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A B S T R A C T   

This paper describes a simple generic model designed to predict membrane fouling in municipal wastewater 
(MWW) treatment. The work was conducted using data from a direct membrane filtration demo-system (middle/ 
long-term filtration periods of about 35 – 124 days) to calibrate the model. Two influents were treated by the 
demo-system: raw pre-treated MWW and primary settler supernatant from a full-scale MWW treatment plant. A 
resistance-in-series mathematical model structure was proposed considering fouling due to two different 
mechanisms: persistent cake layer formation (from suspended material) and pore blocking (from soluble and 
colloidal compounds). The proposed model represented transmembrane pressure dynamics at different operating 
solids concentrations (around 1, 2.6, 6 and 11 gL− 1) using 7 model parameters, achieving 7–28 mbar differences 
between the experimental data and model predictions in all cases (calculated as the root mean square error). The 
model was also able to match the results from two different influents (raw MWW and primary settler superna
tant) by modifying 3 of the 7 parameters while low uncertainties were obtained in long-term filtrations, 
demonstrating its robustness. This model thus provides a good potential to generate reasonable membrane 
fouling predictions while its simple and open structure makes it easy to implement with complementary mate
rials. Further research will be carried out to enhance the model’s precision and validate its potential for opti
mizing filtration and fouling control processes.   

1. Introduction 

Membrane technology is achieving ever-increasing interest within 
the scientific community due to fast and important reductions of 
acquisition and operating costs together with its significant performance 
improvements [1]. Its robust and accurate separation capacity, easy 
scaling-up and low space demands make it an excellent candidate to 
couple with and enhance the effectivity and feasibility of numerous 
processes [1]. This is the case of municipal wastewater (MWW) treat
ment, where systems including membrane technology represents some 
of the most promising alternatives to achieve sustainable processes [2] 
(see, for instance, anaerobic membrane bioreactors [3], direct mem
brane filtration (DMF) [4] or membrane photo-bioreactors [5]). To 
advance in the successful development and full-scale implementation of 
the emerging membrane-based technologies, it is necessary to develop 
complementary tools, such as mathematical models, operational 

controllers and optimization techniques to allow further understanding 
of the mechanisms involved in membrane filtration and promote further 
theoretical studies. 

Membrane modelling in MWW treatment is generally based on 
estimating membrane fouling performance through time in the form of 
flux declines or transmembrane pressure (TMP) increases. As membrane 
fouling develops, filtration energy demands also increase, entailing the 
use of continuous physical and/or chemical fouling control strategies. 
Minimizing/controlling membrane fouling is usually a key issue to solve 
in achieving feasible results in these systems [6,7]. Membrane fouling is 
commonly categorized according to its most relevant source, cake layer 
formation and pore blocking being the main mechanisms reported 
[8–10]. Cake layer formation involves the accumulation of particulate 
material on the membrane surface, which is in proportion to the filtrate 
volume produced [8,9]. This type of fouling is usually identified as 
reversible and can be controlled by physical cleaning strategies (e.g. gas 
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scouring, crossflow liquid velocity, or backwashing) [11]. Pore blocking 
(and pore narrowing) describes the partial/complete obstruction of 
membrane pores by deposits of soluble compounds and/or colloidal 
particles on the surface or inside the pores, reducing the effective/a
vailable membrane filtration area [8,9]. This type of fouling can be 
either reversible or irreversible (or irrecoverable), depending on the 
substances involved [11], and its nature can be divided into three 
sub-categories: (1) standard blocking (narrowed membrane pores due to 
the internal accumulation of different substances until complete 
obstruction), (2) intermediate blocking (substances blocking the pores 
or accumulated on previously deposited materials to form a pseudo cake 
layer) and (3) complete blocking (substances in the filtered liquor match 
the membrane pore size and directly block them) [8,9]. Fig. 1 shows a 
diagram of the different fouling mechanisms. In the specific case of the 
DMF of MWW, standard/complete pore blocking and cake layer for
mation have been identified as the main fouling mechanisms [10,12, 
13], with irreversible fouling dominating the process [12]. Moreover, 
organic substances have been recognised in numerous studies as the 
principal fouling source, representing around 70–90% of all the fouling 
developed in middle/long-term filtrations [12,14–16]. 

Numerous filtration models have been proposed to model fouling 
mechanisms based on a resistance-in-series approach [7,17], linking 
them to specific substances. Unfortunately, despite the significant 
number of models that can be found in the literature for specific filtra
tion processes, they are in general rather complicated, increasing in 
complexity as they aim to be general models (e.g. [18,19]). Indeed, the 
large number of physical/chemical interactions that can occur among 
liquor substances/structure and membrane surface and internal pores 
still require further research to be properly identified, demanding an 
understanding and inclusion of multiple unitary steps that result in 
ever-increasing computational demands. The applicability of these 
models is therefore complex and limited for purposes of control and 
optimization (i.e. coupling the model to supervising controllers or 
optimization algorithms) or when combined with biological models in 
an integrated framework. The development of flexible, simpler and more 
manageable models is an important milestone in achieving reasonable 
membrane fouling predictions while allowing easy combination with 
the complementary materials. Some examples of simple filtration 
models can be found in [20–22], while filtration optimization and 
control studies for which they can be used can be found in [23,24]. 
Unfortunately, they also simplify fouling as the product of a single 
variable (generally solids concentration in the bulk, see for instance [20, 
23]), omitting some interesting interactions between pollutants and 
their impact on fouling development. Building simple multivariable 
models is thus an interesting field to enhance their prediction capacity 
and provide more information for potential combinations with com
plementary tools (supervising controllers or optimization algorithms). 

The aim of this work was thus to propose a simple and generic 
multivariable filtration model to predict membrane fouling under 
different operating conditions: treated influent, solids concentration and 

soluble organic compounds (SOC; measured as proteins and carbohy
drates) content. A simple and open structure was proposed to allow the 
easy inclusion of further functions to complement the model according 
to specific filtration requisites if necessary, while facilitating its inte
gration with other models or process optimization via supervising 
controllers. 

2. Materials and methods 

2.1. Filtration experimental data set 

The experimental data used to develop the mathematical model was 
extracted from two former works based on the DMF of MWW using a 
demo-scale system [12,14]. This data included the experimental results 
obtained from a filtration plant operated at middle/long-term (from 35 
to 124 days per filtration experiment) filtering MWW from different 
treatment steps of a full-scale facility (‘Conca del Carraixet’ wastewater 
treatment plant (WWTP), Alboraya-Valencia, Spain). A commercial ul
trafiltration membrane module (PULSION® Koch Membrane Systems, 
0.03-µm pore size, total filtration area of 43.5 m2) was used to generate 
the data set. Membrane fouling was evaluated under two influent 
sources (i.e. raw MWW and the primary settler effluent (PSE) from the 
cited municipal WWTP) and four operating suspended solids concen
trations (around 1, 2.6, 6 and 11 g L− 1). The raw MWW was collected 
from the WWTP’s influent after a classic pre-treatment of screening and 
sieving, desanding and degreasing. The operating transmembrane flux 
(J) was normalized to 20 ºC in all experiments to mitigate potential 
viscosity and filterability fluctuations. This approach helped avoid 
filtration perturbations arising from changes in the temperature of the 
filtered wastewater. The demo-scale plant operated under consecutive 
filtration-relaxation stages (F:R), with eventual backwashing (Bw) after 
10 completed cycles. Filtration, relaxation and backwashing stages las
ted for 300, 60 and 120 s, respectively, giving a F:R:Bw ratio of 50:10:2. 
Further details on the filtration plant can be found elsewhere [12]. Ta
bles 1 and 2 show the system constants and main influent characteristics 
used as the model input. 

Fig. 1. Fouling mechanism diagram: (a) cake layer, (b) standard pore blocking, (c) intermediate pore blocking and (d) complete pore blocking.  

Table 1 
System constants.  

Constant Definition Units Value 

Q (20 ºC) Permeate flow rate m3 s− 1 1.2083⋅10− 4 

J (20 ºC) Transmembrane flux L h− 1 m− 2 10 
A Total membrane area m2 43.5 
em Membrane thickness m 2.5⋅10− 3 

ϵ Percentage of pores in the membrane - 0.7 
µ (20 ºC)* Liquid viscosity Pa s− 1 1.003⋅10− 3  

* A constant liquid viscosity was employed since experimental data were 
normalized at 20 ̊C in the source work [12,14]. 

P. Sanchis-Perucho et al.                                                                                                                                                                                                                      



Journal of Environmental Chemical Engineering 12 (2024) 112653

3

2.2. Model basics 

According to Darcy’s law, the relationship between the filtration flux 
(J) and transmembrane pressure (TMP) in vacuum filtration can be 
expressed as follows: 

J =
Q
A
=

TMP
µ R

(1)  

Where Q is the liquid flow rate, A is the total membrane area, µ is the 
viscosity of the treated solution, and R is the filtration resistance. In 
general standings, filtration resistance is given by the addition of two 
different terms: an intrinsically resistance (R0) that represents the 
resistance of the membrane itself to filtration, and the developed fouling 
resistance (RF) that represents the increasing filtration resistance with 
time as membrane fouling develops. R0 is therefore a constant which can 
be determined by clean water filtration tests (see for instance [25]) 
while RF is a model’s variable which needs to be estimated to achieve 
proper forecasts. 

R = R0 +RF (2) 

According to the general fouling mechanisms stated above (i.e. cake 
layer formation and pore blocking), this simplified model considers 
fouling as the result of two independent resistances: (1) the resistance 
caused by the accumulation of material on the membrane surface (cake 
layer resistance or RC), and (2) that linked to the colloidal and soluble 
compounds attached to membrane pores (pore blocking resistance or 
RB). The resulting RF can then be obtained from the sum of these two 
resistances: 

RF = RC +RB (3) 

Considering the nature of the defined individual resistances, RC is 
built as a function of all the suspended material deposited on the 
membrane surface (defined as m (kg)), while RB is equivalently built as a 
function of colloidal and soluble compounds deposited in the membrane 
pores (defined as n (kg)). The terms m and n are thus the main dynamic 
variables controlling fouling resistance in the model, which are quali
tatively related to the increasing amount of each contaminant accu
mulated on the membrane during filtration. The following equations are 
proposed to calculate RC and RB: 

RC = α′m (4)  

RB = α′′n (5)  

Where α’ and α’’ (m− 1 kg− 1) are model parameters representing the 
contribution of each fouling compound (m and n) to its specific fouling 

resistance (RC and RB). These model parameters can be directly related 
to the specific cake layer resistance (αC, m kg− 1) or specific membrane 
pore blocking resistance (αB, m kg− 1) from classic filtration models (see 
for instance [26,27]), respectively, when considering the total filtration 
area (see Eqs. 6 and 7). 

RC = α′m =
αC

A
m (6)  

RB = α′′n =
αB

A
n (7) 

Eq. 6 and Eq. 7 can be used when at least one of the specific re
sistances is known, while the simplified expressions (Eq. 4 and Eq. 5) can 
be used to estimate the qualitative impact of fouling accumulation on 
filtration resistance when approximations for these physical parameters 
are not available. In any case, since the total membrane area (A) is a 
model constant (total filtration area of the membrane module operated), 
the use of any of proposed expressions will result in the same model 
outputs. 

Based on the work by Benyahia et al. [28], the number of pollutants 
attached to the membrane (i.e. m and n) was estimated by considering 
the mass flux of each related contaminant, proposing the following 
differential expressions: 

ṁ = δC
Q
a

XT (8)  

ṅ = δB
Q

ϵa em
S (9)  

Where XT and S are the concentration of suspended solids and soluble/ 
colloidal material in the bulk, respectively, and ‘a’ - understand as a(t) - 
is the dynamic effective filtration membrane area. According to these 
definitions, δC (m2) is a model parameter involving the impact of the 
particulate material flux on the cake-layer growth rate, and δB (m3) is its 
equivalent when considering the soluble and colloidal compounds flux 
impact on pore blocking growth rate. However, in this latter case, since 
we only considered the internal surface of membrane pores to be 
affected by these substances, the effective area is recalculated consid
ering the pores percentage of membrane area (ϵ) and the membrane 
thickness (em). For new membranes, the initial values of m and n will be 
zero (i.e. m(t=0) = 0 and n(t=0) = 0), while these values may be set to 
the adequate initial conditions for the rest of the cases. 

Unlike several studies in the literature on modelling membrane 
fouling, the proposed model considers that the effective membrane area 
is not constant during the filtration process, as Benyahia et al. [28] 
proposed. Instead, the membrane permeability loss is reflected not only 
by an increase in filtration resistance, but also as a reduction of the 
effective membrane area ‘a’. A possible relationship between the fouling 
accumulation (i.e. m and n increases) and the loss of membrane area can 
be expressed as follows: 

a =
A

1 + m
σC
+ n

σB

(10)  

Where σC and σB (kg in both cases) are model parameters that consider 
the effect of each fouling accumulation on membrane area losses. 
Considering Eq. 2, Eq. 3 and the fouling dynamics link with the dynamic 
effective membrane area ‘a’, Eq. 1 can be rewritten as follows: 

J =
Q
a
=

TMP
µ (R0 + RC + RB)

(11) 

According to the proposed model, greater fouling accumulation 
during filtration means that a smaller membrane area is available for 
continuing with the process, increasing consequently the operating 
filtration flux, since a smaller effective membrane area is used to treat 
the same liquid flow rate. This dynamic then creates a circular inter
action between m and n and the effective membrane area ‘a’, which is 

Table 2 
Model inputs for each set of experiments.  

MWW treated XT 

(g L− 1) 
SOC 
(mg L− 1) 

R0*⋅10− 12 

(m− 1) 

PSE  1.2  78  1.7946  
2.6  101  1.5553  
6.4  116  1.8345  

10.6  97  2.3529 

Raw  1.1  96  1.5553  
2.6  109  1.2762  
5.9  127  1.4357  

11.1  142  2.1535 

XT: Suspended solids concentration in the membrane tank. SOC: Soluble organic 
compounds concentration in the membrane tank measured as proteins and 
carbohydrates. Raw: Influent municipal wastewater after a classic pre-treatment 
(screening and sieving, desanding and degreasing). PSE: Effluent of the full-scale 
wastewater treatment plant primary settler. *R0 (membrane resistance), calcu
lated from a flux test using the concentrated bulk solution at the beginning of 
each experimental study. 
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the basic loop used by the model to estimate fouling development. 

2.3. Further model considerations 

As stated above, the model estimates fouling from the dynamics 
between m, n and ‘a’. However, it does not include any mechanisms to 
reduce fouling in the system, which means that all the developed fouling 
was considered as irreversible. This was appropriate for the results 
modelled in this work, since the experimentally observed fouling was 
determined to be mostly irreversible [12,14]. Indeed, backwashing and 
air sparging showed an irrelevant effect on fouling control in the cited 
works. Then, the experimental backwashing phases were modelled in 
this work as relaxation stages. In addition, since cake layer fouling is 
generally considered mainly reversible, the term ’persistent cake layer’ 
will be used from this point forward in the manuscript to refer to the RC 
resistance. It could be defined as the remnants of the formed cake layer 
not able to detach by mechanical forces (i.e. irreversible fouling devel
oped from particles attached to the membrane surface). 

On the other hand, since only data concerning SOC concentration 
during filtration were available, the membrane pore blocking resistance 
was completely linked to the total concentration of these substances in 
this work, expressing Eq. 9 as follows: 

ṅ = δB
Q

ϵa em
SOC (12) 

However, given all the different soluble and colloidal substances that 
can interact with membrane filtration according to the bulk character
istics, the following generalized expression can be proposed to consider 
their overall effect on the model (Eq. 9): 

ṅ = δB
Q

ϵa em

∑N

i=1
(fi xi) (13)  

Where N is the number of soluble and colloidal materials considered in 
the process, x represents their concentration, and f represents the rela
tive relevance of each considered soluble and colloidal compound over 
total relevance (i.e. 

∑N
i=1fi = 1). 

Finally, the data set used revealed that an increase in the bulk sus
pended solids concentration had a sharp beneficial effect on the overall 
filtration performance, achieving less fouling growth rates (see [12,14]). 
This phenomenon was attributed to the formation of thicker cake layers 
during filtration, which prevented the soluble substances and colloids 
reach the membrane surface, as other authors have also theorized 
[29–31]. Since increasing the solids concentration (XT) reduced the 
fouling propensity related to these substances (ṅ), an inhibition function 
for pore blocking was included in the model (Eq. 12) to consider this 
effect. In this case, a classic literature exponential inhibition function 
[32] was used due to the good fits obtained for the studied experimental 
data set. However, other inhibition functions, or none, could be pro
posed, depending on the process, if necessary. Eq. 12 can then be 
rewritten as follows: 

ṅ = δB
Q

ϵa em
SMP e− kI XT (14)  

Where kI (kg− 1) is an inhibitor constant which needs to be determined as 
a model parameter from experiments. 

2.4. Model implementation, calibration and validation 

The model was implemented in MATLAB®. Function ‘ODE45’ was 
used for the differential equations operations. The experimental average 
TMP calculated for each operating day was used to calibrate the model 
from the data set. The experimental data from the operating solids 
concentration of about 1, 2.6 and 6 g L− 1 were used for calibration, 
leaving all the experimental data from a solids concentration of about 
11 g L− 1 for validation. The low concentration experimental data (i.e. 1 

and 2.6 g L− 1) were used for calibration due to the high TMPs obtained 
in those experiments, providing sufficient information for proper 
parameter calibration. Consequently, only data from 6 and 11 g L− 1 

could be used for validation. Using the 11 g L− 1 data for validation was 
preferred to add more credibility to the model, as these results lie 
outside the operating limits used during calibration, thereby enhancing 
its validity. However, it is worth mentioning that similar parameter 
values were obtained when using the 11 g L− 1 data for calibration (data 
not shown), rendering the choice of which set of experiments to use for 
calibration (i.e. 6 or 11 g L− 1) inconsequential. 

Two different sets of parameters were calibrated for each MWW 
evaluated (i.e. raw and PSE). The error between the experimental TMP 
(TMPexp) and the predictions obtained from Eq. 11 (TMPteo) was used as 
the objective value for parameter calibration, minimizing its value by 
using a nonlinear optimization algorithm function (‘fmincon’, MATLAB/ 
Simulink). The error was calculated as the root mean square error 
(RMSE): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
TMPexp − TMPteo

)2

N

√

(15)  

Where N represent the total amount of data. 
On the other hand, the theoretical study of the identifiability of the 

model can be difficult and laborious. To ensure its practical identifi
ability, a procedure in which parameter optimization was obtained from 
several sets of initial conditions was adopted. By limiting the number of 
parameters to be identified (chosen by a sensitivity study), it was 
guaranteed to obtain a single set of parameters for each experimental 
condition tested [33]. 

2.5. Sensitivity and uncertainty analysis 

Two global sensitivity analyses (GSA) were applied to determine the 
model’s most influential parameters after calibration: the standardized 
regression coefficient method (SRC) and Morris screening method [34]. 
In both methods, an input variation factor of ±10% regarding default 
values (see Table 3) was considered. SRC was performed according to 
the Monte Carlo method, applying semi-random Latin Hypercube 
Sampling [35] to generate parameter variations. The number of Monte 
Carlo simulations was set to 2000. Inputs resulting in standard regres
sion coefficients (βi) higher than 0.1 were considered as influential 
factors, establishing a minimum coefficient of determination (R2) of 0.7 
to validate βi as a sensitivity measure [36]. The Morris method was 
conducted by the scaled elementary effect (SEEi) proposed by Sin and 
Gernaey [37]. The trajectory-based sampling strategy proposed by 
Ruano et al. [38] was used as a modification of the Morris screening 
method to improve the calculation of SSEj finite distribution associated 
with each input factor (Fj). The absolute mean (μ*, Eq. 16) and standard 
deviation (σ, Eq. 17) were used as statistical parameters to determine the 
relative importance of parameter variations on the model’s output [36, 

Table 3 
Calibrated parameters.  

Parameter Units MWW DBP (%) 

PSE Raw 

α’ m− 1 kg− 1 2⋅1012 2⋅1012 - 
α’’ m− 1 kg− 1 2⋅1012 2⋅1012 - 
δC m2 1.6198⋅10− 3 8.4963⋅10− 4 47.55 
δB m3 7.8223⋅10− 3 3.1933⋅10− 3 59.18 
σC kg 1 1 - 
σB kg 1 1 - 
kI kg− 1 0.6436 0.3945 38.70 

DBP: Difference between the parameters calibrated for the two MWWs studied. 
Raw: Influent municipal wastewater after a classic pre-treatment of screening 
and sieving, desanding and degreasing). PSE: Effluent of the full-scale waste
water treatment plant primary settler 
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39]. 

μi
∗ =

∑r
j=1|SEEj|

r
(16)  

σi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
r
∑r

j=1

(
SEEj − μi

)2
√

(17)  

Where r is the number of trajectories evaluated (set to 100 in this study) 
and μ is the mean. A resolution of p=4 was used [40]. Morris total 
simulations (MTS) were calculated by Eq. 18, ascending in this case to 

800. 

MTS = r(k+ 1) (18)  

Where k is the number of input factors (i.e. analysed parameters; 7 in this 
study: α’, α’’, δC, δB, σC, σB and kI). 

The uncertainty analysis (UA) of the model was studied after the 
identification of its most sensible parameters. A parameter variation 
factor of ±10% regarding default values (see Table 3) was applied. This 
analysis was conducted by determining the 5th and 95th percentiles of 
the Monte Carlo simulations [41]. 

Fig. 2. Results of the Morris screening method. Same simulation time of that reached by each filtration experimental set was used to evaluate the parameter’s 
sensitivity. Raw: Influent municipal wastewater after classic pre-treatment (screening and sieving, desanding and degreasing). PSE: Effluent from the full-scale 
wastewater treatment plant primary settler. 
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3. Results and discussion 

3.1. Sensitivity and identifiability analysis 

Table 3 shows the model parameters values after calibration. Over
all, the SRC sensitivity study identified 3–4 of the 7 model parameters as 
influential model factors depending of the case (see Fig. S1). This 
method suggests that δB, σB, α’’ and kI (all related to the mass of SOC 

attached the membrane) are important input factors when operating at 
low solid concentrations (around 1 and 2.6 g L− 1), while their influence 
declines when operating at higher solids concentrations (above 6 g L− 1), 
regardless of the MWW treated. In this second case, parameters related 
to the particulate material fouling (i.e. δC, σC, α’) control the model 
output (See Fig. S1). As will be discussed in Section 3.2, the TMP was 
mainly controlled by soluble compounds fouling (n) in the low solids 
concentration range, becoming less important as bulk solids 

Fig. 3. Model’s TMP predictions in the middle/long-term: (a) TMP evolution and (b) model variables’ evolution. Experimental data are shown by dots while the 
model’s predictions are shown by lines. The 5th and 95th represent the corresponding uncertainty percentiles from the Monte Carlo simulations. Note that each 
figure includes the experimental operating solids concentration. Two MWW were studied: PSE (effluent from the full-scale wastewater treatment plant primary 
settler) and Raw (influent municipal wastewater after classic pre-treatment of screening and sieving, desanding and degreasing). 
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concentration rose. Consequently, the higher the operating solids con
centration in the membrane tank, the less the degree of n-related fouling. 
Unfortunately, low degrees of correlation were obtained between the 
variations in parameter values and the subsequent effects on the model 
output (see Fig. S1), which steadily declined as the simulation time was 
increased. Since the SRC method demands correlations above 0.7 to 
validate the sensitivity results [36], it was not possible to validate this 
method in any of the evaluated scenarios, mainly due to the nonlinearity 
of the model presented. Nevertheless, since similar results were obtained 
by the Morris screening method, results from short simulations could be 
used in this case to identify the sensible parameters. 

Likely the SRC, the Morris screening method also revealed that 4 out 
of 7 model parameters (mainly δB, σB, α’’ and kI) were influential on the 
model output (see Fig. 2), although as in the SRC evaluation, parameters 
related to particulate material fouling (i.e. δC, σC, α’) also gained 
importance as raising the solids concentration in the bulk (see Fig. 2). 

The identifiability analysis indicated that the proposed set of pa
rameters was 4 degrees of freedom higher than the level required in this 

case, due to the lack of information on fouling development in the 
studied experimental sets. In fact, no information was available on the 
specific cake layer resistance during the process or the level of pollutants 
attached to the membrane. Consequently, only a qualitative evolution of 
the pollutants accumulated on the membrane surface or in the pores (i.e. 
m and n evolution) could be expected from the model in this case. To 
solve this identifiability issue, the value of 4 of the less-sensitive pa
rameters (σC, σB, α’ and α’’) was set to a constant value to reduce the 
degrees of freedom: 1 kg for parameters σC and σB and 2⋅1012 m− 1 kg− 1 

for parameters α’ and α’’. The number of parameters to be calibrated 
was consequently reduced to 3 (δC, δB and kI). 

3.2. Model performance and uncertainty analysis 

Fig. 3a shows the model performance for the tested operating con
ditions (calibrated parameters values can be found in Table 3), while RC, 
RB, m, n and ‘a’ evolutions are shown in Fig. 3b to allow an easier 
interpretation of the model performance. Reasonably good fits were 

Fig. 3. (continued). 
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obtained in all cases, achieving low RMSE values between about 7 – 28 
mbar. Good fits were also obtained during model validation (solid 
concentration of about 11 g L− 1), showing the model’s good prediction 
capacity (see Fig. 3a). As stated above, this model is based on the 
interaction between fouling accumulation and the membrane’s loss of 
permeability (i.e. m and n increase and ‘a’ declines), creating dynamics 
in which the effective operating flux virtually increases due to the 
reduced effective membrane filtration area. This membrane perme
ability reduction can be in two different ways: a persistent cake layer 
formation (related to m) and pore blocking (related to n), since ‘a’ is 
affected by both in the same way (see Eq. 10). The described dynamic 
can be appreciated in Fig. 3b, where a decline in ‘a’ can be observed as 
filtration advances, regardless of the major fouling source changing due 
to the modified operating solids concentration. Fouling was primarily 
controlled by pore blocking at low operating solids concentrations 
(around 1 and 2.5 g L− 1), while persistent cake layer formation domi
nated fouling otherwise (i.e. at operating solids concentrations about 6 
and 11 g L− 1). This shift can be clearly appreciated in the greater in
creases of n and RB at the low solids range (around 1 and 2.5 g L− 1), 
transitioning to dominance by m and RC as the operating solids con
centration increased (see Fig. 3b). This dynamic was achieved by 
incorporating a pore-blocking inhibition function into Eq. 14, as detailed 
in Section 2.3, in alignment with the findings of Sanchis-Perucho et al. 
[12,14]. 

On the other hand, similar values for the considered model param
eters were reached after calibrating the model for the influents studied 
(raw and PSE), as shown in Table 3. This was presumably due to the two 
studied MWWs sharing the same matrix, i.e. PSE obtained from raw 
MWW after the primary settling step. The lower fouling rate propensity 
when treating raw MWW instead of PSE (see Fig. 3) was captured by the 
model through a lower value for the δC and δB parameters. However, 
these differences could have arisen from oversimplifying the pollutants 
that promote fouling. As suggested by Sanchis-Perucho et al. [12,14], the 
particle size distribution of the filtered bulk is a key factor in membrane 
fouling propensity when directly filtering untreated non-biological 
MWW. Including information on the colloidal fraction concentration 
(which has been identified as an important fouling promoter [42]) and 
the average particle size of the bulk suspended solids particles could thus 
significantly enhance this model’s fouling prediction capacity. Further 
studies will be required on this latter point to develop a more complete 
model capable of predicting fouling from the two influents studied using 
a single set of parameters. 

Finally, the UA performed when considering the most influential 
model parameters in each case showed that low uncertainties can be 
expected when the operating TMP is held below 150–200 mbar, steadily 
increasing as the fouling occurring in the membrane raises (see Fig. 3a). 
This is because future fouling development in filtration systems strongly 
depend on past fouling conditions. Consequently, minimal divergence 
during parameters calibration could lead to substantial discrepancies in 
the long-term due to cumulative errors. Nonetheless, the uncertainties 
obtained by the model showed no more than 100 – 150 mbar differences 
in the latter stages of filtration (i.e. when the available membrane area 
‘a’ approached to 0). Slight errors in the parameters calibration will thus 
not heavily impact on the model’s prediction capacity, showing its 
robustness. 

3.3. Forecasts when increasing the solids concentration in the bulk and 
potential applications of the model 

As aforementioned, the proposed model was built to consider the 
beneficial effects of increasing the solids concentration in the bulk on 
mitigating pore-blocking fouling. However, many membrane systems 
operate at much higher solids concentrations than those reached in the 
experimental data set used, wherein an increase in solids concentration 
entails higher fouling propensities [11,43]. To estimate the model out
puts when operating at higher solids concentrations than those 

evaluated in this work and to assess its suitability for matching other 
filtration results, a number of simulations were performed. These sim
ulations involved determining the final TMP achieved after 150 days of 
filtration, with the solids concentration increased in each case from 1 to 
20 mg L− 1 (solids increment step of 1 mg L− 1), totalling 20 independent 
simulations. Parameters calibrated from PSE filtration were used in 
these simulations, considering a constant SOC concentration in the bulk 
of 16 mg L− 1. 

Fig. 4 shows the results obtained when simulating this steady in
crease in the operating solids concentration in the filtered bulk. A 
changing dynamic was observed for the forecasted TMP, initially 
decreasing but later increasing as the solids concentration rose to over 
4–5 g L− 1 (see Fig. 4a). This change was due to the shift in the primary 
fouling contributor from pore blocking ‘n’ to persistent cake layer ‘m’, as 
anticipated with the increase in solids (see Fig. 4b). These results 
demonstrate the existence of an optimal solids range: initially enhancing 
filtration by preventing pore-blocking fouling but hindering it due to the 
increasing persistent cake layer fouling with further increments in 
concentration. This model could thus be particularly interesting for 
determining the optimum solids range when directly filtering MWW, 
which may be strongly influenced by other operating conditions such as 
the SOC concentration in the bulk or the transmembrane flux. On the 
other hand, its outcome when raising solids concentration suggests that 
the model could potentially match results from other filtration systems 
where solids concentration dominates fouling. The model could 

Fig. 4. Simulation runs when increasing solids concentration using parameters 
calibrated for PSE treatment (see Table 3). All simulations were performed at 
150 days of filtration at a constant SOC concentration of 16 mg L− 1. 
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therefore be tested for other applications, such as MBRs, and even 
coupled with complementary biological models to predict irreversible 
membrane fouling in those systems. Examples and guidelines for similar 
simple models applied to MBRs can be found in [22,28]. In the case of 
applying this model to other membrane systems, were reversible fouling 
could be more relevant, the effects of the applied fouling control stra
tegies would be adsorbed by a lower propensity to irreversible fouling in 
the system (i.e. a lower value for parameters δC and δB). Consequently, 
although this model does not give proper short-term predictions (i.e. 
when just few cycles of filtration-relaxation are simulated), it could 
produce proper results when considering the average TMP in the 
middle/long-term. Regarding the integration of this model with super
visory controllers, it could be utilized to determine the optimal set points 
of the filtration process via optimization algorithms. This process entails 
selecting the most significant process variables for dynamic control and 
optimization with the aim of minimizing fouling development and 
operating costs. The optimization is based on predictions derived from 
the model, with inputs such as influent MWW characteristics being 
regularly updated. Examples and guidelines of this kind of applications 
in MBRs can be found in [44,45]. Further studies are needed to evaluate 
all these potential applications of the model mentioned above. 

3.4. Merits, limitations and challenges of the model 

The presented model was able to produce reasonable fouling pre
dictions for the data evaluated in this work. Furthermore, Fig. 4 dem
onstrates the model’s potential to match the different types of fouling 
behaviour described in the related literature thanks to the proposed 
dynamics between m, n and ‘a’, maintaining nevertheless a simple and 
open structure. Other simple models can be found in literature to predict 
membrane fouling in MBRs [20,22,23,28], achieving also good perfor
mances when combined with biological processes. However, these 
generally consider fouling as the product of a single variable (usually 
solids concentration in the bulk, see for instance [20,23]), shortening 
their applicability range. This model contributes therefore to over
coming this shortcoming, providing membrane fouling predictions 
based on two variables and their potential interaction with each other. 
In addition, to the best of the authors’ knowledge, no filtration models 
specialized on the DMF o MWW can be found in the literature, this being 
a first tentative in the field. In fact, filtration models are usually built 
either for general, not specific applications, or with MBRs in mind, their 
adaptation to the DMF of MWW obliging to adapt and/or include more 
functions and/or to increase their number of parameters and 
complexity. General filtration models could also be evaluated to match 
these experimental results, since they are also mainly based on physical 
interactions between pollutants and the membrane (see for instance [9, 
46]). However, their adaptation would also require an increase in the 
model’s complexity, including considerations such as cake layer 
porosity and compressibility [46–48] or collisions and agglomerations 
between particles [49,50]. Moreover, the particle size distribution of the 
influent feed, which is usually required in these models [47–50], is not a 
simple parameter to continuously monitor. Indeed, it can be highly 
variable, and specialized equipment is required for its determination. 
Instead, this model presents an extremely simple structure, requiring 
only the calibration of 3 parameters in this work to achieve proper re
sults, while solids and SOC (proteins and carbohydrates) are extensively 
used variables that can easily be determined via classic methods or 
commercial kits. This makes the proposed model an interesting tool for 
filtration control in this field due to its simplicity and easy imple
mentation or its ability to combine with other tools (e.g. complementary 
supervising controllers or optimization algorithms). 

Despite the aforementioned merits, the simplicity of the proposed 
model also entails significant limitations that need to be considered. 
Since the model only predicts irreversible fouling, short-term optimi
zation of filtration operating conditions is not possible. Indeed, revers
ible cake layer dynamics are omitted in this model, making it unsuitable 

for systems where controlling reversible fouling is a major priority. 
Likewise, the model lacks the capacity to predict fouling dynamics 
resulting from changes in the particle size distribution of the feed and/or 
the pore size of the membrane used. Therefore, this model is not rec
ommended for processes where the quality of the influent experiences 
significant fluctuations in particle size or nature. Finally, the effect of 
changing fouling control strategies is not considered. While this may not 
be a significant issue as such strategies typically focus on mitigating 
reversible fouling, if they change significantly affect the occurrence of 
irreversible fouling in the applied system, a recalibration of the model 
parameters according to the new operating conditions would be 
necessary. 

Further research is planned to address some of the aforementioned 
limitations. For example, the incorporation of reversible cake layer dy
namics could be considered by distinguishing between reversible and 
irreversible cake layer formations in the model, similar to other existing 
models [51]. Additional functions could also be introduced to mitigate 
reversible cake layer formation, taking into account the impact of 
various reversible fouling control strategies, such as in multiple filtra
tion models [20,28,51]. Moreover, the average particle size distribution 
of the feed could be included as a model variable, as in [47–50], aiming 
to account for the effects of the influent MWW filtered under a unified 
set of parameters, as proposed in Section 3.1. However, these potential 
enhancements would likely increase the complexity of the model, 
potentially compromising its primary strength and focus, simplicity. 
Therefore, comprehensive research is necessary to determine whether 
integrating some of these proposed modifications is justified. Addi
tionally, further studies are required to improve the accuracy of the 
model’s predictions for various filtration conditions (e.g. direct MWW 
filtration at higher solids concentrations and different permeate fluxes), 
while it is essential to evaluate the model’s performance in other 
filtration systems or when utilized as an optimization/control tool for 
filtration. 

4. Conclusions 

This paper proposes a simple generic model with 7 calibration pa
rameters to predict long-term membrane fouling in direct MWW filtra
tion. Good predictions were obtained for different operating solids 
concentrations (about 1, 2.6 and 6 g L− 1), achieving RMSE values be
tween the experimental data and model predictions of around 7 – 28 
mbar. Good fits were also obtained when applying the calibrated model 
to a higher solids concentration (about 11 g L− 1), validating the pro
posed model for a short solids concentration range. The model was also 
able to match the results from two different influents (raw municipal 
wastewater and the effluent of the primary settler) by simply modifying 
3 of the 7 parameters while the uncertainly analysis showed that slight 
uncertainties can be expected in long-term simulations, demonstrating 
the robustness of the model. The proposed model demonstrates thus a 
good potential in generating reasonable membrane fouling predictions. 
Its key strengths lie in its ability to account for fouling from two distinct 
sources (solids and SOC), also considering their combined effect on 
membrane permeability decline, while maintaining an extremely 
simplistic and adaptable structure, facilitating its integration with other 
complementary materials. Moreover, to the best of the authors’ 
knowledge, no filtration models specialized on the DMF o MWW can be 
found in the literature, this being a first tentative in the field. Further 
studies will be conducted to enhance the accuracy and broaden the 
application range of the model, as well as to validate its potential for 
optimizing filtration systems and controlling fouling. 
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[48] D. Bourcier, J.P. Féraud, D. Colson, K. Mandrick, D. Ode, E. Brackx, F. Puel, 
Influence of particle size and shape properties on cake resistance and 
compressibility during pressure filtration, Chem. Eng. Sci. 144 (2016) 176–187, 
https://doi.org/10.1016/j.ces.2016.01.023. 
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