1

and endemic E⋆ equilibria, respectively. A solid line corresponds to a stable equilibrium, a dashed line to an
unstable equilibrium.
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Figure 3: Variation of the biomass reproductive number RB as a function of: (a) the unit purchase price of
young biomass r−1

1 and the unit selling price of adult biomass q; (b) the plantation self-financing and living
expense rate k and the investment rate for young biomass k1. The values of the remaining parameters are given
in Table 1. The purple squares represent the parameter values Table 1. The red line represents RB = 1. The
price ranges in sub-figure (a) are realistic values extracted from [30] for q and [41] for r−1

1 . The white zone on
sub-figure (b) represents the region where k1 > k which contradicts our modeling hypothesis (2).
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Figure 4: Variation of the basic reproductive number R0 as a function of: (a) the mortality rate of larvae ϕL
and the biomass consumption rate of larvae ψ; (b) the self- financing rate k and the investment rate for young
biomass k1. The values of the remaining parameters are given in Table 1. The purple squares represent the
parameter values in Table 1. The red line represents R0 = 1. The price ranges in sub-figure (b) are realistic
values extracted from [30] for q and [41] for r−1

1 . The white zone on sub-figure (b) represents the region where
k1 > k which contradicts our modeling hypothesis (2); the gray area represents the region where RB ≤ 1
corresponding to the situation where the system converges globally towards the trivial equilibrium.

positive result. To get below the sustainability threshold, both need to change drastically within the realistic
price ranges. Cabbage is then a robustly sustainable crop.

In addition, Fig. 3(b) reveals that, with stable market prices (the parameters of cabbage and pest dynamics
being set to their reference values in Table 1), the purchase of new seedlings must represent more than 21%
(slope of the red line in Fig. 3(b)) of the total expense in order to satisfy the sustainability condition. Finally, in
the absence of pests, cabbage is an easy crop to produce, with excellent yields per hectare for a very affordable
investment.

Maintaining a healthy plantation without any pest management strategy is a difficult task. Fig. 4(a) shows
that the basic reproduction number R0 is greater than 1 for most realistic values of the pest traits. This leads
to the persistence of infestation. Nevertheless, it may be possible to control the pest by under-exploiting the
farmland (low k1 values to drop below the red line, but high enough to remain above the gray area) so that larvae
disappear progressively, as shown in Fig. 4(b). Unfortunately, this solution is not feasible from an economic
and food security point of view, as the yield and the revenues then drastically decrease.

Fig. 5 illustrates the stability results of sub-model (6), with the reference parameter values in Table 1. This
situation corresponds to a farm without any pest management. As R0 = 1.64 > 1, the endemic equilibrium
(orange star) is stable, while the pest-free equilibrium (red dot) is unstable. The convergence towards the
endemic equilibrium occurs even with an initial condition close to the pest-free equilibrium (yellow curve).

Let us define the seasonal yield and income at the equilibrium by, respectively,

Y = h×Ba ×At and I = q × h×Ba ×At, (19)

where At denotes the average duration of the cropping season and Ba is the level of adult biomass at the stable
equilibrium. Considering that At = 90 days, the seasonal yield is around 7.6 tonnes for an income of 5, 220
USD, which is consistent with the values per hectare reported by [30].

In Fig. 6, we present the dynamics of state variables By (Fig. 6(a)) and L (Fig. 6(b)). The convergence
towards the endemic equilibrium is slow and requires at least 1500 days, with oscillations that are typical for a
prey-predator system. In addition, the green curve describes a typical behavior of a prey-predator model: as the
host biomass starts at a very low level, the pest population decreases, until the biomass reaches a satisfactory
level and then the pest outbreak begins.

According to Fig. 4(a), an increase of the pest mortality rate ϕL implies an decrease of the basic reproductive
number R0. By considering an increased value ϕL = 0.12 compared to reference value in Table 1, R0 = 0.96 < 1,
so the pest-free equilibrium becomes stable. This is illustrated in Fig. 7 with the same initial conditions as in
Fig. 5. At the pest-free equilibrium, the seasonal yield is around 11.1 tonnes, corresponding to an income of
7, 750 USD, which is consistent with [30] and [42].
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Figure 5: Phase portrait of sub-model (6) in sub-spaces (a) By − Ba −M and (b) By − Ba − L. The orange
star is the stable endemic equilibrium E⋆ and the red dot is the unstable pest-free equilibrium E1. Parameter
values are given in Table 1. The initial conditions (By(0);Ba(0);L(0);M(0)) are: (1000; 1000; 200; 300) in green,
(4195.29; 4009.54; 0.88; 84.52) in yellow, (2000; 3000; 500; 200) in blue and (3000; 1000; 0.8; 0) in cyan.
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Figure 6: Dynamics of state variables (a) By and (b) L of sub-model (6). Parameter values and initial conditions
are the same as in Fig. 5.
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Figure 7: Phase portrait of sub-model (6) in sub-spaces (a) By − Ba −M and (b) By − Ba − L. The red dot
is the stable pest-free equilibrium E1. Parameter values are given in Table 1 excepted ϕL = 0.12 leading to
R0 = 0.96 < 1. The initial conditions are the same as Fig. 5.

4 Second case study: self-financing controlled model

In this section, we perform a mathematical analysis of a slightly simplified version of model (3), in which we
neglect the antifeedant action of the botanical pesticides (b = 0). Moreover, we assume that the farmer has
enough experience to space the plants properly, such that one we can neglect the competition in the two biomass
compartments (µy = µa = 0). The other values of parameters remain unchanged, as given in Table 1, except
δM = 1.17× 10−2, which is adjusted to obtain reasonable estimations of the cabbage biomass.

Under the above considerations, we obtain the following slightly modified model:

Ḃy = r0yBy +
r1k1M

1 + δMM
− ψLBy − γBy,

Ḃa = γBy + r0aBa − hBa,

L̇ = cψLBy − λϕPL− µLL
2 − ϕLL,

Ṗ = aPαM − ϕPL− ϕPP,

Ṁ = qhBa − kM.

(20)

4.1 Equilibrium and stability analysis

4.1.1 Equilibrium

We first determine the equilibria of sub-model (20). The extinction equilibrium Ec0 = (0; 0; 0; 0; 0) always exists.
The unique pest-free equilibrium

Ec1 =

(
αak (RB − 1)

γδMqh
;
k (RB − 1)

δMqh
; 0;

apα (RB − 1)

ϕP δM
;
RB − 1

δM

)
=
(
Byc1 ;Bac1 ; 0;Pc1 ;Mc1

)
exists whenever RB > 1, with RB given by (7).

Endemic equilibria In order to study the existence of the endemic equilibrium, we recall that αy = γ − r0y
and αa = h− r0a, and introduce the new threshold

Re =
cψαaBac1

γ (λϕPc1 + ϕL)
(21)

representing the effective reproductive number.

10



We want to solve the system:

r1
k1M

1 + δMM
− ψLBy − αyBy = 0, (22)

γBy − αaBa = 0, (23)

cψBy − λϕP − µLL− ϕL = 0, (24)

aPαM − ϕPP − ϕPL = 0, (25)

qhBa − kM = 0. (26)

Relations (23) and (26) give:

By =
αaBa
γ

and M =
qhBa
k

. (27)

Introducing (27) in (22), we have:

L(Ba) =
1

ψαa

(
r1k1qhγ

k + δMqhBa
− αaαy

)
, (28)

which is positive if and only if Ba < Bac1 .
Using both (28) and (26) in (25), we get:

P (Ba) =
apαqhBa

k (ϕp + ϕψαaL(Ba))
=
D1 (k + δMqhBa)Ba

D2 +D3Ba
, (29)

with

D1 =
apαψαaqh

k
> 0,

D2 = kϕαaαy (RB − 1) + ϕpψαak > 0,

D3 = δMqh (ϕPψαa − αaαyϕ) .

The equivalence between the two definitions of P implies that D2 +D3Ba > 0 for all Ba ∈ (0;Bac1 ).
Finally, using (27), (28) and (29) to replace By, L and P by functions of Ba in (24), one has

G3(Ba) =
cψαa
γ

Ba − λϕP (Ba)− µLL(Ba)− ϕL = 0 (30)

that we will study on the biologically feasible interval (0;Bac1 ) to determine the endemic equilibria.
The derivative of L in (28) with respect to Ba gives

L′(Ba) = − r1k1q
2h2γδM

ψαa(k + δMqhBa)2
< 0,

and its second derivative yields

L
′′
(Ba) =

r1k1q
3h3γδ2M

ψαa(k + δMqhBa)3
> 0. (31)

Similarly, the first derivative of P in (29) gives

P ′(Ba) = D1
δMqhD3B

2
a + 2δMqhD2Ba +D2k

(D2 +D3Ba)2
,

and

P
′′
(Ba) =

2D1D2δMr1k1γϕq
2h2

(D2 +D3Ba)3
.

Because D2 +D3Ba > 0 for all Ba ∈ (0;Bac1 ), we then have P
′′
(Ba) > 0.

Thus,
G

′′

3 (Ba) = −λϕP
′′
(Ba)− µLL

′′
(Ba) < 0. (32)

It means that G′
3 : Ba 7→ G′

3(Ba) is a decreasing function on
(
0;Bac1

)
. Remarking that G3(0) < 0 since

P (0) = 0 and L(0) > 0 when RB > 1, we can now distinguish two cases.

1. If G′
3(0) ≤ 0, the function G3 defined by (30) does not have a positive solution on

(
0;Bac1

)
.

2. If G′
3(0) > 0, we distinguish two sub-cases.

11



(a) If G′
3(Bac1 ) ≥ 0 then G3 admits a unique positive root on

(
0;Bac1

)
if and only if G3(Bac1 ) > 0.

(b) If G′
3(Bac1 ) < 0 then, there exists a unique ζ ∈

(
0;Bac1

)
such that G′

3(ζ) = 0. By remaking that G3

is a decreasing function on
(
ζ;Bac1

)
, we always have G3(ζ) > G3

(
Bac1

)
. And then:

• if 0 > G3(ζ) > G3

(
Bac1

)
, then G3 has no positive root on

(
0;Bac1

)
;

• if G3(ζ) > 0 > G3

(
Bac1

)
, then G3 has two positive roots on

(
0;Bac1

)
;

• if G3(ζ) > G3

(
Bac1

)
≥ 0 or G3(ζ) = 0, then the function G3 has a unique positive root on

(0;Bac1 ).

We can express the above conditions on G3 in terms of the effective reproductive number Re given by (21) as
follows.

Since

G3(Bac1 ) =
cψαa
γ

Bac1 − λϕP (Bac1 )− µLL(Bac1 )− ϕL

=
cψαa
γ

Bac1 − λϕPc1 − ϕL,

it is obvious that
G3(Bac1 ) > 0 ⇐⇒ Re > 1. (33)

We will now analyze the threshold situations between the different sub-cases of case 2.(b). These situations
are characterized by G3(ζ) = 0 and G3(Bac1 ) = 0. Due to concavity, these cannot be satisfied simulataneously
for a unique set of parameters and we have G3(ζ) > G3(Bac1 ), so that

cψαa
γ

ζ − µLL(ζ)− λϕP (ζ) >
cψαa
γ

Bac1 − µLL(Bac1 )− λϕP (Bac1 ) (34)

In the following, we will analyze for which ϕL values G3(ζ) = 0 or G3(Bac1 ) = 0 are satisfied, all other
parameters staying unchanged. Among other things, the choice of ϕL as varying parameter has the advantage
of impacting neither the value of ζ nor that of Bac1 so that inequality (34) still holds.

If we consider that G3(ζ) = 0 holds for some ϕsL, we get

ϕsL =
cψαa
γ

ζ − µLL(ζ)− λϕP (ζ) (35)

Similarly, G3(Bac1 ) = 0 for some ϕ0L gives

ϕ0L =
cψαa
γ

Bac1 − λϕPc1 . (36)

Injecting (35) and (36) into (34) then yields
ϕsL > ϕ0L.

Noting in (21) that ϕL 7→ Re(ϕL) is a decreasing function, we obtain Re (ϕ
s
L) < Re

(
ϕ0L
)
with, as we have seen

in (33)

Re

(
ϕ0L
)
= 1 and Re (ϕ

s
L) =

cψαaBac1
γ (λϕPPc1 + ϕsL)

.

Thus, considering a given ϕL value, and since G3 is a decreasing function of ϕL, we make multiple use of

0 > G3(ζ) ⇔ G3(ζ)|ϕs
L
> G3(ζ)|ϕL

⇔ ϕL > ϕsL

and
0 > G3

(
Bac1

)
⇔ G3

(
Bac1

)
|ϕ0

L

> G3

(
Bac1

)
|ϕL

⇔ ϕL > ϕ0L.

And then,

• 0 > G3 (ζ) > G3

(
Bac1

)
⇔ ϕL > ϕsL > ϕ0L ⇔ Re(ϕL) < Re (ϕ

s
L) < 1 (region above blue curve in Fig. 8).

• G3(ζ) > 0 > G3

(
Bac1

)
⇔ ϕsL > ϕL > ϕ0L ⇔ Re (ϕ

s
L) < Re(ϕL) < 1 (region between the blue and red

curves in Fig. 8).

• G3(ζ) > G3

(
Bac1

)
> 0 ⇔ ϕsL > ϕ0L > ϕL ⇔ Re (ϕ

s
L) < 1 < Re(ϕL) (region below the red curve in Fig. 8).

In the next, Re is exactly the threshold given by (21). The existence of endemic equilibria can be summarized
as follows.
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Figure 8: Plots of function G3(Ba) for different values of ϕL: ϕL = 0.01 day−1 (orange curve), ϕ0L ≈ 0.04 (blue
curve), 0.09 day−1 (green curve), ϕsL ≈ 0.12 day−1 (red curve) and 0.15 day−1 (cyan curve). They correspond
to hypothesis (H3) of Theorem 6: G′

3(0) = 1.86× 10−5 > 0 and G′
3(Bac1 ) = −7.73× 10−4 < 0. All remaining

parameter values are given in Table 1. The stars are the zeros of G3 in
(
0;Bac1

)
and the correspond to the

endemic equilibria E⋆c and E⋆⋆c , whenever they exist.The vertical black line represents the line Ba = Bac1 (PFE).

Theorem 6. Assume that RB > 1. Then the existence of endemic equilibria of sub-model (20) depends on
G′

3(0) and G
′(Bac1 ), with G3 defined in (30):

(H1) G
′
3(0) ≤ 0: sub-model (20) has no endemic equilibrium.

(H2) G′
3(0) > 0 and G′

3(Bac1 ) ≥ 0 : sub-model (20) has a unique endemic equilibrium if and only if Re > 1.

(H3) G′
3(0) > 0 and G′

3(Bac1 ) < 0:

(i) If Re < Re (ϕ
s
L), then sub-model (20) has no endemic equilibrium.

(ii) If Re (ϕ
s
L) < Re < 1, then sub-model (20) has two endemic equilibria, E⋆c and E⋆⋆c such that B⋆ac <

B⋆⋆ac .

(iii) If Re = Re (ϕ
s
L) or Re ≥ 1, then sub-model (20) has a unique endemic equilibrium E⋆c .

Fig 8 illustrates the situation described above for different values of ϕL. The red curve represents the
function G3 at the critical value ϕsL ≈ 0.12 day−1. Below this value, there is no root (cyan curve). Above this
value, G3 can have two (green curve) or one (orange curve) roots depending on the value of ϕL.

4.1.2 Stability

Following a similar approach as in Section 3, we establish the following results for the trivial and pest-free
equilibria.

Theorem 7. The extinction equilibrium, Ec0 , of sub-model (20), is globally asymptotically stable if RB < 1.
Otherwise, if RB > 1, the pest-free equilibrium Ec1 exists. It is locally asymptotically stable if Re < 1 and
unstable if Re > 1.

Moreover, the system presents a forward transcritical bifurcation at RB = 1.

Proof. We suppose RB < 1 and we consider the following positive definite function,

V = qhγBy + qhαyBa +
qhγ

c
L+

kαaαy (1−RB)

aPα
P + αaαyM.

Differentiating the above function V with respect to time, t, along the solutions of sub-model (20), after some
algebraic simplifications, we obtain

V̇ = −qhγ
c

(
µLL

2 + ϕλPL+ ϕLL
)

− kαaαy (1−RB)

aPα
(ϕPL+ ϕPP )

+

[
kαaαy (1−RB) +

qhγr1k1
1 + δMM

− kαaαy

]
M.
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And,

kαaαy (1−RB) +
qhγr1k1
1 + δMM

− kαaαy

< kαaαy (1−RB) + qhγr1k1 − kαyαa = 0.

Thus, V is a strict Lyapunov function for equilibrium Ec0 if RB < 1. We conclude that Ec0 is globally
asymptotically stable in Ω if RB < 1.

We assume that RB > 1. The characteristic polynomial evaluated at the PFE Ec1 is given by:

Qc1(χ) = (χ− (cψByc1 − λϕPc1 − ϕL)) (χ+ ϕP )(
χ3 +B2χ

2 +B1χ+B0

)
,

where

B2 = k + αy + αa,

B1 = αyαa + k (αa + αy) ,

B0 = kαyαa −
k1qhγr1

(1 + δMMc1)
2 .

We conclude as in Appendix (C).
The proof of forward transcritical bifurcation at RB = 1 is trivial.

Remark 1. Under the hypothesis (H1) or (H2) of Theorem 6, we can prove, by adapting the proof of Theorem 5,
that all the solutions starting in Ω′′ tend to the pest-free equilibrium Ec1 if Re ≤ 1 < RB, with Ω′′

Ω′′ =
{
(By;Ba;L;P ;M) ∈ R5

+|By ≤ Byc1 , Ba ≤ Bac1 ,M ≤Mc1

}
. (37)

If hypothesis (H2) holds, the system presents a transcritical bifurcation at the point Re = 1.

We explored the stability of the endemic equilibria, whenever they existed, numerically. Based on the
parameter values in Table 1 (with δM = 1.17 × 10−2 per USD), we varied parameter ϕL. We found that E⋆c
is stable and E⋆⋆c is unstable. Thus, a bistability behavior occurs when Re (ϕ

s
L) < Re < 1 (corresponding to

ϕL ∈ (ϕ0L;ϕ
s
L)). The backward bifurcation diagram is shown in Fig. 9(a). In practice, the smallholder farmer

cannot influence the natural mortality of larvae ϕL.
Varying α, the investment rate for pesticide acquisition, is more interesting from a practical point of view.

Determining the threshold αs corresponding to the lower bound for the existence of endemic equilibria, is not
as straightforward as with parameter ϕL. So we proceeded numerically and obtained αs ≈ 0.086 day−1 and
Re(α

s) ≈ 0.2. The threshold α0 = ϕP
(
cψByc1 − ϕL

)
/(λϕapMc1), obtained by solving Re = 1 in terms of α.

As previously, bi-stability behavior occurs when Re (α
s) < Re < 1. The backward bifurcation diagram is shown

in Fig. 9(b). We observe that α has more significant effect to the equilibria values than ϕL.
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Figure 9: Backward bifurcation diagram for sub-model (20), obtained by varying parameter: (a) ϕL, with
Re (ϕ

s
L) ≈ 0.68 and (b) α, with Re (α

s) ≈ 0.2. All remaining parameter values are given in Table 1. The blue
line represents pest-free Ec1 . The solid and dashed red lines represent endemic equilibria E⋆c and E⋆⋆c . A solid
line corresponds to a stable equilibrium, a dashed line to an unstable equilibrium.
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Figure 10: Variation of the effective reproductive number Re as a function of: (a) the natural mortality of
larvae ϕL and the biomass consumption rate by larvae ψ; (b) the investment rate for plant protection α and
the efficacy of pesticide λ. The values of the remaining parameters are given in Table 1. The purple squares
represent the parameter values in Table 1. The red line represents the level 1

4.2 Simulations

In this section, we carry out numerical simulations of sub-model (20). We recall that all parameters values are
given in Table 1 (with δM = 1.17 × 10−2 per USD). The biomass reproductive number RB = 3.21 and the
effective reproductive number Re = 0.85.

Fig. 10(a) reveals that a high consumption or a low natural mortality rate makes pest management difficult.
Fig. 10(b) reveals that the success of pest control depends on both the efficacy of the pesticide and the financial
resources allocated. For a botanical pesticide with relatively low efficacy to eradicate larvae from the plantation,
massive (and fairly unreasonable) investment is required. Conversely, a highly effective pesticide will require
very little financial resources to fight the infestation. Thus, the smallholder farmer needs to choose its products
wisely for a cost-efficient plant protection.

Hypothesis (H1) of Theorem 6 corresponds to a situation where the botanical pesticides is extremely powerful
(λ ≥ 7.5 larvae/l). In practice, this situation cannot happen. Hypothesis (H2) of the same theorem corresponds
to a situation where the smallholder farmer invests almost nothing in botanical pesticides (for example α =
5× 10−4 day−1). Thus, the larvae act like there is no pesticides and sub-model (20) has the same dynamics as
sub-model (6). Therefore, simulations were done under hypothesis (H3) of Theorem 6.

One can compute the cost of plant protection using the metric

α×M ×At, (38)

where M is the value of the component M of the stable equilibrium and At = 90 days still denotes the average
time of the agricultural season.

When the pest management strategy works nicely (i.e. the pest-free equilibrium is stable), using (19), we
have a global yield around 22.2 tonnes for a total income of 15, 320 USD. Using (38), the cost of plant protection
is around 230 USD. These two metrics agree with the work in [30]. Conversely, if the pest strategy does not
work nicely (i.e. a endemic equilibrium is stable), the expected yield will be around 10.4 tonnes for an income
of 7, 180 USD and a cost protection of only 107 USD. As shown in Fig. 11, in the bistabilty region, one cannot
predict the behavior of the system. In fact, with a low level of larvae, the system tends towards endemic
equilibrium, while with a high level of larvae, it tends towards pest-free equilibrium (blue and cyan curves).

We observe numerically that the original (3) and simplified (20) models present the same dynamics but with
different equilibrium values, as shown in Appendix E.

5 Conclusion

With food security a growing problem, many governments have put agriculture and rural development at the
heart of their public policies. This action is hampered by the presence of pests, which destroy crops and cause
huge economic losses.

The aim of this study was to quantify the damage caused by the attack of Plutella larvae in a cabbage
plantation, assess the effectiveness of using botanical pesticides as a pest management strategy, and evaluate the
sustainability and profitability of such agroecosystem. To achieve our goals, we built an original mathematical
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Figure 11: Dynamics of state variables (a) By, (b) L, (c) P and (d) M of sub-model (20). Parameter val-
ues are given in Table 1. The initial conditions are: (2791.24; 0; 51.89; 0; 0) in green, (4500; 0; 51.89; 0; 0) in
blue, (2691.24; 0; 20; 0; 0) in red and (4500; 0; 0.65; 0; 0) in cyan. The effective reproductive number Re verifies
Re(α

s) ≈ 0.2 < Re = 0.85 < 1. Bistability occurs: according to the initial conditions, the system either
converges towards the pest-free (red and blue) or the endemic (cyan and green) equilibrium.
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model that describes the agro-economic environment associated with cabbage culture. Indeed, we divided the
cabbage biomass into two groups to account for the larvae preference for young cabbage and natural resistance
of adult cabbage due to the firmness of leaves acquired with age. In order to take into account the self-financing
constraints of the farm, we introduced the plantation current account as a dynamical variable in the model.
This budget is allocated for purchasing new plants, botanical pesticides, and paying daily expenditures of the
smallholder farmer.

In this work, we showed that the farm sustainability depends on the biomass reproductive number RB . If
RB is smaller than one, the system will inevitably disappear. Conversely, RB values greater than one guarantee
the sustainability of the entire ecosystem. Except in extreme market situations (i.e. very high purchase price
of young plants r−1

1 > 3 USD/kg and very low selling price of mature cabbages q < 0.4 USD/kg) or when
the farmer investment in the farm is particularly low (i.e. k1/k < 0.21), analysis of this threshold shows that
cabbage is an very sustainable crop. The mathematical analysis of two variants of the model proposed was
carried out in details.

In the first case study, we considered a self-financing uncontrolled model; that is a model without any pest
management. We showed that when the condition RB > 1 is satisfied, the threshold R0 governs the dynamics
of the resulting system. The system presents a transcritical bifurcation at R0 = 1. When R0 < 1, the larvae
disappear naturally without any control action and the production is around 11.1 tonnes per hectare. If R0 > 1,
the presence of larvae leads to losses greater than 30% of the overall production.

In the second case study, we studied a slightly modified controlled model (20), obtained from the main
model (3) by neglecting the antifeedant effect of botanical pesticide and the competition in the biomass com-
partments. We computed the effective reproductive numberRe and noticed that it is smaller thanR0, suggesting
that integrated pest management acts efficiently against the infestation. A botanical pesticide is a judicious
choice because it is effective in both for prophylaxis and treatment(as reported by [24]) with a reasonable treat-
ment cost for the smallholder farmer. Unfortunately, the threshold Re does not solely govern the dynamics of
the system.

Our model (both the original model and the slightly modified model) exhibits a backward bifurcation re-
vealing that having Re less than one is not enough to guarantee the elimination of larvae in the plantation.
Eradication occurs when the control is strong enough (i.e. Re < Re(α

s)) which is not necessarily the best
option for the smallholder farmer, because important investment in plant protection will reduce his net profit.
This bistability phenomenon is dangerous because, depending on the initial condition, the system can converge
either towards the pest-free equilibrium or towards an endemic equilibrium. However, it is possible to avoid
this bi-stability by investing substantially in plant protection (α ≥ 0.09 day−1).

Another approach of modeling pesticide application in the plantation is to use feedback control strategy (as
proposed by [43]) or combine prophylaxis and feedback control. These extensions give rise to some optimization
challenges which represent an avenue of our further works.
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A Parameter estimation

Some parameters were estimated from the literature. The values of the conversion rate c and uptake rate of
botanical pesticide by larvae were taken in [43]. [30] reported that undamaged heads fetched 0.56 USD and 0.83
USD per kg for the major and minor seasons respectively. We chose an average cabbage price q = 0.69 USD
per kg [30].

When replanted, the cabbage consists of 3 to 5 leaves [44, 15]. The weight at transplanting is therefore
assumed to be 70g. We assume a growth period for the cabbage of 90 days (three months) for an average weight
of 0.7 kg per head [15]. [10] report that there is a strong correlation between the age of the plant and the age
of the diamondback moth larvae. In fact, plants less than 55 days old are favored by immature larvae (stages
2 and 3). Knowing also that larvae populations are more voracious at stage 3, we set the aging rate of young
biomass γ = 1/55 ≈ 0.02 day−1 and the harvest rate h = 1/(90− 55) ≈ 0.03 day−1.

One hectare can support around 35000 cabbage plants [30]. Then, the carrying capacity of a 1-hectare
field is 35, 000 × 0.7 = 24, 500 kg, split into Ka = 24, 500 × 35/90 = 9, 528 kg of adult biomass and Ky =
24, 500 × 55/90 = 14, 972 kg of young biomass. Assuming that the weight of a young cabbage at 55 days
after replanting is 0.4 kg, we compute the growth rate of adult biomass r0a = ln(0.7/0.4)/35 ≈ 1.6 × 10−2

day−1. Moreover, we assume that r0y ≈ r0a = 1.6 × 10−2 day−1. Thus, the competition rates are given by
µa = 1.6× 10−2/9528 ≈ 1.68× 10−6 kg−1.day−1, and, µy = 1.6× 10−2/14972 ≈ 1.07× 10−6 kg−1.day−1.

According to [12], the infestation is noticeable at more than 20 larvae per plant. In addition, [45] reported
that an increase of 5 larvae leads to an estimated increase in consumption of 19 g and 32 g for an exposure
of 4 and 7 weeks respectively. Hence, we assume that the biomass consumption rate by larvae ψ has values
between 0.032/((20+ 5)× 7× 7) ≈ 2.27× 10−5 and 0.019/((20+ 5)× 7× 4) ≈ 4.57× 10−5 larvae−1.day−1. The
larvae development stage lasts about 9 to 32 days [12, 11]. Hence, we assume that the mortality rate of larvae
ϕL is between 0.03 and 0.1 day−1. Assuming a carrying capacity of 30 larvae per plant [12, 13], the carrying
capacity of the plantation is 35, 000× 30 = 1, 050, 000 larvae. The competition of larvae µL is given by formula
cψKy/1, 050, 000. Thus, the range of µL is [1.94× 10−6; 3.91× 10−6].

According to [30], a hectare is treated between 7 and 8 times over a growing season. It is hence assumed
that the natural depletion of botanical pesticide is ϕp = 8/90 ≈ 0.1 day−1. In addition, around 500 liters of
pesticide per hectare are used [24] for a total cost around 306 USD [30]. Thus, the inverse of the pesticide price
is ap ≈ 500/231 ≈ 2.16 l.USD−1.

According to [41], the unit price of a young cabbage plant is around 0.16 USD per plant, which weighs 70g.
Thus, the inverse of price of young biomass is estimated at r1 = 0.07/0.16 ≈ 0.46 kg.USD−1.
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B Proof of Theorem 1

Let (By(t);Ba(t);L(t);P (t);M(t)) be a local solution of model (3) defined on (0;T+) where T+ > 0.
Using the first equation of model (3), we have

Ḃy = r0yBy − µyB
2
y +

r1k1M

1 + δMM
− ψLBy
bP + 1

− γBy

≤ r1k1
δM

− αyBy.

Applying Gronwall’s lemma [46], we obtain

By(t) ≤
r1k1
δMαy

+

(
By(0)−

r1k1
δMαy

)
exp(−αyt). (39)

Thus, as the right-hand side is monotic from By(0) to
r1k1
δMαy

,

By(t) ≤ max (Ky;By(0)) ≡ Bymax
, (40)

where Ky = r1k1
δMαy

.

Using the remaining equations of model (3), we prove similarly that,

Ba(t) ≤ max

(
γBymax

αa
;Ba(0)

)
≡ Bamax

,

M(t) ≤ max

(
qhBamax

k
;M(0)

)
≡Mmax,

P (t) ≤ max

(
αapMmax

ϕP
;P (0)

)
≡ Pmax.

(41)

Furthermore,

L̇ = c
ψLBy
bP + 1

− λϕPL− µLL
2 − ϕLL

≤ cψBymax
L− µLL

2

L(t) ≤
L(0)

cψBymax

µL

L(0) +
(
cψBymax

µL
− L(0)

)
exp(−cψBymax

t)
.

(42)

Then, we obtain

L(t) ≤ max

(
L(0);

cψBymax

µL

)
≡ Lmax. (43)

We assume that the solution (By(t);Ba(t);L(t);M(t)) starts in the domain Ω which is described in Theorem 2.
we deduce easily that Bymax = Ky. Then, it follows from similar developments around relations (41) and (43)
that Ω is positively invariant.

We focus our attention on the attractiveness of Ω. Let us show that for any solution (By(t);Ba(t);L(t);P (t);M(t))
started outside of

Ωϵ :=
{
(By;Ba;L;P ;M) ∈ R5

+|By ≤ Ky + ϵ, Ba ≤ Ka + ϵ,

L ≤ KL + ϵ,M ≤ KM + ϵ, P ≤ KP + ϵ}
(44)

with Ky = r1k1
δMαy

, Ka =
γ(Ky+ϵ)

αa
, KM = qh(Ka+ϵ)

k , KP =
apα(KM+ϵ)

ϕP
, KL =

cψ(Ky+ϵ)
µL

, and for any ϵ > 0, enters

Ωϵ in finite time. If we first suppose that By(0) > Ky + ϵ, we have

Ḃy = r0yBy − µyB
2
y +

r1k1M

1 + δMM
− ψLBy
bP + 1

− γBy

≤ r1k1
δM

− αyBy <
r1k1
δM

− αy (Ky + ϵ) < −αyϵ

which implies that
By(t) < By(0)− αyϵt.

Writing the previous inequality at the time

tϵ = (By(0)−Ky − ϵ) / (αyϵ) ,
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we get By(tϵ) < Ky + ϵ. Hence, By(t) reaches Ky + ϵ in finite time ty < tϵ and will stay below this value
afterwards.

Similarly, if we assume that Ba(0) > Ka+ ϵ with By(t) ≤ Ky + ϵ (which may be valid at time 0 or after the
previously described convergence time ty), the second equation of model (3) gives

Ḃa ≤ γ (Ky + ϵ)− αaBa < −αaϵ.

And Ba will reach Ka + ϵ in finite ta and stay below this value afterwards.
Now, if we suppose that M(0) > KM + ϵ with Ba(t) ≤ Ka + ϵ (which may be valid at time 0 or after the

previously described convergence time ta) the dynamic of M in model (3) gives Ṁ ≤ qh (Ka + ϵ)− kM < −kϵ.
Then M will reach KM + ϵ in finite tm and stay below this value afterwards. Repeating the same approach for
P , we can conclude at the existence of convergence time tp at which P reaches KP + ϵ and stays below this
value afterwards. Finally, we suppose L(0) > cψ (Ky + ϵ) /µL with By(t) ≤ Ky + ϵ. Using the third equation
of model (3), we have

L̇ ≤ (cψ (Ky + ϵ)− µLL)L < −µLϵL.

Hence, L(t) < L(0) exp(−µLϵt). At the time

tϵ = ln (L(0)/ (KL + ϵ)) /(µLϵ),

we have L(tϵ) < KL+ ϵ. We deduce that L reaches KL+ ϵ in finite tl < tϵ and stay below this value afterwards.
We conclude that Ωϵ is attractive for any ϵ > 0. Hence, Ω is attractive.

We have just shown that the solution (By(t);Ba(t);L(t);P (t);M(t)), for any initial satisfying (4) is con-
tained in a compact subset of R5. Using a classical result of dynamical system, we conclude that the solution
(By(t);Ba(t);L(t);P (t);M(t)) is globally defined in R+.

C Proof of Theorem 2

The jacobian matrix of sub-model (6) is given by
−αy − 2µyBy − ψL 0 −ψBy

r1k1

(1 + δMM)
2

γ −αa − 2µaBa 0 0
cψL 0 cψBy − 2µLL− ϕL 0
0 qh 0 −k

 . (45)

The characteristic polynomial evaluated at the extinction equilibrium E0 is

Q0(χ) = (χ+ ϕL)
(
χ3 +A2χ

2 +A1χ+A0

)
,

with

A2 = k + αy + αa, A1 = αyαa + k (αa + αy) ,

RB =
k1γr1qh

kαyαa
, A0 = kαaαy (1−RB) .

We remark that −ϕL is an eigenvalue of Q0. The other eigenvalues are solutions of the polynomial function
χ 7→ χ3 +A2χ

2 +A1χ+A0.
If RB > 1, Descartes rule reveals that Q0 has a unique positive root. Using the Hartman-Grobman theorem

in [46], we conclude that E0 is unstable. Assuming RB < 1. We use the well-known Routh-Hurwitz stability
criterion for stability by verifying conditions: A2, A1, A0 > 0 and A2A1 −A0 > 0.

The positivity of A2, A1 and A0 are obvious. A direct computation gives

A2A1 −A0 = (k + αy + αa) (αyαa + k (αa + αy))

− kαaαy (1−RB) = k2 (αy + αa)

+ (αy + αa) (αyαa + k (αa + αy)) + r1k1qhγ > 0.

We conclude that E0 is locally asymptotically stable.
We assume that RB > 1. The characteristic polynomial evaluated at the PFE E1 is given by

Q1(χ) = (χ− (cψBy1 − ϕL))
(
χ3 +B2χ

2 +B1χ+B0

)
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where

B2 = k + αy + αa + 2µaBa1 + 2µyBy1

B1 = (αy + 2µyBy1) (αa + 2µaBa1)

+ k (αa + αy + 2µaBa1 + 2µyBy1)

B0 = k (αy + 2µyBy1) (αa + 2µaBa1)−
k1qhγr1

(1 + δMM1)
2 .

It is clear that B2, B1 > 0. Using Equation 11 and the fact that 1 + δMM1 > 1, we have

B0 >
k

1 + δMM1
((αy + 2µyBy1) (αa + 2µaBa1)

−
(
αy (αa + µaBa1) + µ (αa + µaBa1)

2
Ba1

))
>

k

1 + δMM1
((αy + µ (αa + µaBa1)Ba) (αa + µaBa1)

−
(
αy (αa + µaBa1) + µ (αa + µaBa1)

2
Ba1

))
= 0.

Moreover,

B2B1 −B0 = k2 (αa + αy + 2µaBa1 + 2µyBy1)

+ (αy + αa + 2µaBa1 + 2µyBy1)

((αy + 2µyBy1) (αa + 2µaBa1)

+k (αa + αy + 2µaBa1 + 2µyBy1)) > 0.

According to Routh-Hurwitz stability criterion, all the eigenvalues of the polynomial function χ 7→ Q1(χ)
have negative real parts. Thus, the local stability of E1 depends only of the sign of cψBy1 − ϕL. By noticing
that cψBy1 − ϕL = ϕL (R0 − 1), it comes from Hartman-Grobman theorem that E1 is locally asymptotically
stable provided R0 < 1 and unstable if R0 > 1.

Now supposing RB > 1 and R0 > 1. The characteristic polynomial evaluated at E⋆ is given by

Q2(χ) = χ4 + C3χ
3 + C2χ

2 + C1χ+ C0 (46)

where

J11 = αy + 2µyB
⋆
y + ψL⋆

J22 = αa + 2µaB
⋆
a

C3 = µLL
⋆ + J11 + k + J22

C2 = cψ2L⋆B⋆y + µLL
⋆J11 + kJ22

+ (k + J22) (µLL
⋆ + J11)

C1 = (k + J22)
(
cψ2L⋆B⋆y + µLL

⋆J11
)

+ kJ22 (µLL
⋆ + J11)−

qhγr1k1

(1 + δMM⋆)
2

C0 = kJ22
(
cψ2L⋆B⋆y + µLL

⋆J11
)
− µLL

⋆ qhγr1k1

(1 + δMM⋆)
2 .

We want to use again the Routh-Hurwitz stability criterion. It consists in verifying the conditions :
C3, C2, C1, C0 > 0, C3C2 − C0 > 0 and (C3C2 − C1)C1 − C2

3C0 > 0.
It is clear that C3, C2 > 0. In addition, using Equation (12)

C1 = (k + J22)
(
cψ2L⋆B⋆y + µLL

⋆J11
)

+ kJ22 (µLL
⋆ + J11)−

qhγr1k1

(1 + δMM⋆)
2

> kJ11J22 −
qhγr1k1

(1 + δMM⋆)
2

>
k

1 + δMM⋆

((
αy +

µy
γ

(αa + µaB
⋆
a)B

⋆
a + ψL⋆

)
(αa + µaB

⋆
a)− (αy + ψL⋆) (αa + µaB

⋆
a)

−µy
γ

(αa + µaB
⋆
a)

2
B⋆a

)
= 0
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and

C0 = kJ22
(
cψ2L⋆B⋆y + µLL

⋆J11
)
− µLL

⋆ qhγr1k1

(1 + δMM⋆)
2

> µLL
⋆

(
kJ11J22 −

qhγr1k1

(1 + δMM⋆)
2

)
> 0.

Furthermore,

C3C2 − C1 = (k + J22) ((k + J22) (µyL
⋆ + J11) + kJ22)

+ (µyL
⋆ + J11)

(
cψ2L⋆B⋆y + µLL

⋆J11

+(k1 + J22) (µLL
⋆ + J11)) +

qhγr1k1

(1 + δMM⋆)
2 > 0

and,

(C3C2 − C1)C1 − C2
3C0 >

(
k2 + J2

22

)
(µ⋆L + J11) (k + J22)

+
(
kJ22 + k2 + J2

22

)
(µLL

⋆ + J11)
2
> 0.

We conclude by using Routh-Hurwitz stability criterion that the endemic equilibrium E⋆, whenever it exists, is
always locally asymptotically stable.

D Proof of Theorem 5

We assume that the solution (By(t);Ba(t);L(t);M(t)) starts in the domain Ω′ which is described in Theorem 5.

If Ba = Ba1 , we have Ḃa = γBy − µaB
2
a1 − αaBa1 = γ (By −By1) ≤ 0. then Ba(t) ≤ Ba1 for all t ≥ t0.

Similarly, if M =M1, we obtain Ṁ = qhBa − kM1 = qh (Ba −Ba1). Hence, M(t) ≤M1 for all t ≥ t0. Finally,
if By = By1 , we obtain

dBy
dt

= r0yBy1 − µyB
2
y1 − ψLBy1 − γBy1 + r1

k1M

1 + δMM

≤ r0yBy1 − µyB
2
y1 − γBy + r1

k1M

1 + δMM

≤ r1k1

(
− M1

1 + δMM1
+

M

1 + δMM

)
≤ r1k1

M −M1

(1 + δMM) (1 + δMM1)

≤ 0.

Then By(t) ≤ By1 . We conclude that Ω′ is positively invariant.
Before dealing with the stability in Ω′, we first prove the following half-way result.

Theorem 8. The pest-free equilibrium E1 is globally asymptotically stable in the sub-region R3
+ \ {0} of hyper-

plan L = 0 if and only if R0 ≤ 1 < RB.

Proof. This proof is adapted from a result given in [47].
We consider

X1 = g(X1) (47)

with

X1 =

ByBa
M

 , and g(X1) =

−µyB2
y − αyBy + r1

k1M
1+δMM

γBy − µaB
2
a − αaBa

qhBa − kM

 .

System (47) has two equilibria: 0 and XE
1 = (By1 ;Ba1 ;M1) on R3

+ if and only if 1 < RB .
R3

+ is positively invariant. Furthermore, the Jacobian matrix of g evaluated at X1 is given by

Jg(X1) =

−αy − 2µyBy 0 r1k1
(1+δMM)2

γ −αa − 2µaBa 0
0 qh −k

 . (48)
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Jg(X1) is a cooperative irreducible matrix. Then, the flow ϕt of system (47) is strongly monotone in R3
+. In

addition, for every ϵ > 0, the set Z = [0; zϵ] with zϵ = (Ky + ϵ;Ka + ϵ;KM + ϵ)
T
, is positively invariant and

attractive for the flow ϕt as Z is the projection of Ωϵ on this subspace (see (44)).
According to Perron-Frobenius Theorem, the stability modulus s of Jg(0), is a positive real eigenvalue of

Jg(0) and there is a positive vector v such that Jg(0)v = sv.
Let x be a positive vector of R3

+. Using attractiveness property of Z, we have y = ϕt1(x) ∈ Z for large t1.
Then, there is η := η(y) > 0 such that ϕt(y) ∈ [ηv; zϵ] which is a positive invariant order preserving interval

and we have g(zϵ) < 0 and g(ηv) ≈ Jg(0)ηv = sηv > 0. Using Proposition 3.2.1 in [47], ϕt(zϵ) and ϕt(ηv)
converge monotonically both to XE

1 .
By monotonicity,

ηv < ϕt(ηv) < ϕt(y) < ϕt(zϵ) < zϵ, t > 0.

Letting t→ +∞ leads to the w-limit set of y is {XE
1 }. Then ϕt(x) converges to XE

1 for all positive vector x of
R3

+.

Furthermore, By can not stay equal to 0. Indeed, if By = 0 and M > 0 at a time t0, we have Ḃy =

r1k1M/(1 + δMM) > 0. In addition, if By = M = 0 and Ba = 0 at a time t0, one has Ṁ = qhBa > 0 so that

M instantaneously becomes positive and it follows that Ḃy = r1k1M/(1 + δMM) > 0. One can reproduce the
same approach for variables Ba and M . Thus, except if x(t0) = 0, x instantaneously enters the positive orthant
R3

+ and is amenable to the previous developments.
Thus, XE

1 is asymptotically stable everywhere in R3
+ \ {0}.

For convenience, we write model (6) in the following vector form.

Ẋ1 = F (X1;X2) and Ẋ2 = G(X1;X2)

with

X1 =

ByBa
M

 , X2 = L

F (X1;X2) =

r0yBy − µyB
2
y − ψLBy − γBy + r1

k1M
1+δMM

γBy + r0aBa − µaB
2
a − hBa

qhBa − kM


G(X1;X2) = cψLBy − µLL

2 − ϕLL.

In this case, the pest-free equilibrium E1 becomes (XE
1 ; 0).

According to Theorem 8, XE
1 is globally asymptotically stable for Ẋ1 = F (X1; 0).

In addition, we remark that
G(X1;X2) = AX2 − Ĝ(X1;X2)

where, for all variables in Ω′, one has

A =
∂G

∂X2

(
XE

1 , 0
)
= ϕL (R0 − 1)

and Ĝ(X1;X2) = cψ (By1 −By) + µLL
2 ≥ 0.

Thus, according to [48], the PFE E1 is asymptotically stable in Ω′ if and only if R0 ≤ 1 < RB .
We comment that the uniform persistence of sub-model (6) can be obtained in Ω′ when R0 ≤ 1 < RB [49].

E Other simulations

In this appendix, we simulate sub-model (20) and model (3) for different values of parameter α, which represents
the investment rate in plant protection. All remaining parameters are given in Table 1.

Figures Fig. 12 and Fig. 13 are similar to Fig. 11 (in which α = 1.35×10−2 day−1) and depict the dynamics
of sub-model (20). Fig. 12 presents a situation where the pest-free equilibrium is always stable and the system
does not have an endemic equilibrium. It corresponds to a high investment in plant protection (α = 0.09 day−1),
associated with a cost of 1, 530 USD computed according to (38). It generates a seasonal yield of 22.2 tonnes
for an income of 15, 320 USD, computing according to (19) at the pest-free equilibrium.

Fig. 13 illustrates the situation where there is a unique endemic stable equilibrium and an unstable pest-free
equilibrium. It corresponds to a low investment in plant protection (α = 0.01 day−1), associated with a cost of
79 USD, and it generates a seasonal yield of 10.3 tonnes for an income of 7, 111 USD at the endemic equilibrium.
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Figure 12: Dynamics of state variables (a) By, (b) L, (c) P and (d) M of sub-model (20). The initial conditions
and parameter values are the same as in Fig. 11 except for α = 0.09 day−1 leading to an effective reproductive
number Re = 0.19 < Re (α

s) ≈ 0.2 < 1. For all initial conditions, the system converges towards the pest-free
equilibrium.

The effective reproductive number of original model (3) is given by

R′
e =

cψαaBa1
γ (λϕP1 + ϕL) (1 + bP1)

,

with P1 = apαM1/ϕP . The equivalence of the threshold α0 for the original model (3), obtained by solving

R′
e (α) = 1, is given by α0′ = ϕP∆/(2aPM1λbϕ), with ∆ = − (λϕ+ bϕL)+

√
(λϕ+ bϕL)

2
+ 4λbϕ (cψBy1 − ϕL).

Using parameter values in Table 1, we have α0′ ≈ 7.34× 10−3 day−1. The lower bound for the existence of
endemic equilibria αs

′ ≈ 0.022 day−1. Fig. 14 shows model (3), for different values of parameter α. Comparing
these dynamics with those of sub-model (20) depicted in panel (a) of Fig. 11, 12 and 13, we observe that both
models have similar dynamics. In fact, we observe a bistability phenomenon for α ∈ (7.35× 10−3; 0.022) day−1

(see Fig. 14(b) and Fig. 14(c)). When α ≥ 0.022 day−1, the solutions tend to the pest-free equilibrium of (3)
(see Fig. 14(d)), and when α ≤ 7.34× 10−3 day−1, they converge towards the endemic equilibrium of (3) (see
Fig. 14(a)). Furthermore, α0 >> α0′ means that a pesticide with a double action is more effective and costless
than a classical one. Such results encourage vulgarizing the use of botanical pesticides.
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Figure 13: Dynamics of state variables (a) By, (b) L, (c) P and (d) M of sub-model (20). The initial conditions
and parameter values are the same as in Fig. 11 except for α = 0.01 day−1 leading to an effective reproductive
number Re = 1.02 > 1. For all initial conditions, the system converges towards the endemic equilibrium.
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Figure 14: Dynamics of state variable By of model (3) with: (a) α = 7 × 10−3 day−1, (b) α = 1.35 × 10−2

day−1 (same value as Fig. 11), (c) α = 0.01 day−1 (same value as Fig. 13) and (d) α = 0.09 day−1 (same value
as Fig. 12). The initial conditions are the same as in Fig. 11. The remaining parameter values are given in
Table 1 with δM = 10−5 USD−1. We have α0′ ≈ 7.34× 10−3 day−1 and αs

′ ≈ 0.022 day−1.
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