
HAL Id: hal-04590931
https://hal.inrae.fr/hal-04590931

Submitted on 28 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Estimation of contemporary effective population size in
plant populations: Limitations of genomic datasets

Roberta Gargiulo, Véronique Decroocq, Santiago C. Gonzalez-Martinez, Ivan
Paz-vinas, Jean-marc Aury, Isabelle Lesur Kupin, Christophe Plomion,

Sylvain Schmitt, Ivan Scotti, Myriam Heuertz

To cite this version:
Roberta Gargiulo, Véronique Decroocq, Santiago C. Gonzalez-Martinez, Ivan Paz-vinas, Jean-marc
Aury, et al.. Estimation of contemporary effective population size in plant populations: Limitations
of genomic datasets. Evolutionary Applications, 2024, 17 (5), �10.1111/eva.13691�. �hal-04590931�

https://hal.inrae.fr/hal-04590931
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Evolutionary Applications. 2024;17:e13691.	 ﻿	   | 1 of 16
https://doi.org/10.1111/eva.13691

wileyonlinelibrary.com/journal/eva

Received: 21 August 2023  | Revised: 22 March 2024  | Accepted: 3 April 2024
DOI: 10.1111/eva.13691  

O R I G I N A L  A R T I C L E

Estimation of contemporary effective population size in plant 
populations: Limitations of genomic datasets

Roberta Gargiulo1  |   Véronique Decroocq2  |   Santiago C. González-Martínez3  |   
Ivan Paz-Vinas4,5  |   Jean-Marc Aury6 |   Isabelle Lesur Kupin3 |   Christophe Plomion3  |   
Sylvain Schmitt7  |   Ivan Scotti8 |   Myriam Heuertz3

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2024 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd.

1Royal Botanic Gardens, Kew, Richmond, 
UK
2INRAE, Univ. Bordeaux, UMR 1332 BFP, 
Villenave d'Ornon, France
3INRAE, Univ. Bordeaux, Cestas, France
4Department of Biology, Colorado State 
University, Fort Collins, Colorado, USA
5CNRS, ENTPE, UMR5023 LEHNA, 
Université Claude Bernard Lyon 1, 
Villeurbanne, France
6Génomique Métabolique, Genoscope, 
Institut François Jacob, CEA, CNRS, Univ 
Evry, Université Paris-Saclay, Evry, France
7AMAP, Univ. Montpellier, CIRAD, CNRS, 
INRAE, IRD, Montpellier, France
8INRAE, URFM, Avignon, France

Correspondence
Roberta Gargiulo, Royal Botanic Gardens, 
Kew, Richmond, Surrey, UK.
Email: r.gargiulo@kew.org and 
robertaxgargiulo@gmail.com

Funding information
European Cooperation in Science and 
Technology (COST) Action “Genomic 
Biodiversity Knowledge for Resilient 
Ecosystems (G-BiKE), Grant/Award 
Number: CA18134 (G-BiKE Short-Term 
Scientific Mission)

Abstract
Effective population size (Ne) is a pivotal evolutionary parameter with crucial im-
plications in conservation practice and policy. Genetic methods to estimate Ne 
have been preferred over demographic methods because they rely on genetic data 
rather than time-consuming ecological monitoring. Methods based on linkage dise-
quilibrium (LD), in particular, have become popular in conservation as they require a 
single sampling and provide estimates that refer to recent generations. A software 
program based on the LD method, GONE, looks particularly promising to estimate 
contemporary and recent-historical Ne (up to 200 generations in the past). Genomic 
datasets from non-model species, especially plants, may present some constraints 
to the use of GONE, as linkage maps and reference genomes are seldom available, 
and SNP genotyping is usually based on reduced-representation methods. In this 
study, we use empirical datasets from four plant species to explore the limitations 
of plant genomic datasets when estimating Ne using the algorithm implemented in 
GONE, in addition to exploring some typical biological limitations that may affect 
Ne estimation using the LD method, such as the occurrence of population structure. 
We show how accuracy and precision of Ne estimates potentially change with the 
following factors: occurrence of missing data, limited number of SNPs/individuals 
sampled, and lack of information about the location of SNPs on chromosomes, with 
the latter producing a significant bias, previously unexplored with empirical data. 
We finally compare the Ne estimates obtained with GONE for the last generations 
with the contemporary Ne estimates obtained with the programs currentNe and  
NeEstimator.
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1  |  INTRODUC TION

Effective population size (Ne) is an evolutionary parameter in-
troduced by Wright  (1931), which determines the rate of genetic 
change due to genetic drift and is therefore linked with inbreeding 
and loss of genetic variation in populations, including adaptive po-
tential (Franklin, 1980; Jamieson & Allendorf, 2012; Waples, 2022). 
The importance of contemporary effective population size in con-
servation biology is increasingly recognized, and the concept im-
plemented in conservation practice (Frankham et al., 2014; Luikart 
et  al.,  2010; Montes et  al., 2016) and policy (Graudal et  al.,  2014; 
Hoban et  al.,  2013; Kershaw et  al.,  2022; O'Brien et  al.,  2022). 
For example, Ne has been included as a headline genetic indicator 
to support Goal A and Target 4 of the Kunming-Montreal Global 
Biodiversity Framework of the UN's Convention on Biological 
Diversity (CBD,  2022), as the proportion of populations within 
species with Ne > 500, that are expected to have sufficient genetic 
diversity to adapt to environmental change (Hoban et  al.,  2020; 
Jamieson & Allendorf, 2012).

Contemporary Ne can be estimated using demographic or genetic 
methods (Felsenstein, 2019; Luikart et al., 2010; Wang et al., 2016; 
Waples, 2016; Wright, 1969). Demographic estimators require de-
tailed ecological observations over time for the populations of in-
terest (Felsenstein, 2019; Nunney, 1993; Wright, 1969), which is not 
necessary for genetic estimators (Wang et al., 2016; Waples, 2016). 
Methods that can provide Ne estimates based on a single sampling 
point in time (Wang,  2016) have become particularly popular, es-
pecially in studies focused on species for which budget and time 
allocated are limited, elusive species that are difficult to track and 
monitor (Luikart et  al.,  2010), and species for which information 
about distribution is scarce. The current biodiversity crisis and the 
limited resources for conservation have recently fuelled the devel-
opment and application of  Ne estimators that rely on cost-effective, 
non-genetic proxy data across a wide range of species of conser-
vation concern (Hoban et al., 2020; Hoban, Bruford, et al., 2021). 
Population census size, NC, has been used to infer Ne when genetic 
Ne estimates are not available, relying on the ratio Ne/NC = 0.1 
(where NC is the adult census size of a population) (Frankham 
et al., 2014; Hoban, Paz-Vinas, et al., 2021; Palstra & Fraser, 2012). 
This rule-of-thumb ratio is pragmatic for conservation (but see 
Fady & Bozzano, 2021), as shown in application tests in different 
countries for different species of conservation concern (Hoban 
et  al.,  2023; Thurfjell et  al.,  2022). However, research needs to 
progress to better understand Ne estimation methods and potential 
deviations from the ratio Ne/NC = 0.1, which are expected for exam-
ple across populations within species or in species with life-history 
traits that favour individual persistence (Frankham, 2021; Gargiulo 
et  al.,  2023; Hoban et  al.  2020; Hoban, Paz-Vinas, et  al.,  2021; 
Jamieson & Allendorf,  2012; Laikre et  al.,  2021). Current genetic 
estimators of contemporary Ne work well in small and isolated pop-
ulations, which match many populations of conservation concern, 
but they are difficult to apply in species with a large and continuous 
distribution (Fady & Bozzano, 2021; Santos-del-Blanco et al., 2022). 

In such species, genetic isolation by distance, overlapping gener-
ations, and difficulty to define representative sampling strategies 
can affect the accuracy of estimates of NC, Ne and their ratio (Neel 
et  al.,  2013; Nunney,  2016; Santos-del-Blanco et  al., 2022). Plant 
species embody some of the features mentioned above, as they 
often have complex life-history traits (e.g., overlapping generations, 
long lifespans), reproductive systems (i.e., mixed clonal and sexual 
reproduction, mixed selfing and outcrossing strategies) and continu-
ous distribution ranges (De Kort et al., 2021; Petit & Hampe, 2006). 
Therefore, they are particularly interesting to help improve our un-
derstanding of Ne estimation methods.

Genetic drift generates associations between alleles at different 
loci, known as linkage disequilibrium (LD), at a rate inversely pro-
portional to Ne (Hill, 1981; Waples et  al.,  2016). LD between loci 
can be used to obtain a robust estimate of contemporary Ne from 
genetic data at a single time point, and this explains the popularity 
of the LD method compared to the earlier developed two-sample 
temporal methods (Luikart et al., 2010; Waples, 2024) and the devel-
opment of numerous tools for the estimation of LDNe from genetic 
and genomic data (Barbato et  al.,  2015; Do et  al.,  2014; Santiago 
et al., 2020; Wang et al., 2016). The Ne estimates obtained with the 
LD method generally refer to a few generations back in time (Do 
et al., 2014; Luikart et al., 2010) and, depending on the genetic dis-
tances between loci, it is possible to obtain Ne at different times in 
the past (Santiago et  al.,  2024; see also the review on timescales 
of Ne estimates in Nadachowska-Brzyska et  al., 2022). In particu-
lar, LD between closely linked loci can be used to estimate Ne over 
the historical past (Barbato et  al.,  2015; Do et  al.,  2014; Hayes 
et al., 2003; Qanbari et al., 2010; Santiago et al., 2020; Sved, 1971; 
Wang et al., 2016), whereas loosely linked or unlinked loci can be 
used to estimate Ne in the recent past (Novo, Ordás, et  al.,  2023; 
Novo, Pérez-Pereira, et al., 2023; Qanbari, 2019; Sved et al., 2013; 
Wang et al., 2016; Waples, 2006a; Waples & Do, 2008). However, 
as other methods to estimate Ne, the LD method is not devoid of 
biases and drawbacks, mostly relating to the assumption that the 
population is isolated, which is rarely satisfied (England et al., 2010; 
Hill, 1981; Waples, 2024; Waples & England, 2011), and to the occur-
rence of age structure (Hössjer et al., 2016; Nunney, 1991; Robinson 
& Moyer, 2013; Ryman et al., 2019; Waples et al., 2014; Waples & 
Do, 2010; Yonezawa, 1997).

In this study, we aimed to explore the limitations of plant ge-
nomic datasets when estimating contemporary Ne. We mostly fo-
cused on estimating Ne using the software program GONE (Santiago 
et  al.,  2020), but we also provide Ne estimates obtained with 
NeEstimator (Do et al., 2014) and the recently developed program, 
currentNe (Santiago et  al.,  2024). These programs provide recent 
historical and contemporary Ne estimates, respectively, using the 
LD method, though they differ mostly in the data requirement and 
timescales of estimates provided. GONE is capable of exploiting the 
full range of LD among loci in a dataset, therefore providing Ne esti-
mates that are reliable up to 200 generations ago; NeEstimator and 
currentNe provide Ne estimates that represent the average over a 
few recent generations, and the number of generations representing 
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an estimate increases with the number of chromosomes of the spe-
cies (Santiago et al., 2024).

We explored the technical requirements of GONE by conduct-
ing power analyses aimed at testing how the number of SNPs, the 
proportion of missing data, the number of individuals, the lack of 
information about the location of SNPs on chromosomes, and the 
occurrence of population structure might affect Ne estimation. The 
Ne estimates obtained with GONE were then compared to the ones 
obtained with NeEstimator and currentNe, and discussed in light of 
the biological and ecological features of the species. Our findings 
help better understand the limitations and potentialities of genomic 
datasets when estimating LD-based, one-sample Ne, providing new 
insights on how to use current methods.

2  |  METHODS

2.1  |  Datasets

We selected four datasets obtained with different high-throughput 
sequencing techniques from different plant taxa (Symphonia globu-
lifera L. f. (Clusiaceae), Mercurialis annua L. (Euphorbiaceae), Fagus 
sylvatica L. (Fagaceae), Prunus armeniaca L. (Rosaceae)), to repre-
sent different botanical groups, ecosystems, generation times and 
reproductive strategies. Sampling strategies in the datasets en-
compassed different sample sizes for markers and individuals, and 
datasets featured distinct levels of population genetic structure 
(Table 1).

For boarwood, S. globulifera s.l., a widespread and predominantly 
outcrossing evergreen tree typical of mature rainforests in Africa and 
the Neotropics (Degen et al., 2004; Torroba-Balmori et al., 2017), we 
used the targeted sequence capture dataset described in Schmitt 
et al. (2021). Three sympatric gene pools were identified in a lowland 
forest in French Guiana, likely corresponding to three biological spe-
cies, described as Symphonia sp. 1, Symphonia sp. 2 and Symphonia 
sp. 3 (Schmitt et al., 2021). To avoid the influence of admixture on 
the estimation of Ne, we first divided the dataset in three subsets 
based on the analysis of genetic structure performed in the soft-
ware Admixture v1.3.0 (see Schmitt et al., 2021), selecting only the 
individuals with a Q-value (cluster membership coefficient) ≥ 95% to 
each of the three genetic clusters (Species 1, Species 2 and Species 
3; File S1). We then selected the 125 genomic scaffolds with the 
largest number of SNPs (see Table 1).

For the annual mercury, M. annua, an annual plant with variable 
mating systems (monoecious, dioecious, androdioecious), ploidy lev-
els (2×, 4×–12×) (Obbard, Harris, Buggs, & Pannell, 2006; Obbard, 
Harris, & Pannell, 2006), potential to produce seed banks, and typ-
ical of open or disturbed habitats in Europe and North Africa, we 
used the gene capture dataset described in González-Martínez 
et al.  (2017), obtained from 40 diploid dioecious individuals grown 
from seeds, representative of 10 localities and three main gene 
pools in the species (as described after the fastStructure analysis 
in González-Martínez et  al.,  2017). We selected the 48 scaffolds 

with the largest number of SNPs and ran the analyses by consider-
ing each gene pool separately: (1) ancestral populations from Turkey 
and Greece (“Core”), (2) range-front populations from northeastern 
Spain (“Mediterranean”), or (3) range-front populations from north-
ern France and the UK (“Atlantic”) (see Table 1).

For the common beech, F. sylvatica, a deciduous predomi-
nantly outcrossing tree of European temperate forests (Merzeau 
et al., 1994), we analyzed genomic scaffolds from a single, contigu-
ous stand (plot N1; Oddou-Muratorio et al., 2021) within a relatively 
isolated French population (Mt. Ventoux, southeastern France, 
NC ≃ hundreds of thousands, also depending on the gene flow 
range), in which population genetic structure is neither observed 
nor expected (Csilléry et al., 2014). Mapping of short-reads paired 
Illumina sequences was independently performed for each one of 
the 167 individuals of the population against the genome assembly 
(available at www.​genos​cope.​cns.​fr/​plants) using bwa-mem2 2.0 (Li 
& Durbin,  2009). SNPs were first called using GATK 3.8 (Van der 
Auwera & O'Connor,  2020) using the following parameters: -nct 
20 -variant_index_type LINEAR variant_index_parameter 128,000. 
SNPs were also called using samtools v1.10/bcftools v1.9 (Danecek 
et al., 2021) with default parameters. Following these two SNPs call-
ing steps, we performed a three-steps filtering process: (i) only dial-
lelic SNPs were kept, (ii) the minimum allele frequency (MAF, upper 
case used at the individual level), calculated on the basis of all the 
reads containing the SNP, was set to 30% (note that GONE does 
not require the application of MAF filtering, and such filtering might 
cause a small upward bias in the estimation), (iii) individual genotypes 
with sequencing depth less than 10 were recoded into «./.» mean-
ing that both alleles are missing. We then identified SNPs found by 
both GATK and samtools using the - diff flag of vcftools v0.1.15 with 
tabix-0.2.5 (Danecek et al., 2011). A nucleotide polymorphism was 
considered to be a SNP if at least one individual was found to be het-
erozygous at the position. On average, for each individual, 88.5% of 
the sequencing reads mapped properly onto the assembly. The final 
VCF contained 18,192,174 variants, and is available at the Portail 
Data INRAe (https://​doi.​org/​10.​57745/​​FJRYI1).

We re-ordered the 406 genomic scaffolds available based on 
their number of SNPs, and selected 150 scaffolds with the largest 
number of SNPs. We tested different combinations of input subsets, 
with numbers of scaffolds ranging from 12 to 150 (provided that 
SNPs per scaffold <1 million and total number of SNPs <10 million, 
see the requirements of GONE below), and numbers of individuals 
ranging from 5 to 167 (the total sample size).

For the apricot, P. armeniaca, we estimated Ne using whole ge-
nome resequencing data (21× depth of coverage by ILLUMINA tech-
nology) for wild Central Asian, self-incompatible populations of the 
species (Groppi et al., 2021). Variant sites were mapped to the eight 
chromosomes of the species and ranged between 2.3 and 6.2 mil-
lion per chromosome (total number of variant sites: 24 M). As these 
exceeded the total number allowed in GONE, we downsampled the 
number of SNPs prior to the analyses. We also analyzed the data-
sets by considering the different gene pools recovered in Groppi 
et al.  (2021) (see Supp. Fig. S20 in Groppi et al. 2021), namely the 
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    |  5 of 16GARGIULO et al.

Southern (red cluster) and Northern (yellow cluster) gene pools, as 
obtained with fastStructure (Raj et al., 2014) (see next subsection).

2.2  |  Data analyses in GONE

2.2.1  |  Analyses for all species

We performed Ne estimation with the software GONE (Santiago 
et  al.,  2020). GONE generates contemporary or recent histori-
cal estimates of Ne (i.e., in the 100–200 most recent generations) 
using the LD method. GONE uses linkage information represented 
by mapped SNPs, ideally mapped to chromosomes. Chromosome 
mapping is rarely available for non-model species, and in our case 
was only fully available for the apricot (P. armeniaca) dataset. In the 
absence of chromosome mapping information for the other species, 
we treated genomic scaffolds as chromosomes. In terms of require-
ments, GONE accepts a maximum number of chromosomes of 200 
and a maximum number of SNPs of 10 million, with a maximum num-
ber of SNPs per chromosome of 1 million, although the program uses 
up to 50,000 random SNPs per chromosome for the computations 
when the total number of SNPs is larger. A complete workflow of 
the analyses carried out in GONE is available at https://​github.​com/​
Ralpi​na/​Ne-​plant​-​genom​ic-​datasets (Gargiulo, 2023); the input pa-
rameter file used for the final analyses is available in File S2.

2.2.2  |  Influence of missing data on Ne estimation

The influence of missing data on Ne estimation in GONE was evalu-
ated using the dataset from F. sylvatica. After keeping 67 individuals 
with less than 95% missing data, we permuted individuals (without 
replacement) to generate 150 datasets of 35 individuals, and es-
timated Ne in GONE for each dataset. Proportion of missing data 
per individual for each permuted dataset was calculated in vcftools 
v0.1.16 (Danecek et  al.,  2011) from an average of ~25%–95%; re-
sults were plotted in R v4.2.2 (R Core Team, 2019). In addition, we 
used the dataset of P. armeniaca to evaluate how Ne changed when 
manually introducing missing data. We selected all individuals from 
the Northern gene pool with a Q-value (cluster membership coef-
ficient) ≥ 99% (77 individuals) to rule out the influence of admixture, 
and replaced some of the individual genotypes with missing values 
using a custom script (available at: https://​github.​com/​Ralpi​na/​Ne-​
plant​-​genom​ic-​datasets). We generated two datasets with a propor-
tion of missing data per individual of 20% and 40%, respectively, and 
then computed Ne in GONE for each dataset obtained.

2.2.3  |  Influence of number of SNPs on 
Ne estimation

The influence of the number of SNPs on Ne estimation in GONE 
was evaluated using the dataset of P. armeniaca. From the Northern 

gene pool, we first selected the individuals with a Q-value ≥99% 
to rule out the influence of admixture. We drew random subsets 
of variant sites (without replacement) including 40 K, 80 K, 150 K, 
300 K, 500 K, 3.5 M, 7 M, and 10 M SNPs, respectively, and gener-
ated 50 replicates for each subset; we then estimated Ne in GONE 
for each subset and obtained the geometric mean and the 95% 
confidence intervals across the 50 replicate subsets with the same 
number of SNPs (using the functions exp(mean(log(x))) and quantile 
in R).

2.2.4  |  Influence of the sample size on Ne estimation

We used the Northern gene pool of P. armeniaca to assess how 
Ne estimates changed depending on the number of samples con-
sidered and the uncertainty associated with individual sampling. 
We first downsampled the number of SNPs to 3.5 M (to satisfy 
GONE requirements), and varied the sample sizes included in the 
analyses from 15 to 75 (i.e., approx. the total number of individ-
uals of the Northern gene pool with a Q-value ≥ 99%). For each 
sample size group, we generated 50 subsets (without replacement 
within the subset) of individuals and estimated Ne in GONE for 
each subset; we then estimated the geometric mean and the 95% 
confidence intervals across subsets with the same sample size 
(using the functions stat_summary(fun. data = median_hilow, fun.
args = list(conf.int = 0.95) and stat_summary(fun = “geometric.mean” 
(psych package) in R).

2.2.5  |  Influence of population admixture on 
Ne estimation

We also evaluated how genetic structure within gene pools influ-
enced Ne estimation in GONE for both the Southern and Northern 
gene pools of P. armeniaca. We first downsampled the number of 
SNPs to 3.5 M to satisfy GONE requirements, as described above. 
We then distributed the individuals of each gene pool into five 
(overlapping) subsets based on individual Q-values (lower bounds 
of 70%, 80%, 90%, 95%, and 99%), resampled individuals (without 
replacement) in each Q-value subset 50 times, standardizing sam-
ple sizes to the sample size of the smallest Q-value subset within 
a gene pool (i.e., 21 individuals as in the 99% Q-value subset of 
the Southern gene pool and 77 individuals as in the 99% Q-value 
subset of the Northern gene pool, see Table  S1 for the original 
sample sizes). We then estimated Ne in GONE and obtained 95% 
confidence intervals across the 50 resampled datasets of the same 
Q-value subset within a gene pool (using the R function stat_sum-
mary mentioned above). We also combined all individuals from the 
two gene pools (255 individuals), resampled either 22 or 77 indi-
viduals 50 times without replacement, and estimated Ne in GONE 
and the related confidence intervals as explained above, to evalu-
ate the effect of missing the two gene pools on the Ne estimates 
obtained.
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2.2.6  |  Effect of using genomic scaffolds rather 
than chromosomes

We evaluated the effect of using genomic scaffolds to estimate 
linkage groups when chromosome information is not available. 
Using the downsampled dataset of 3.5 M SNPs from P. armeniaca, 
we selected from the Northern gene pool 45 random individuals 
with a Q-value ≥ 99%, to rule out the influence of admixture. For 
this dataset, five different chromosome maps were then created, 
progressively assigning SNPs to 8 (true value), 16, 32, 64 and 128 
chromosomes (as if they were genomic scaffolds, see script and re-
lated explanation at https://​github.​com/​Ralpi​na/​Ne-​plant​-​genom​
ic-​datas​ets#​4-​effec​t-​of-​using​-​genom​ic-​scaff​olds-​inste​ad-​of-​chrom​
osome​s-​on-​ne-​estim​ation​). We then estimated Ne in GONE using 
five corresponding chromosome map files and keeping the same 
ped (genotypes) file.

2.3  |  Data analyses in NeEstimator

We also used the LD method as implemented in the software 
NeEstimator v2 (Do et al., 2014) to estimate the Ne of our popula-
tions. NeEstimator uses unmapped SNP information and assumes 
that SNPs are independently segregating (typically, SNPs at short 
physical distances, for example those in the same short genomic 
scaffolds or loci, are filtered previous to the analysis, see below). 
Therefore, it provides an Ne estimate based on the LD generated 
by random genetic drift, which reflects Ne in very recent genera-
tions (Waples et al., 2016). However, accuracy and precision will be 
both affected by (1) the assumption of independent segregation in 
genomic datasets, as SNPs are necessarily packed on a limited num-
ber of chromosomes and thus they provide non-independent infor-
mation, and especially (2) the occurrence of overlapping pairs of loci, 
each locus appearing in multiple pairwise comparisons (i.e., two as-
pects of the issue known as pseudoreplication; Purcell et al., 2007; 
Waples,  2024; Waples et  al.,  2016, 2022). Although the influence 
of this issue on bias and precision is difficult to address completely, 
some bias corrections have been proposed, for example applying a 
correction based on the genome size of the species being analyzed 
(formula in Waples et al., 2016), restrict comparisons to pairs of loci 
occurring on different chromosomes (Waples, 2024), or using only 
one SNP per scaffold or thinning scaffolds based on discrete window 
sizes (Purcell et al., 2007). To correct the bias due to physical linkage, 
we therefore applied the correction in Waples et al. (2016), by divid-
ing the Ne estimates obtained by y = 0.098 + 0.219 × ln(Chr), where 
Chr is the haploid number of chromosomes, when information about 
the number of chromosomes was available.

As low-frequency alleles upwardly bias Ne, we followed the 
recommendations in Waples (2024) and excluded singleton alleles 
(Waples,  2024; Waples & Do,  2010). We also ran the analyses 
without applying a filter for rare alleles, to be able to compare 
the results obtained with NeEstimator with those from GONE and 
currentNe. Confidence intervals were obtained via jackknifing over 

samples (Do et al., 2014; Jones et al., 2016). As NeEstimator can-
not handle very large datasets (with >100,000 loci, see https://​
www.​molec​ularf​isher​iesla​borat​ory.​com.​au/​neest​imato​r-​softw​
are/​), we reduced the number of SNPs in the F. sylvatica and P. 
armeniaca datasets by randomly subsampling 50,000 SNPs across 
chromosomes.

2.4  |  Data analyses in currentNe

We used the newly developed software program currentNe (Santiago 
et al., 2024) to obtain contemporary Ne estimates that are directly 
comparable to the ones obtained with NeEstimator (referring to the 
most recent generations in the past). The practical advantages of 
currentNe are the possibility to include thousands of SNPs in the 
analyses (with an upper limit of 2 million loci), the lack of a minor 
allele frequencies requirement, and the lower computational ef-
fort. Moreover, the program produces confidence intervals around 
Ne based on artificial neural networks, can accommodate complex 
mating systems and is accurate with small sample sizes (Santiago 
et al., 2024). CurrentNe produces two types of estimation, depend-
ing on whether SNPs mapping is available (Ne estimation based on 
LD between chromosomes) or not (Ne estimation by integration 
over the whole genome). In the latter case, the program assumes 
that each of the given chromosomes is about 1 Morgan long. When 
the number of chromosomes is unknown, the mapping of SNPs to 
scaffolds might also be used for the first estimation type (based on 
LD between “chromosomes”). However, scaffolds might be much 
shorter than chromosomes, and SNPs will not be totally independ-
ent (as scaffolds might actually belong to the same chromosome). 
Therefore, we estimated Ne in currentNe for all the species included 
in our study except S. globulifera s.l., as the number of chromosomes 
was not available for the species.

3  |  RESULTS AND DISCUSSION

3.1  |  Data analyses in GONE

Our study explores the limitations associated with genomic data-
sets when estimating Ne using the LD method as implemented in 
the program GONE, and compares estimates of recent historical Ne 
obtained with GONE with estimates of contemporary Ne as obtained 
with NeEstimator and currentNe. Below, we will first focus on the 
limitations of plant genomic datasets as explored using the software 
GONE and then discuss the differences observed when Ne was cal-
culated using GONE, NeEstimator, and currentNe.

One limitation usually associated with reduced representation 
sequencing datasets is the short length of the reads or scaffolds. 
We tested how this limitation would influence Ne estimation in 
GONE using the datasets of S. globulifera and M. annua. Ne esti-
mation in GONE failed for the three biological species of S. globu-
lifera, as the program returned the error “too few SNPs” for each 
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of the three species datasets. This was caused by the relatively 
small number of SNPs per scaffold (averaging ≃250 SNPs) and, in 
turn, by the relatively short length of the scaffolds (length ranging 
from 5421 to 931 positions) which prevented GONE from pro-
ducing reliable Ne estimates. Ne estimates were instead obtained 
for M. annua, whose average number of SNPs per contig was 670 
(Table 1).

3.1.1  |  Influence of missing data on Ne estimation

The effect of missing data on Ne estimation is evident from the 
results obtained when analysing the dataset of F. sylvatica, and 
from the results obtained when analysing the dataset of P. ar-
meniaca in which genotype data were manually excluded. For F. 
sylvatica, 35 individuals had a proportion of missing data <50% 
(Figure 1b). Increasing the proportion of missing data in the per-
muted datasets of 35 individuals produced an acute increase in 
the Ne estimates obtained with GONE (see Figure 1a); for instance, 
increasing the median proportion of missing data per individual 
from 25% to 35% produced Ne estimates increasing from 200 to 
a few millions. Likewise, when missing data proportion per indi-
vidual of P. armeniaca increased above 20%, we obtained Ne esti-
mates that were > 350 times larger than those obtained from the 
original dataset (average missing data proportion per individual 
≃8%) (Figure  2). This relationship between missing data and Ne 
estimates is consistent with what was previously found (e.g., 

Marandel et  al.,  2020), although the loss of accuracy in the Ne 
estimation is extreme and suggests that either individuals with 
>20% missing data should be removed from the dataset before 
estimating Ne or SNPs with missing data in a given percentage of 
individuals (e.g., 50% by default assumed by GONE) should be re-
moved, provided that the dataset includes a sufficient number of 
SNPs. However, in species with large Ne, reducing the sample size 
(S) to a number ≪ true Ne introduces further uncertainties in the 
Ne estimation using the LD method, regardless of the number of 
loci used (Marandel et al., 2019; Waples, 2024), in addition to the 
sampling error already expected because of the finite sample size 
(e.g., Peel et al., 2013).

3.1.2  |  Influence of number of SNPs on 
Ne estimation

The influence of the number of SNPs per chromosome was ex-
plored using the dataset from P. armeniaca (Northern gene pool), 
which was the only dataset with SNPs fully mapped to chromo-
somes. Increasing the number of SNPs per chromosome affected 
point Ne estimates only slightly, and influenced the apparent preci-
sion of the estimates more obviously, especially for a total number 
of SNPs above 300,000, corresponding to an average of 10,000 
SNPs per chromosome of P. armeniaca used by GONE (Figure 3). 
Accuracy and precision of Ne estimates based on LD are expected 
to be affected by two types of pseudoreplication: (1) the non-
independent information content provided by thousands of linked 
SNPs, and especially (2) the occurrence of overlapping pairs of 
loci, each locus appearing multiple times in pairwise comparisons 
(Waples et  al.,  2016, 2022). Therefore, the narrower confidence 
intervals we obtained when increasing the number of SNPs are 
partially due to the inclusion of overlapping pairs of loci for the 

F I G U R E  1 In (a), ranked Ne estimates in the most recent 
generation in 150 datasets of 35 individuals with different 
proportions of missing data (excluding individuals with a proportion 
of missing data >0.95) of Fagus sylvatica; ranges represent standard 
deviations for the proportion of missing data per individual, 
whereas points represent median values over 150 datasets. 
Analyses based on the dataset with the 27 genomic scaffolds 
with the largest number of SNPs (excluding the scaffolds with 
>1 M SNPs). In (b), proportion of missing data per individual in the 
complete dataset of F. sylvatica.
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F I G U R E  2 Influence of missing data on Ne estimation in GONE. 
Missing genotypes were manually introduced into the dataset of 
Prunus armeniaca, generating pseudo-genotypes with an average 
proportion of missing data ranging from 20% to 40%. The original 
dataset is shown for comparison (missing data = 8%). Note the 
different y-scales in the three facets.
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Ne estimation, which artificially increases the degrees of freedom 
that make CIs tight. The drop in the Ne geometric mean value as-
sociated with the dataset with >20,000 SNPs might be due to the 
inclusion of more physically linked SNPs, but it might also be due 
to the uncertainty associated with the specific SNPs included in 
the analysis.

For practical purposes, our results in P. armeniaca show that add-
ing more than 2000 SNPs per chromosome, with a large sample size 
(>75), does not substantially improve the accuracy and the preci-
sion of the estimation, in line with what is shown in previous stud-
ies focusing on LDNe (Marandel et al., 2020). We have not explored 
whether using fewer SNPs in this dataset would significantly affect 
accuracy and precision, and it is possible that Ne estimates would 
remain consistent even if using <2000 SNPs per chromosome.

Santiago et al. (2020) noted that the accuracy of the estimation 
is proportional to the sample size and to the square root of SNPs 
pairs, and therefore researchers might partially compensate for 
small sample sizes by increasing the number of SNPs. However, as 
the information content of a dataset depends on the amount of re-
combination and on the pedigree of the individuals included in the 
analyses, an estimation based on a small number of samples will not 
necessarily be representative of the entire population, especially if 
Ne is large (King et al., 2018; Santiago et al., 2020; Waples, 2024). 
Furthermore, the marginal benefit of increasing the number of SNPs 
beyond tens of thousands is counterbalanced by poor precision if 
CIs are generated using incorrect degrees of freedom, which is often 
the case with thousands of non-independent SNPs (Do et al., 2014; 

Jones et al., 2016; Luikart et al., 2021; Moran et al., 2019; Waples 
et al., 2022). Finally, Waples (2024) also points out that adding more 
than a few thousand SNPs increases the precision only slightly and is 
more beneficial when the true Ne is large.

3.1.3  |  Influence of the sample size on Ne estimation

We evaluated the influence of the sample size using the Northern 
gene pool of P. armeniaca. Increasing sample sizes to over thirty sam-
ples led to more consistent Ne estimates and reduced the chances of 
obtaining Ne estimates only representative of a few individual pedi-
grees (Figure 4), as previously observed when using the LD method 
(Antao et al., 2011; Marandel et al., 2019; Nunziata & Weisrock, 2018; 
Palstra & Ruzzante, 2008; Santiago et al., 2020; Tallmon et al., 2010; 
Waples et al., 2016; Waples & Do, 2010). Including in the Ne esti-
mation a number of samples that is representative of the true Ne 
of the population is crucial in large populations, where the genetic 
drift signal in recent generations is weak (Barbato et al., 2015; Do 
et al., 2014; Luikart et al., 2010; Palstra & Ruzzante, 2008; Santiago 
et al., 2020; Wang et al., 2016; Waples, 2024). On the contrary, small 
populations experience more genetic drift, and therefore the LD 
method is particularly powerful in such populations. Estimates of 
Ne remain small in small populations even with larger sample sizes, 
hence the important conservation implication that small populations 
cannot be mistaken for large populations (Santiago et  al.,  2020; 
Waples et  al.,  2016; Waples & Do,  2010). For the Northern gene 
pool of wild apricots, we obtained an Ne estimate <2000 when the 
sample size was equal to 15, and progressively obtained higher val-
ues increasing up to a plateau of Ne ≃ 4000, for larger sample sizes. 
This confirms the expectation that a large sample size is needed to 
estimate a large Ne (Antao et al., 2011; Tallmon et al., 2010).

F I G U R E  4 Change in the Ne estimates as a function of the 
sample size in Prunus armeniaca (Northern gene pool). Points 
represent geometric means across subsets of individuals, sampled 
without replacement 50 times. The insert also shows 95% 
confidence intervals (point ranges) estimated over the 50 replicate 
subsets.
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F I G U R E  3 Ne estimates obtained with GONE over the 
most recent generation for the Northern gene pool of Prunus 
armeniaca as a function of the number of SNPs. Points represent 
the geometric mean values across 50 replicates; shaded area 
represents 95% confidence intervals across replicates. Note that 
GONE uses a maximum of 50,000 SNPs per chromosome, even 
if provided with a larger number (with 1 million per chromosome 
being the maximum number accepted); the number of SNPs 
in each of the eight subsets analyzed ranged from 104 to 107, 
corresponding to a range of ≃5000 to ≃20,000 SNPs per 
chromosome used by GONE.
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3.1.4  |  Influence of admixture on Ne estimation

The impact of admixture on Ne estimation was explored using the 
dataset of P. armeniaca. Estimates of Ne in the most recent gen-
eration generally decreased when the Q-value of the individuals 
included in the analysis increased (Figure  5a). The larger Ne esti-
mates in the most recent generations (1–4) when including more ad-
mixed individuals are consistent with the upward bias predicted by 
Waples and England (2011) for a sampled subpopulation that does 
not include all potential parents (“drift LD”); with higher admixture 
proportions (Figure 5a), the Ne estimated for each gene pool (sub-
population) using the LD method tends to approach the Ne of the 
metapopulation instead (Waples & England, 2011). However, the Ne 
estimate we obtained when combining the two gene pools (“all” in 
Figure 5a) was lower than the Ne estimate obtained when consider-
ing highly admixed individuals in the Northern gene pool (70% in the 
right panel of Figure 5a). A downward bias in the Ne estimation is 
expected because of the Wahlund effect associated with sampling 
and analysing different gene pools together (“mixture LD”; Neel 
et al., 2013; Nunney, 2016; Waples, 2024; Waples & England, 2011). 
Using simulations, Novo, Ordás, et al. (2023) demonstrated that both 

the time of gene pool divergence and the timing of the mixing event 
may affect the bias in the Ne estimation. The longer the time elapsed 
since the gene pools diverged, the more pronounced the downward 
bias on Ne becomes. Similarly, the more recent the mixing event (in 
our case, as a consequence of sampling strategy), the more exacer-
bated the downward bias on Ne. If the occurrence of a mixing event 
is unknown, the decrease in Ne might mistakenly be interpreted as 
a reduction in population size, such as that caused by a bottleneck.

The Southern gene pool showed a contrasting trend; Ne es-
timates for the less admixed groups remained lower than that ob-
tained when combining the two gene pools, possibly because the 
few samples from this gene pool contributed less (with any potential 
mixture LD) than the more abundant samples from the Northern 
gene pool (with their LD signal) (Figure 5a). However, the large confi-
dence intervals might also suggest a combined effect of drift LD and 
bias in the estimates induced by using a small sample (21 individuals) 
to estimate a large Ne (of the metapopulation). How the relationship 
between sampling and genetic structure practically affects Ne still 
deserves evaluation, as the effect on LDNe will depend on the rela-
tive strength of the “mixture LD” and the “drift LD” in the specific set 
of samples included in the analyses (Waples, 2024).

Over the last 25 generations (Figure  5b), we obtained higher 
Ne estimates when individuals from the Southern gene pool with a 
Q-value ≥ 99% were included. For the Northern gene pool, on the 
contrary, we obtained a lower Ne estimate when individuals with a 
Q-value ≥ 99% were included. The different demographic histories 
of the Northern and Southern gene pools certainly underlie the 
pattern observed, as the Southern gene pool seems to have under-
gone a recent bottleneck, whereas the Northern gene pool has a 
more stable demographic trend. The recent population decline for 
the Southern gene pool may be explained by the Soviet era and the 
current land-use change in the Fergana valley (mainly Uzbekistan) 
where native forests of wild apricot were partially replaced with 
crop species. Nevertheless, two more factors should be considered; 
first, the sample size of the Southern gene pool is smaller than that 
of the Northern gene pool (only 21 individuals vs. 77 individuals 
drawn from each Q-value subset). Second, Santiago et  al.  (2020) 
warn about a typical artefactual bottleneck observed in GONE and 
caused by population structure (in figure 2F of Santiago et al., 2020, 
considering a migration rate = 0.2%; Novo, Ordás, et al., 2023). As we 
observed a consistent trend regardless of the individual Q-value, and 
the drop in Ne is particularly evident with a Q-value = 99%, we inter-
pret this Ne drop as a true bottleneck, with the caveat of reduced 
accuracy linked to a small sample size for the Southern gene pool.

3.1.5  |  Effect of using genomic scaffolds rather than 
chromosomes

To evaluate the effect of using genomic scaffolds as a proxy for 
linkage groups when chromosome information is not available, we 
sorted SNPs from the P. armeniaca dataset into a progressively 
larger number of scaffolds or chromosomes assumed. This produced 

F I G U R E  5 Influence of population structure on the Ne 
estimates for the Northern and Southern gene pools of Prunus 
armeniaca, as obtained with GONE. Q-values refer to the results 
of the fastStructure analysis performed in Groppi et al. (2021) 
(lower bounds of individual Q-value to the main genetic cluster). 
Ne was estimated over 50 datasets of resampled individuals (77 
in each Q-value subset in the Northern gene pool and 21 in each 
Q-value subset in the Southern gene pool, reflecting differences 
in sample sizes). Ne estimates for the combined gene pools are also 
shown (“all”), obtained by resampling individuals (77 individuals 
when compared with the Northern gene pool estimates and 21 
individuals when compared with the Southern gene pool estimates). 
In (a), points represent the geometric mean and ranges represent 
95% confidence intervals across 50 replicates; in (b), only geometric 
mean values of the Ne estimates across 50 replicates and in the last 
25 generations are shown.
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inconsistent Ne estimates across the datasets with increasing number 
of chromosomes assumed, with Ne values progressively rising from 
around 3 × 103 for 8 chromosomes (true value) to >8 × 105 when the 
number of chromosomes assumed was equal to 128 (Figure 6). The 
algorithm implemented in GONE is based on the assumption that LD 
among pairs of SNPs at different genetic distances provides differ-
ential information about Ne at different times in the past (Santiago 
et al., 2020). Loosely linked loci give information about Ne in recent 
generations, as their recombination rate is higher and rate of LD-
decay slower than that of closely linked loci (Sved & Feldman, 1973). 
Therefore, the behaviour of the Ne estimates observed in Figure 6 
can be explained if considering that when a chromosome is broken 
into smaller scaffolds, only closely linked loci will be available for the 
Ne estimation; pairs of SNPs at higher genetic distances (i.e., loosely 
linked loci) will be missing, inducing biases on recent Ne estimates. 
An inflated Ne in recent generations will therefore depend on having 
fewer random associations among loci useful to estimate LD (i.e., 
fewer loosely linked loci), which will unfold as having less genetic 
drift (i.e., a larger population). Consequently, Ne estimates obtained 
with GONE for M. annua and F. sylvatica may be biased upward since 
scaffolds were used as a proxy for chromosomes (Table 1).

3.2  |  Ne estimates obtained with GONE, 
NeEstimator and currentNe

As expected, Ne estimates obtained using NeEstimator and cur-
rentNe were more in agreement with one another compared with 
those obtained with GONE for the last generations (Table 2). GONE 
estimates for all species were larger than those obtained using the 
other programs, especially in the Northern gene pool of P. armeni-
aca (GONE-Ne ≃ 3500 for the last generation while NeEstimator-
Ne ≃ 716.2, excluding singletons and after bias correction, and 

currentNe-Ne ≃ 170). The point Ne estimate obtained with currentNe 
and its confidence intervals remained consistent even when we in-
creased the number of SNPs, suggesting that there was no uncer-
tainty associated with the SNPs included in the analysis. Estimates 
from simulated populations in Santiago et  al.  (2024) showed con-
sistency between the output of currentNe and NeEstimator, except 
when a small sample (10 individuals) was drawn from a very large 
population (Ne = 10,000) using 22,000 SNPs, in which case currentNe 
performed better. Our sample size for the Northern gene pool was 
much larger (77 individuals), and we do not expect the true Ne to 
be larger than 10,000. Therefore, when using the same dataset 
for currentNe and NeEstimator, we interpret the slight discrepancy 
between the two estimates to be associated with the different al-
gorithms included in the programs, which are affected in different 
ways by the occurrence of rare alleles and the deviations from ran-
dom mating, among other things (Santiago et al., 2024). When con-
sidering the Southern gene pool, for which the true Ne is expected 
to be smaller than for the Northern gene pool (Groppi et al., 2021), 
the estimates obtained with GONE (184) was higher than those ob-
tained with NeEstimator (80.9 excluding singletons and after bias 
correction) and currentNe (≃30).

Another consideration is the downward bias on Ne estimates 
caused by localized sampling in continuous populations featuring 
isolation by distance (Neel et al., 2013; Nunney, 2016; Santos-del-
Blanco et al., 2022; Waples, 2024). If the range of sampling is similar 
in extent to the unknown effective range of dispersal, as it is likely 
the case in S. globulifera, estimates may not reflect the population-
wide true Ne, but rather a quantity close to the neighbourhood 
size (Ns), i.e., the inverse of the probability of identity by descent 
of two uniting gametes (Santos-del-Blanco et al., 2022). In P. arme-
niaca, where the sampling window likely exceeded the breeding 
window by much, we may still expect a downward bias because of 
the mixture LD caused by the inclusion of genetically divergent in-
dividuals (Neel et al., 2013; Waples, 2024; Waples & England, 2011). 
However, this bias would not explain the discrepancy between the 
estimates obtained with GONE and those obtained with the other 
programs for the Northern gene pool of P. armeniaca. In S. globulifera, 
for which we also expect a large Ne (>1000), it was only possible to 
use NeEstimator, due to the short length of contigs (not appropri-
ate when using GONE), and the lack of information about the num-
ber of chromosomes (as required to obtain reliable estimates with 
currentNe). Ne ranged from 86 (CI: 37-Infinite) in Species 3, to 380 
(CI: 300–510) in Species 2 and to 754 (CI: 623–949) in Species 1, 
although point estimates could not be corrected for physical link-
age due to lack of information about chromosome number and are 
therefore biased downward (Table 2). Estimates for Species 3, in par-
ticular, displayed infinite confidence intervals, suggesting that the 
sample size might be not large enough to capture the genetic drift 
signal from the original population. However, the relative magnitude 
of the estimates obtained are in agreement with the availability of 
suitable habitats for the three species (Schmitt et  al.,  2021) and, 
all else being equal, we would generally expect these populations 
to have a long-term constant population size, considering that the 

F I G U R E  6 Estimates of Ne calculated on datasets in which 
the same set of SNPs is assigned to a progressively larger 
number of assumed chromosomes, where 8 is the true number 
of chromosomes for Prunus armeniaca (per haploid count); 45 
individuals from the Northern gene pool were used for this analysis.
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Guianese rainforest has experienced a continuous forest cover since 
the last glacial maximum (Barthe et al., 2017).

The uncertainty in Ne estimation using the LD method is partic-
ularly exacerbated in the dataset from F. sylvatica where, in addi-
tion to the potential downward bias induced by localized sampling 
in a continuous population, missing data also affect the estimation 
performed with the three programs (GONE-Ne = 25 for the last 
generation, NeEstimator-Ne = 2.3, excluding singletons and after 
bias correction for physical linkage, and currentNe-Ne = 4 after bias 
correction for physical linkage), by reducing the usable sample size 
among pairs of loci (Do et al., 2014; Peel et al., 2013; Waples, 2024). 
In general, missing data affect the precision of Ne estimates from 
the LD method whereas accuracy should be less affected (Nunziata 
& Weisrock,  2018; Waples,  2024), unless missing data occur non-
randomly and depend on the genotype, as it might be the case in the 
F. sylvatica dataset.

For the only annual plant in our dataset, M. annua, we would ex-
pect Ne estimated with the LD method to mainly reflect the effec-
tive number of breeders, Nb (Luikart et al., 2021; Waples, 2024) for 
the year of sampling, as individual cohorts were sampled (progeny of 
adults that reproduced in that specific year). Estimates from GONE 
were higher than those obtained with NeEstimator and currentNe 
(Table 2), also because of the bias induced by the lack of SNPs map-
ping (i.e., using scaffolds as a proxy for chromosomes in GONE). All 
point estimates fell within the estimated confidence intervals and 
usually denoted a small Ne, which is consistent with primarily re-
flecting the Nb for the population. In particular, point estimates in 
NeEstimator, excluding singletons and after bias correction for phys-
ical linkage, ranged from 29.1 for the Mediterranean gene pool to 
33.8 for the Core gene pool and 27.3 for the Atlantic gene pool. Point 
estimates in currentNe ranged from 20.5 for the Mediterranean gene 
pool to 20.4 for the Core gene pool and 17.6 for the Atlantic gene 
pool. Even if the gene pool subdivision was consistent with the level 
of genetic admixture found in the individuals, it is still possible that 
estimates are biased downward because of mixture LD associated 
with mixing samples from different geographical locations (sampling 
window larger than breeding window). Furthermore, M. annua is able 
to survive through multi-annual seed banks (Crocker, 1938) despite 
being an annual plant, and therefore the arithmetic mean across mul-
tigenerational Nb estimates would be needed to reliably estimate Ne 
rather than Nb (Nunney, 2002; Waples, 2006b).

3.3  |  Practical recommendations when estimating 
contemporary Ne in GONE

In this study, we have considered some of the technical limitations 
when estimating Ne from plant genomic datasets, including: (i) the 
occurrence of missing data, (ii) the limited number of SNPs/individ-
uals sampled, and (iii) the lack of genetic/linkage maps and of in-
formation about how SNPs map to chromosomes when estimating 
Ne using the software GONE. In addition, we have explored some 
biological limitations that may affect Ne estimation using the LD 

method, such as the occurrence of population structure, although 
we recognize that our exploration is not exhaustive, as other biologi-
cal factors (i.e., associated with reproductive system and life-history 
traits) might affect Ne and its estimation. Our empirical results cor-
roborate some previous findings (reviewed in Waples, 2024) about 
the importance of having large samples sizes, especially when popu-
lations are large. For example, we found that >30 individuals were 
necessary to reach consistent Ne estimates (≃several thousands) for 
P. armeniaca. Furthermore, our empirical results highlight the follow-
ing requirements that genomic datasets should satisfy:

•	 non-random missing data should not exceed 20% per individual. 
Missing data also affect how SNPs are represented across loci 
and individuals sampled and can generate non-random patterns 
whose effect on Ne estimation is difficult to predict (as observed 
in the F. sylvatica and P. armeniaca datasets);

•	 having a large number of SNPs (>tens of thousands) is potentially 
important to allow users to generate non-overlapping subsets of 
loci that reduce the influence of pseudoreplication on confidence 
intervals (Waples et al., 2022). However, increasing the number of 
SNPs beyond a few thousands per chromosome does not produce 
significant changes in the Ne estimates, as we observed in wild 
apricots; Waples (2024) also observed that the benefit of adding 
over a few thousand SNPs on precision is little, but increases if the 
true Ne is very large.

•	 most importantly, having SNPs fully mapped to chromosomes is 
essential to obtain reliable estimates when using the software 
GONE (as observed in the P. armeniaca dataset); other programs 
should be preferred to estimate contemporary Ne when SNPs 
mapping is not available (i.e., currentNe).

In addition, the bias on Ne estimates due to the occurrence of 
gene flow and admixture can significantly affect the performance 
of single-sample estimators (as observed in the P. armeniaca gene 
pools), as previously described (e.g., Neel et  al.,  2013). Other bi-
ases associated with (i) further sources of population structure (i.e., 
overlapping generations, demographic fluctuations including bottle-
necks, reproductive strategies causing variance in reproductive suc-
cess, etc.) and (ii) further technical issues associated with sampling 
strategies and genomic datasets can add up and generate results 
that are misleading for conservation. Therefore, a careful consid-
eration of the issues above is essential when designing and inter-
preting studies focused on the estimation of Ne and other related 
indicators for conservation.
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