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Abstract

Effective population size (N,) is a pivotal evolutionary parameter with crucial im-
plications in conservation practice and policy. Genetic methods to estimate N,
have been preferred over demographic methods because they rely on genetic data
rather than time-consuming ecological monitoring. Methods based on linkage dise-
quilibrium (LD), in particular, have become popular in conservation as they require a
single sampling and provide estimates that refer to recent generations. A software
program based on the LD method, GONE, looks particularly promising to estimate
contemporary and recent-historical N, (up to 200 generations in the past). Genomic
datasets from non-model species, especially plants, may present some constraints
to the use of GONE, as linkage maps and reference genomes are seldom available,
and SNP genotyping is usually based on reduced-representation methods. In this
study, we use empirical datasets from four plant species to explore the limitations
of plant genomic datasets when estimating N, using the algorithm implemented in
GONE, in addition to exploring some typical biological limitations that may affect
N, estimation using the LD method, such as the occurrence of population structure.
We show how accuracy and precision of N estimates potentially change with the
following factors: occurrence of missing data, limited number of SNPs/individuals
sampled, and lack of information about the location of SNPs on chromosomes, with
the latter producing a significant bias, previously unexplored with empirical data.
We finally compare the N, estimates obtained with GONE for the last generations
with the contemporary N, estimates obtained with the programs currentNe and

NeEstimator.
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1 | INTRODUCTION

Effective population size (N,) is an evolutionary parameter in-
troduced by Wright (1931), which determines the rate of genetic
change due to genetic drift and is therefore linked with inbreeding
and loss of genetic variation in populations, including adaptive po-
tential (Franklin, 1980; Jamieson & Allendorf, 2012; Waples, 2022).
The importance of contemporary effective population size in con-
servation biology is increasingly recognized, and the concept im-
plemented in conservation practice (Frankham et al., 2014; Luikart
et al., 2010; Montes et al., 2016) and policy (Graudal et al., 2014;
Hoban et al., 2013; Kershaw et al., 2022; O'Brien et al., 2022).
For example, N, has been included as a headline genetic indicator
to support Goal A and Target 4 of the Kunming-Montreal Global
Biodiversity Framework of the UN's Convention on Biological
Diversity (CBD, 2022), as the proportion of populations within
species with N> 500, that are expected to have sufficient genetic
diversity to adapt to environmental change (Hoban et al., 2020;
Jamieson & Allendorf, 2012).

Contemporary N, can be estimated using demographic or genetic
methods (Felsenstein, 2019; Luikart et al., 2010; Wang et al., 2016;
Waples, 2016; Wright, 1969). Demographic estimators require de-
tailed ecological observations over time for the populations of in-
terest (Felsenstein, 2019; Nunney, 1993; Wright, 1969), which is not
necessary for genetic estimators (Wang et al., 2016; Waples, 2016).
Methods that can provide N, estimates based on a single sampling
point in time (Wang, 2016) have become particularly popular, es-
pecially in studies focused on species for which budget and time
allocated are limited, elusive species that are difficult to track and
monitor (Luikart et al., 2010), and species for which information
about distribution is scarce. The current biodiversity crisis and the
limited resources for conservation have recently fuelled the devel-
opment and application of N, estimators that rely on cost-effective,
non-genetic proxy data across a wide range of species of conser-
vation concern (Hoban et al., 2020; Hoban, Bruford, et al., 2021).
Population census size, N, has been used to infer N, when genetic
N, estimates are not available, relying on the ratio N./N.=0.1
(where N is the adult census size of a population) (Frankham
et al., 2014; Hoban, Paz-Vinas, et al., 2021; Palstra & Fraser, 2012).
This rule-of-thumb ratio is pragmatic for conservation (but see
Fady & Bozzano, 2021), as shown in application tests in different
countries for different species of conservation concern (Hoban
et al., 2023; Thurfjell et al., 2022). However, research needs to
progress to better understand N, estimation methods and potential
deviations from the ratio N,/N.=0.1, which are expected for exam-
ple across populations within species or in species with life-history
traits that favour individual persistence (Frankham, 2021; Gargiulo
et al,, 2023; Hoban et al. 2020; Hoban, Paz-Vinas, et al., 2021;
Jamieson & Allendorf, 2012; Laikre et al., 2021). Current genetic
estimators of contemporary N, work well in small and isolated pop-
ulations, which match many populations of conservation concern,
but they are difficult to apply in species with a large and continuous
distribution (Fady & Bozzano, 2021; Santos-del-Blanco et al., 2022).

In such species, genetic isolation by distance, overlapping gener-
ations, and difficulty to define representative sampling strategies
can affect the accuracy of estimates of N, N, and their ratio (Neel
et al.,, 2013; Nunney, 2016; Santos-del-Blanco et al., 2022). Plant
species embody some of the features mentioned above, as they
often have complex life-history traits (e.g., overlapping generations,
long lifespans), reproductive systems (i.e., mixed clonal and sexual
reproduction, mixed selfing and outcrossing strategies) and continu-
ous distribution ranges (De Kort et al., 2021; Petit & Hampe, 2006).
Therefore, they are particularly interesting to help improve our un-
derstanding of N, estimation methods.

Genetic drift generates associations between alleles at different
loci, known as linkage disequilibrium (LD), at a rate inversely pro-
portional to N, (Hill, 1981; Waples et al., 2016). LD between loci
can be used to obtain a robust estimate of contemporary N, from
genetic data at a single time point, and this explains the popularity
of the LD method compared to the earlier developed two-sample
temporal methods (Luikart et al., 2010; Waples, 2024) and the devel-
opment of numerous tools for the estimation of LDN, from genetic
and genomic data (Barbato et al., 2015; Do et al., 2014; Santiago
et al., 2020; Wang et al., 2016). The N, estimates obtained with the
LD method generally refer to a few generations back in time (Do
et al., 2014; Luikart et al., 2010) and, depending on the genetic dis-
tances between loci, it is possible to obtain N, at different times in
the past (Santiago et al., 2024; see also the review on timescales
of N, estimates in Nadachowska-Brzyska et al., 2022). In particu-
lar, LD between closely linked loci can be used to estimate N, over
the historical past (Barbato et al.,, 2015; Do et al., 2014; Hayes
et al., 2003; Qanbari et al., 2010; Santiago et al., 2020; Sved, 1971;
Wang et al., 2016), whereas loosely linked or unlinked loci can be
used to estimate N, in the recent past (Novo, Ordas, et al., 2023;
Novo, Pérez-Pereira, et al., 2023; Qanbari, 2019; Sved et al., 2013;
Wang et al., 2016; Waples, 2006a; Waples & Do, 2008). However,
as other methods to estimate N, the LD method is not devoid of
biases and drawbacks, mostly relating to the assumption that the
population is isolated, which is rarely satisfied (England et al., 2010;
Hill, 1981; Waples, 2024; Waples & England, 2011), and to the occur-
rence of age structure (H6ssjer et al., 2016; Nunney, 1991; Robinson
& Moyer, 2013; Ryman et al., 2019; Waples et al., 2014; Waples &
Do, 2010; Yonezawa, 1997).

In this study, we aimed to explore the limitations of plant ge-
nomic datasets when estimating contemporary N,. We mostly fo-
cused on estimating N, using the software program GONE (Santiago
et al.,, 2020), but we also provide N, estimates obtained with
NeEstimator (Do et al., 2014) and the recently developed program,
currentNe (Santiago et al., 2024). These programs provide recent
historical and contemporary N, estimates, respectively, using the
LD method, though they differ mostly in the data requirement and
timescales of estimates provided. GONE is capable of exploiting the
full range of LD among loci in a dataset, therefore providing N, esti-
mates that are reliable up to 200 generations ago; NeEstimator and
currentNe provide N, estimates that represent the average over a
few recent generations, and the number of generations representing
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an estimate increases with the number of chromosomes of the spe-
cies (Santiago et al., 2024).

We explored the technical requirements of GONE by conduct-
ing power analyses aimed at testing how the number of SNPs, the
proportion of missing data, the number of individuals, the lack of
information about the location of SNPs on chromosomes, and the
occurrence of population structure might affect N, estimation. The
N, estimates obtained with GONE were then compared to the ones
obtained with NeEstimator and currentNe, and discussed in light of
the biological and ecological features of the species. Our findings
help better understand the limitations and potentialities of genomic
datasets when estimating LD-based, one-sample N, providing new

insights on how to use current methods.

2 | METHODS
2.1 | Datasets

We selected four datasets obtained with different high-throughput
sequencing techniques from different plant taxa (Symphonia globu-
lifera L. f. (Clusiaceae), Mercurialis annua L. (Euphorbiaceae), Fagus
sylvatica L. (Fagaceae), Prunus armeniaca L. (Rosaceae)), to repre-
sent different botanical groups, ecosystems, generation times and
reproductive strategies. Sampling strategies in the datasets en-
compassed different sample sizes for markers and individuals, and
datasets featured distinct levels of population genetic structure
(Table 1).

For boarwood, S. globulifera s.l., a widespread and predominantly
outcrossing evergreen tree typical of mature rainforests in Africa and
the Neotropics (Degen et al., 2004; Torroba-Balmori et al., 2017), we
used the targeted sequence capture dataset described in Schmitt
etal. (2021). Three sympatric gene pools were identified in a lowland
forest in French Guiana, likely corresponding to three biological spe-
cies, described as Symphonia sp. 1, Symphonia sp. 2 and Symphonia
sp. 3 (Schmitt et al., 2021). To avoid the influence of admixture on
the estimation of N, we first divided the dataset in three subsets
based on the analysis of genetic structure performed in the soft-
ware Admixture v1.3.0 (see Schmitt et al., 2021), selecting only the
individuals with a Q-value (cluster membership coefficient) > 95% to
each of the three genetic clusters (Species 1, Species 2 and Species
3; File S1). We then selected the 125 genomic scaffolds with the
largest number of SNPs (see Table 1).

For the annual mercury, M. annua, an annual plant with variable
mating systems (monoecious, dioecious, androdioecious), ploidy lev-
els (2x, 4x-12x) (Obbard, Harris, Buggs, & Pannell, 2006; Obbard,
Harris, & Pannell, 2006), potential to produce seed banks, and typ-
ical of open or disturbed habitats in Europe and North Africa, we
used the gene capture dataset described in Gonzalez-Martinez
et al. (2017), obtained from 40 diploid dioecious individuals grown
from seeds, representative of 10 localities and three main gene
pools in the species (as described after the fastStructure analysis
in Gonzélez-Martinez et al., 2017). We selected the 48 scaffolds
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with the largest number of SNPs and ran the analyses by consider-
ing each gene pool separately: (1) ancestral populations from Turkey
and Greece (“Core”), (2) range-front populations from northeastern
Spain (“Mediterranean”), or (3) range-front populations from north-
ern France and the UK (“Atlantic”) (see Table 1).

For the common beech, F. sylvatica, a deciduous predomi-
nantly outcrossing tree of European temperate forests (Merzeau
et al., 1994), we analyzed genomic scaffolds from a single, contigu-
ous stand (plot N1; Oddou-Muratorio et al., 2021) within a relatively
isolated French population (Mt. Ventoux, southeastern France,
Nc~hundreds of thousands, also depending on the gene flow
range), in which population genetic structure is neither observed
nor expected (Csilléry et al., 2014). Mapping of short-reads paired
lllumina sequences was independently performed for each one of
the 167 individuals of the population against the genome assembly
(available at www.genoscope.cns.fr/plants) using bwa-mem2 2.0 (Li
& Durbin, 2009). SNPs were first called using GATK 3.8 (Van der
Auwera & O'Connor, 2020) using the following parameters: -nct
20 -variant_index_type LINEAR variant_index_parameter 128,000.
SNPs were also called using samtools v1.10/bcftools v1.9 (Danecek
et al., 2021) with default parameters. Following these two SNPs call-
ing steps, we performed a three-steps filtering process: (i) only dial-
lelic SNPs were kept, (ii) the minimum allele frequency (MAF, upper
case used at the individual level), calculated on the basis of all the
reads containing the SNP, was set to 30% (note that GONE does
not require the application of MAF filtering, and such filtering might
cause a small upward bias in the estimation), (iii) individual genotypes
with sequencing depth less than 10 were recoded into «./.» mean-
ing that both alleles are missing. We then identified SNPs found by
both GATK and samtools using the - diff flag of vcftools v0.1.15 with
tabix-0.2.5 (Danecek et al., 2011). A nucleotide polymorphism was
considered to be a SNP if at least one individual was found to be het-
erozygous at the position. On average, for each individual, 88.5% of
the sequencing reads mapped properly onto the assembly. The final
VCF contained 18,192,174 variants, and is available at the Portail
Data INRAe (https://doi.org/10.57745/FJRYI1).

We re-ordered the 406 genomic scaffolds available based on
their number of SNPs, and selected 150 scaffolds with the largest
number of SNPs. We tested different combinations of input subsets,
with numbers of scaffolds ranging from 12 to 150 (provided that
SNPs per scaffold <1 million and total number of SNPs <10 million,
see the requirements of GONE below), and numbers of individuals
ranging from 5 to 167 (the total sample size).

For the apricot, P. armeniaca, we estimated N, using whole ge-
nome resequencing data (21x depth of coverage by ILLUMINA tech-
nology) for wild Central Asian, self-incompatible populations of the
species (Groppi et al., 2021). Variant sites were mapped to the eight
chromosomes of the species and ranged between 2.3 and 6.2 mil-
lion per chromosome (total number of variant sites: 24 M). As these
exceeded the total number allowed in GONE, we downsampled the
number of SNPs prior to the analyses. We also analyzed the data-
sets by considering the different gene pools recovered in Groppi
et al. (2021) (see Supp. Fig. S20 in Groppi et al. 2021), namely the
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Southern (red cluster) and Northern (yellow cluster) gene pools, as

obtained with fastStructure (Raj et al., 2014) (see next subsection).

2.2 | Dataanalysesin GONE
2.2.1 | Analyses for all species

We performed N, estimation with the software GONE (Santiago
et al., 2020). GONE generates contemporary or recent histori-
cal estimates of N, (i.e., in the 100-200 most recent generations)
using the LD method. GONE uses linkage information represented
by mapped SNPs, ideally mapped to chromosomes. Chromosome
mapping is rarely available for non-model species, and in our case
was only fully available for the apricot (P. armeniaca) dataset. In the
absence of chromosome mapping information for the other species,
we treated genomic scaffolds as chromosomes. In terms of require-
ments, GONE accepts a maximum number of chromosomes of 200
and a maximum number of SNPs of 10 million, with a maximum num-
ber of SNPs per chromosome of 1 million, although the program uses
up to 50,000 random SNPs per chromosome for the computations
when the total number of SNPs is larger. A complete workflow of
the analyses carried out in GONE is available at https://github.com/
Ralpina/Ne-plant-genomic-datasets (Gargiulo, 2023); the input pa-

rameter file used for the final analyses is available in File S2.

2.2.2 | Influence of missing data on N, estimation

The influence of missing data on N, estimation in GONE was evalu-
ated using the dataset from F. sylvatica. After keeping 67 individuals
with less than 95% missing data, we permuted individuals (without
replacement) to generate 150 datasets of 35 individuals, and es-
timated N, in GONE for each dataset. Proportion of missing data
per individual for each permuted dataset was calculated in vcftools
v0.1.16 (Danecek et al., 2011) from an average of ~25%-95%; re-
sults were plotted in R v4.2.2 (R Core Team, 2019). In addition, we
used the dataset of P. armeniaca to evaluate how N, changed when
manually introducing missing data. We selected all individuals from
the Northern gene pool with a Q-value (cluster membership coef-
ficient) 2 99% (77 individuals) to rule out the influence of admixture,
and replaced some of the individual genotypes with missing values
using a custom script (available at: https://github.com/Ralpina/Ne-
plant-genomic-datasets). We generated two datasets with a propor-
tion of missing data per individual of 20% and 40%, respectively, and
then computed N, in GONE for each dataset obtained.

2.2.3 | Influence of number of SNPs on
N, estimation

The influence of the number of SNPs on N, estimation in GONE
was evaluated using the dataset of P. armeniaca. From the Northern

Evolutionary Applications .W =-WIL EYJﬂ

gene pool, we first selected the individuals with a Q-value 299%
to rule out the influence of admixture. We drew random subsets
of variant sites (without replacement) including 40K, 80K, 150K,
300K, 500K, 3.5M, 7M, and 10 M SNPs, respectively, and gener-
ated 50 replicates for each subset; we then estimated N, in GONE
for each subset and obtained the geometric mean and the 95%
confidence intervals across the 50 replicate subsets with the same
number of SNPs (using the functions exp(mean(log(x))) and quantile
in R).

2.2.4 | Influence of the sample size on N, estimation

We used the Northern gene pool of P. armeniaca to assess how
N, estimates changed depending on the number of samples con-
sidered and the uncertainty associated with individual sampling.
We first downsampled the number of SNPs to 3.5M (to satisfy
GONE requirements), and varied the sample sizes included in the
analyses from 15 to 75 (i.e., approx. the total number of individ-
uals of the Northern gene pool with a Q-value>99%). For each
sample size group, we generated 50 subsets (without replacement
within the subset) of individuals and estimated N, in GONE for
each subset; we then estimated the geometric mean and the 95%
confidence intervals across subsets with the same sample size
(using the functions stat_summary(fun. data=median_hilow, fun.
args = list(conf.int =0.95) and stat_summary(fun = “geometric.mean”

(psych package) in R).

2.2.5 | Influence of population admixture on
N, estimation

We also evaluated how genetic structure within gene pools influ-
enced N, estimation in GONE for both the Southern and Northern
gene pools of P. armeniaca. We first downsampled the number of
SNPs to 3.5M to satisfy GONE requirements, as described above.
We then distributed the individuals of each gene pool into five
(overlapping) subsets based on individual Q-values (lower bounds
of 70%, 80%, 90%, 95%, and 99%), resampled individuals (without
replacement) in each Q-value subset 50 times, standardizing sam-
ple sizes to the sample size of the smallest Q-value subset within
a gene pool (i.e,, 21 individuals as in the 99% Q-value subset of
the Southern gene pool and 77 individuals as in the 99% Q-value
subset of the Northern gene pool, see Table S1 for the original
sample sizes). We then estimated N, in GONE and obtained 95%
confidence intervals across the 50 resampled datasets of the same
Q-value subset within a gene pool (using the R function stat_sum-
mary mentioned above). We also combined all individuals from the
two gene pools (255 individuals), resampled either 22 or 77 indi-
viduals 50 times without replacement, and estimated N, in GONE
and the related confidence intervals as explained above, to evalu-
ate the effect of missing the two gene pools on the N, estimates
obtained.
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2.2.6 | Effect of using genomic scaffolds rather
than chromosomes

We evaluated the effect of using genomic scaffolds to estimate
linkage groups when chromosome information is not available.
Using the downsampled dataset of 3.5M SNPs from P. armeniaca,
we selected from the Northern gene pool 45 random individuals
with a Q-value>99%, to rule out the influence of admixture. For
this dataset, five different chromosome maps were then created,
progressively assigning SNPs to 8 (true value), 16, 32, 64 and 128
chromosomes (as if they were genomic scaffolds, see script and re-
lated explanation at https://github.com/Ralpina/Ne-plant-genom
ic-datasets#4-effect-of-using-genomic-scaffolds-instead-of-chrom
osomes-on-ne-estimation). We then estimated N, in GONE using
five corresponding chromosome map files and keeping the same

ped (genotypes) file.

2.3 | Dataanalysesin NeEstimator

We also used the LD method as implemented in the software
NeEstimator v2 (Do et al., 2014) to estimate the N, of our popula-
tions. NeEstimator uses unmapped SNP information and assumes
that SNPs are independently segregating (typically, SNPs at short
physical distances, for example those in the same short genomic
scaffolds or loci, are filtered previous to the analysis, see below).
Therefore, it provides an N, estimate based on the LD generated
by random genetic drift, which reflects N, in very recent genera-
tions (Waples et al., 2016). However, accuracy and precision will be
both affected by (1) the assumption of independent segregation in
genomic datasets, as SNPs are necessarily packed on a limited num-
ber of chromosomes and thus they provide non-independent infor-
mation, and especially (2) the occurrence of overlapping pairs of loci,
each locus appearing in multiple pairwise comparisons (i.e., two as-
pects of the issue known as pseudoreplication; Purcell et al., 2007,
Waples, 2024; Waples et al., 2016, 2022). Although the influence
of this issue on bias and precision is difficult to address completely,
some bias corrections have been proposed, for example applying a
correction based on the genome size of the species being analyzed
(formula in Waples et al., 2016), restrict comparisons to pairs of loci
occurring on different chromosomes (Waples, 2024), or using only
one SNP per scaffold or thinning scaffolds based on discrete window
sizes (Purcell et al., 2007). To correct the bias due to physical linkage,
we therefore applied the correction in Waples et al. (2016), by divid-
ing the N, estimates obtained by y=0.098+0.219 xIn(Chr), where
Chr is the haploid number of chromosomes, when information about
the number of chromosomes was available.

As low-frequency alleles upwardly bias N, we followed the
recommendations in Waples (2024) and excluded singleton alleles
(Waples, 2024; Waples & Do, 2010). We also ran the analyses
without applying a filter for rare alleles, to be able to compare
the results obtained with NeEstimator with those from GONE and
currentNe. Confidence intervals were obtained via jackknifing over

samples (Do et al., 2014; Jones et al., 2016). As NeEstimator can-
not handle very large datasets (with >100,000 loci, see https://
www.molecularfisherieslaboratory.com.au/neestimator-softw
are/), we reduced the number of SNPs in the F. sylvatica and P.
armeniaca datasets by randomly subsampling 50,000 SNPs across
chromosomes.

2.4 | Dataanalyses in currentNe

We used the newly developed software program currentNe (Santiago
et al., 2024) to obtain contemporary N, estimates that are directly
comparable to the ones obtained with NeEstimator (referring to the
most recent generations in the past). The practical advantages of
currentNe are the possibility to include thousands of SNPs in the
analyses (with an upper limit of 2 million loci), the lack of a minor
allele frequencies requirement, and the lower computational ef-
fort. Moreover, the program produces confidence intervals around
N, based on artificial neural networks, can accommodate complex
mating systems and is accurate with small sample sizes (Santiago
et al., 2024). CurrentNe produces two types of estimation, depend-
ing on whether SNPs mapping is available (N, estimation based on
LD between chromosomes) or not (N, estimation by integration
over the whole genome). In the latter case, the program assumes
that each of the given chromosomes is about 1 Morgan long. When
the number of chromosomes is unknown, the mapping of SNPs to
scaffolds might also be used for the first estimation type (based on
LD between “chromosomes”). However, scaffolds might be much
shorter than chromosomes, and SNPs will not be totally independ-
ent (as scaffolds might actually belong to the same chromosome).
Therefore, we estimated N, in currentNe for all the species included
in our study except S. globulifera s.1., as the number of chromosomes

was not available for the species.

3 | RESULTS AND DISCUSSION
3.1 | Dataanalysesin GONE

Our study explores the limitations associated with genomic data-
sets when estimating N, using the LD method as implemented in
the program GONE, and compares estimates of recent historical N,
obtained with GONE with estimates of contemporary N, as obtained
with NeEstimator and currentNe. Below, we will first focus on the
limitations of plant genomic datasets as explored using the software
GONE and then discuss the differences observed when N_ was cal-
culated using GONE, NeEstimator, and currentNe.

One limitation usually associated with reduced representation
sequencing datasets is the short length of the reads or scaffolds.
We tested how this limitation would influence N, estimation in
GONE using the datasets of S. globulifera and M. annua. N, esti-
mation in GONE failed for the three biological species of S. globu-
lifera, as the program returned the error “too few SNPs” for each
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FIGURE 1 In(a), ranked N, estimates in the most recent
generation in 150 datasets of 35 individuals with different
proportions of missing data (excluding individuals with a proportion
of missing data >0.95) of Fagus sylvatica; ranges represent standard
deviations for the proportion of missing data per individual,
whereas points represent median values over 150 datasets.
Analyses based on the dataset with the 27 genomic scaffolds

with the largest number of SNPs (excluding the scaffolds with

>1M SNPs). In (b), proportion of missing data per individual in the
complete dataset of F.sylvatica.

of the three species datasets. This was caused by the relatively
small number of SNPs per scaffold (averaging ~250 SNPs) and, in
turn, by the relatively short length of the scaffolds (length ranging
from 5421 to 931 positions) which prevented GONE from pro-
ducing reliable N, estimates. N, estimates were instead obtained
for M. annua, whose average number of SNPs per contig was 670
(Table 1).

3.1.1 | Influence of missing data on N, estimation

The effect of missing data on N, estimation is evident from the
results obtained when analysing the dataset of F. sylvatica, and
from the results obtained when analysing the dataset of P. ar-
meniaca in which genotype data were manually excluded. For F.
sylvatica, 35 individuals had a proportion of missing data <50%
(Figure 1b). Increasing the proportion of missing data in the per-
muted datasets of 35 individuals produced an acute increase in
the N, estimates obtained with GONE (see Figure 1a); for instance,
increasing the median proportion of missing data per individual
from 25% to 35% produced N, estimates increasing from 200 to
a few millions. Likewise, when missing data proportion per indi-
vidual of P. armeniaca increased above 20%, we obtained N, esti-
mates that were > 350 times larger than those obtained from the
original dataset (average missing data proportion per individual
~8%) (Figure 2). This relationship between missing data and N

e
estimates is consistent with what was previously found (e.g.,
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FIGURE 2 Influence of missing data on N, estimation in GONE.
Missing genotypes were manually introduced into the dataset of
Prunus armeniaca, generating pseudo-genotypes with an average
proportion of missing data ranging from 20% to 40%. The original
dataset is shown for comparison (missing data=8%). Note the
different y-scales in the three facets.

Marandel et al., 2020), although the loss of accuracy in the N,
estimation is extreme and suggests that either individuals with
>20% missing data should be removed from the dataset before
estimating N, or SNPs with missing data in a given percentage of
individuals (e.g., 50% by default assumed by GONE) should be re-
moved, provided that the dataset includes a sufficient number of
SNPs. However, in species with large N, reducing the sample size
(S) to a number < true N, introduces further uncertainties in the
N, estimation using the LD method, regardless of the number of
loci used (Marandel et al., 2019; Waples, 2024), in addition to the
sampling error already expected because of the finite sample size
(e.g., Peel et al., 2013).

3.1.2 | Influence of number of SNPs on
N, estimation

The influence of the number of SNPs per chromosome was ex-
plored using the dataset from P. armeniaca (Northern gene pool),
which was the only dataset with SNPs fully mapped to chromo-
somes. Increasing the number of SNPs per chromosome affected
point N, estimates only slightly, and influenced the apparent preci-
sion of the estimates more obviously, especially for a total number
of SNPs above 300,000, corresponding to an average of 10,000
SNPs per chromosome of P. armeniaca used by GONE (Figure 3).
Accuracy and precision of N, estimates based on LD are expected
to be affected by two types of pseudoreplication: (1) the non-
independent information content provided by thousands of linked
SNPs, and especially (2) the occurrence of overlapping pairs of
loci, each locus appearing multiple times in pairwise comparisons
(Waples et al., 2016, 2022). Therefore, the narrower confidence
intervals we obtained when increasing the number of SNPs are
partially due to the inclusion of overlapping pairs of loci for the
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FIGURE 3 N, estimates obtained with GONE over the

most recent generation for the Northern gene pool of Prunus
armeniaca as a function of the number of SNPs. Points represent
the geometric mean values across 50 replicates; shaded area
represents 95% confidence intervals across replicates. Note that
GONE uses a maximum of 50,000 SNPs per chromosome, even
if provided with a larger number (with 1 million per chromosome
being the maximum number accepted); the number of SNPs

in each of the eight subsets analyzed ranged from 10 to 10’,
corresponding to a range of ~5000 to ~20,000 SNPs per
chromosome used by GONE.

N, estimation, which artificially increases the degrees of freedom
that make Cls tight. The drop in the N, geometric mean value as-
sociated with the dataset with >20,000 SNPs might be due to the
inclusion of more physically linked SNPs, but it might also be due
to the uncertainty associated with the specific SNPs included in
the analysis.

For practical purposes, our results in P. armeniaca show that add-
ing more than 2000 SNPs per chromosome, with a large sample size
(>75), does not substantially improve the accuracy and the preci-
sion of the estimation, in line with what is shown in previous stud-
ies focusing on LDN, (Marandel et al., 2020). We have not explored
whether using fewer SNPs in this dataset would significantly affect
accuracy and precision, and it is possible that N, estimates would
remain consistent even if using <2000 SNPs per chromosome.

Santiago et al. (2020) noted that the accuracy of the estimation
is proportional to the sample size and to the square root of SNPs
pairs, and therefore researchers might partially compensate for
small sample sizes by increasing the number of SNPs. However, as
the information content of a dataset depends on the amount of re-
combination and on the pedigree of the individuals included in the
analyses, an estimation based on a small number of samples will not
necessarily be representative of the entire population, especially if
N, is large (King et al., 2018; Santiago et al., 2020; Waples, 2024).
Furthermore, the marginal benefit of increasing the number of SNPs
beyond tens of thousands is counterbalanced by poor precision if
Cls are generated using incorrect degrees of freedom, which is often
the case with thousands of non-independent SNPs (Do et al., 2014;
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FIGURE 4 Changeinthe N, estimates as a function of the
sample size in Prunus armeniaca (Northern gene pool). Points
represent geometric means across subsets of individuals, sampled
without replacement 50 times. The insert also shows 95%
confidence intervals (point ranges) estimated over the 50 replicate
subsets.

Jones et al,, 2016; Luikart et al., 2021; Moran et al., 2019; Waples
et al., 2022). Finally, Waples (2024) also points out that adding more
than a few thousand SNPs increases the precision only slightly and is
more beneficial when the true N, is large.

3.1.3 | Influence of the sample size on N, estimation

We evaluated the influence of the sample size using the Northern
gene pool of P. armeniaca. Increasing sample sizes to over thirty sam-
ples led to more consistent N, estimates and reduced the chances of
obtaining N, estimates only representative of a few individual pedi-
grees (Figure 4), as previously observed when using the LD method
(Antaoetal., 2011; Marandel etal., 2019; Nunziata & Weisrock, 2018;
Palstra & Ruzzante, 2008; Santiago et al., 2020; Tallmon et al., 2010;
Waples et al., 2016; Waples & Do, 2010). Including in the N, esti-
mation a number of samples that is representative of the true N,
of the population is crucial in large populations, where the genetic
drift signal in recent generations is weak (Barbato et al., 2015; Do
et al., 2014; Luikart et al., 2010; Palstra & Ruzzante, 2008; Santiago
etal., 2020; Wang et al., 2016; Waples, 2024). On the contrary, small
populations experience more genetic drift, and therefore the LD
method is particularly powerful in such populations. Estimates of
N, remain small in small populations even with larger sample sizes,
hence the important conservation implication that small populations
cannot be mistaken for large populations (Santiago et al., 2020;
Waples et al., 2016; Waples & Do, 2010). For the Northern gene
pool of wild apricots, we obtained an N, estimate <2000 when the
sample size was equal to 15, and progressively obtained higher val-
ues increasing up to a plateau of N ~4000, for larger sample sizes.
This confirms the expectation that a large sample size is needed to
estimate a large N, (Antao et al., 2011; Tallmon et al., 2010).
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FIGURE 5 Influence of population structure on the N,

estimates for the Northern and Southern gene pools of Prunus
armeniaca, as obtained with GONE. Q-values refer to the results

of the fastStructure analysis performed in Groppi et al. (2021)
(lower bounds of individual Q-value to the main genetic cluster).

N, was estimated over 50 datasets of resampled individuals (77

in each Q-value subset in the Northern gene pool and 21 in each
Q-value subset in the Southern gene pool, reflecting differences

in sample sizes). N, estimates for the combined gene pools are also
shown (“all”), obtained by resampling individuals (77 individuals
when compared with the Northern gene pool estimates and 21
individuals when compared with the Southern gene pool estimates).
In (a), points represent the geometric mean and ranges represent
95% confidence intervals across 50 replicates; in (b), only geometric
mean values of the N_ estimates across 50 replicates and in the last
25 generations are shown.

3.1.4 | Influence of admixture on N, estimation

The impact of admixture on N, estimation was explored using the
dataset of P. armeniaca. Estimates of N, in the most recent gen-
eration generally decreased when the Q-value of the individuals
included in the analysis increased (Figure 5a). The larger N, esti-
mates in the most recent generations (1-4) when including more ad-
mixed individuals are consistent with the upward bias predicted by
Waples and England (2011) for a sampled subpopulation that does
not include all potential parents (“drift LD"); with higher admixture
proportions (Figure 5a), the N, estimated for each gene pool (sub-
population) using the LD method tends to approach the N, of the
metapopulation instead (Waples & England, 2011). However, the N,
estimate we obtained when combining the two gene pools (“all” in
Figure 5a) was lower than the N, estimate obtained when consider-
ing highly admixed individuals in the Northern gene pool (70% in the
right panel of Figure 5a). A downward bias in the N, estimation is
expected because of the Wahlund effect associated with sampling
and analysing different gene pools together (“mixture LD”; Neel
et al., 2013; Nunney, 2016; Waples, 2024; Waples & England, 2011).
Using simulations, Novo, Ordas, et al. (2023) demonstrated that both
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the time of gene pool divergence and the timing of the mixing event
may affect the bias in the N, estimation. The longer the time elapsed
since the gene pools diverged, the more pronounced the downward
bias on N, becomes. Similarly, the more recent the mixing event (in
our case, as a consequence of sampling strategy), the more exacer-
bated the downward bias on N.. If the occurrence of a mixing event
is unknown, the decrease in N, might mistakenly be interpreted as
a reduction in population size, such as that caused by a bottleneck.

The Southern gene pool showed a contrasting trend; N, es-
timates for the less admixed groups remained lower than that ob-
tained when combining the two gene pools, possibly because the
few samples from this gene pool contributed less (with any potential
mixture LD) than the more abundant samples from the Northern
gene pool (with their LD signal) (Figure 5a). However, the large confi-
dence intervals might also suggest a combined effect of drift LD and
bias in the estimates induced by using a small sample (21 individuals)
to estimate a large N, (of the metapopulation). How the relationship
between sampling and genetic structure practically affects N, still
deserves evaluation, as the effect on LDNe will depend on the rela-
tive strength of the “mixture LD” and the “drift LD” in the specific set
of samples included in the analyses (Waples, 2024).

Over the last 25 generations (Figure 5b), we obtained higher
N, estimates when individuals from the Southern gene pool with a
Q-value 299% were included. For the Northern gene pool, on the
contrary, we obtained a lower N, estimate when individuals with a
Q-value 299% were included. The different demographic histories
of the Northern and Southern gene pools certainly underlie the
pattern observed, as the Southern gene pool seems to have under-
gone a recent bottleneck, whereas the Northern gene pool has a
more stable demographic trend. The recent population decline for
the Southern gene pool may be explained by the Soviet era and the
current land-use change in the Fergana valley (mainly Uzbekistan)
where native forests of wild apricot were partially replaced with
crop species. Nevertheless, two more factors should be considered;
first, the sample size of the Southern gene pool is smaller than that
of the Northern gene pool (only 21 individuals vs. 77 individuals
drawn from each Q-value subset). Second, Santiago et al. (2020)
warn about a typical artefactual bottleneck observed in GONE and
caused by population structure (in figure 2F of Santiago et al., 2020,
considering a migration rate =0.2%; Novo, Ordas, et al., 2023). As we
observed a consistent trend regardless of the individual Q-value, and
the drop in N, is particularly evident with a Q-value=99%, we inter-
pret this N, drop as a true bottleneck, with the caveat of reduced

accuracy linked to a small sample size for the Southern gene pool.

3.1.5 | Effect of using genomic scaffolds rather than
chromosomes

To evaluate the effect of using genomic scaffolds as a proxy for
linkage groups when chromosome information is not available, we
sorted SNPs from the P. armeniaca dataset into a progressively
larger number of scaffolds or chromosomes assumed. This produced

85U8017 SUOWILIOD BAIIRID) 8|eotdde 8y} Aq pausenob ae sspie YO ‘88N Jo sejni 1oy AriqiT 8UlIUQO A3|IA UO (SUORIPUOD-PUE-SWS)W0D A8 | IMAeIq 1 U1 UO//:SANY) SUOIIPUOD pue SWB | 8U188S *[7202/50/.2] Uo Ariqiauljuo Aa|IMm ‘soueld aueiyood Aq TEIET ©AS/TTTT OT/I0p/L00 A8 | Areiqijeuljuo//Sdny wouy papeojumod ‘S ‘v20Z ‘T.Gv2S.T



GARGIULO ET AL.

900,000 _oeq
850,000 o
000 o)
800,000
Q o
750,000 ® 00009 Number of
o-o-eo-o oo chromosomes
- T Seeeg assumed
°200,000 U u
Z ® 8 (true)
160,000 L e 16
2z
120,000 o oo
L
10,000
5000
0 5 10 15 20 25
Generation

FIGURE 6 Estimates of N, calculated on datasets in which

the same set of SNPs is assigned to a progressively larger

number of assumed chromosomes, where 8 is the true number

of chromosomes for Prunus armeniaca (per haploid count); 45
individuals from the Northern gene pool were used for this analysis.

inconsistent N, estimates across the datasets with increasing number
of chromosomes assumed, with N values progressively rising from
around 3x 102 for 8 chromosomes (true value) to >8x 10° when the
number of chromosomes assumed was equal to 128 (Figure 6). The
algorithm implemented in GONE is based on the assumption that LD
among pairs of SNPs at different genetic distances provides differ-
ential information about N, at different times in the past (Santiago
et al., 2020). Loosely linked loci give information about N, in recent
generations, as their recombination rate is higher and rate of LD-
decay slower than that of closely linked loci (Sved & Feldman, 1973).
Therefore, the behaviour of the N, estimates observed in Figure 6
can be explained if considering that when a chromosome is broken
into smaller scaffolds, only closely linked loci will be available for the
N, estimation; pairs of SNPs at higher genetic distances (i.e., loosely
linked loci) will be missing, inducing biases on recent N, estimates.
An inflated N, in recent generations will therefore depend on having
fewer random associations among loci useful to estimate LD (i.e.,
fewer loosely linked loci), which will unfold as having less genetic
drift (i.e., a larger population). Consequently, N, estimates obtained
with GONE for M. annua and F. sylvatica may be biased upward since
scaffolds were used as a proxy for chromosomes (Table 1).

3.2 | N, estimates obtained with GONE,
NeEstimator and currentNe

As expected, N, estimates obtained using NeEstimator and cur-
rentNe were more in agreement with one another compared with
those obtained with GONE for the last generations (Table 2). GONE
estimates for all species were larger than those obtained using the
other programs, especially in the Northern gene pool of P. armeni-
aca (GONE-N_~3500 for the last generation while NeEstimator-
N,~716.2, excluding singletons and after bias correction, and

currentNe-N, ~ 170). The point N, estimate obtained with currentNe
and its confidence intervals remained consistent even when we in-
creased the number of SNPs, suggesting that there was no uncer-
tainty associated with the SNPs included in the analysis. Estimates
from simulated populations in Santiago et al. (2024) showed con-
sistency between the output of currentNe and NeEstimator, except
when a small sample (10 individuals) was drawn from a very large
population (Ne: 10,000) using 22,000 SNPs, in which case currentNe
performed better. Our sample size for the Northern gene pool was
much larger (77 individuals), and we do not expect the true N, to
be larger than 10,000. Therefore, when using the same dataset
for currentNe and NeEstimator, we interpret the slight discrepancy
between the two estimates to be associated with the different al-
gorithms included in the programs, which are affected in different
ways by the occurrence of rare alleles and the deviations from ran-
dom mating, among other things (Santiago et al., 2024). When con-
sidering the Southern gene pool, for which the true N, is expected
to be smaller than for the Northern gene pool (Groppi et al., 2021),
the estimates obtained with GONE (184) was higher than those ob-
tained with NeEstimator (80.9 excluding singletons and after bias
correction) and currentNe (~30).

Another consideration is the downward bias on N, estimates
caused by localized sampling in continuous populations featuring
isolation by distance (Neel et al., 2013; Nunney, 2016; Santos-del-
Blanco et al., 2022; Waples, 2024). If the range of sampling is similar
in extent to the unknown effective range of dispersal, as it is likely
the case in S. globulifera, estimates may not reflect the population-
wide true N, but rather a quantity close to the neighbourhood
size (N), i.e., the inverse of the probability of identity by descent
of two uniting gametes (Santos-del-Blanco et al., 2022). In P. arme-
niaca, where the sampling window likely exceeded the breeding
window by much, we may still expect a downward bias because of
the mixture LD caused by the inclusion of genetically divergent in-
dividuals (Neel et al., 2013; Waples, 2024; Waples & England, 2011).
However, this bias would not explain the discrepancy between the
estimates obtained with GONE and those obtained with the other
programs for the Northern gene pool of P. armeniaca. In S. globulifera,
for which we also expect a large N, (>1000), it was only possible to
use NeEstimator, due to the short length of contigs (not appropri-
ate when using GONE), and the lack of information about the num-
ber of chromosomes (as required to obtain reliable estimates with
currentNe). N, ranged from 86 (Cl: 37-Infinite) in Species 3, to 380
(Cl: 300-510) in Species 2 and to 754 (Cl: 623-949) in Species 1,
although point estimates could not be corrected for physical link-
age due to lack of information about chromosome number and are
therefore biased downward (Table 2). Estimates for Species 3, in par-
ticular, displayed infinite confidence intervals, suggesting that the
sample size might be not large enough to capture the genetic drift
signal from the original population. However, the relative magnitude
of the estimates obtained are in agreement with the availability of
suitable habitats for the three species (Schmitt et al., 2021) and,
all else being equal, we would generally expect these populations
to have a long-term constant population size, considering that the
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Guianese rainforest has experienced a continuous forest cover since
the last glacial maximum (Barthe et al., 2017).

The uncertainty in N, estimation using the LD method is partic-
ularly exacerbated in the dataset from F. sylvatica where, in addi-
tion to the potential downward bias induced by localized sampling
in a continuous population, missing data also affect the estimation
performed with the three programs (GONE-N, =25 for the last
generation, NeEstimator-N,=2.3, excluding singletons and after
bias correction for physical linkage, and currentNe-N_ =4 after bias
correction for physical linkage), by reducing the usable sample size
among pairs of loci (Do et al., 2014; Peel et al., 2013; Waples, 2024).
In general, missing data affect the precision of N, estimates from
the LD method whereas accuracy should be less affected (Nunziata
& Weisrock, 2018; Waples, 2024), unless missing data occur non-
randomly and depend on the genotype, as it might be the case in the
F. sylvatica dataset.

For the only annual plant in our dataset, M. annua, we would ex-
pect N, estimated with the LD method to mainly reflect the effec-
tive number of breeders, N, (Luikart et al., 2021; Waples, 2024) for
the year of sampling, as individual cohorts were sampled (progeny of
adults that reproduced in that specific year). Estimates from GONE
were higher than those obtained with NeEstimator and currentNe
(Table 2), also because of the bias induced by the lack of SNPs map-
ping (i.e., using scaffolds as a proxy for chromosomes in GONE). All
point estimates fell within the estimated confidence intervals and
usually denoted a small N, which is consistent with primarily re-
flecting the N, for the population. In particular, point estimates in
NeEstimator, excluding singletons and after bias correction for phys-
ical linkage, ranged from 29.1 for the Mediterranean gene pool to
33.8 for the Core gene pool and 27.3 for the Atlantic gene pool. Point
estimates in currentNe ranged from 20.5 for the Mediterranean gene
pool to 20.4 for the Core gene pool and 17.6 for the Atlantic gene
pool. Even if the gene pool subdivision was consistent with the level
of genetic admixture found in the individuals, it is still possible that
estimates are biased downward because of mixture LD associated
with mixing samples from different geographical locations (sampling
window larger than breeding window). Furthermore, M. annua is able
to survive through multi-annual seed banks (Crocker, 1938) despite
being an annual plant, and therefore the arithmetic mean across mul-
tigenerational N, estimates would be needed to reliably estimate N
rather than N, (Nunney, 2002; Waples, 2006b).

e

3.3 | Practical recommendations when estimating
contemporary N_ in GONE

In this study, we have considered some of the technical limitations
when estimating N, from plant genomic datasets, including: (i) the
occurrence of missing data, (ii) the limited number of SNPs/individ-
uals sampled, and (i) the lack of genetic/linkage maps and of in-
formation about how SNPs map to chromosomes when estimating
N, using the software GONE. In addition, we have explored some
biological limitations that may affect N, estimation using the LD

method, such as the occurrence of population structure, although
we recognize that our exploration is not exhaustive, as other biologi-
cal factors (i.e., associated with reproductive system and life-history
traits) might affect N, and its estimation. Our empirical results cor-
roborate some previous findings (reviewed in Waples, 2024) about
the importance of having large samples sizes, especially when popu-
lations are large. For example, we found that >30 individuals were
necessary to reach consistent N, estimates (~several thousands) for
P. armeniaca. Furthermore, our empirical results highlight the follow-

ing requirements that genomic datasets should satisfy:

e non-random missing data should not exceed 20% per individual.
Missing data also affect how SNPs are represented across loci
and individuals sampled and can generate non-random patterns
whose effect on N, estimation is difficult to predict (as observed
in the F. sylvatica and P. armeniaca datasets);

e having a large number of SNPs (>tens of thousands) is potentially
important to allow users to generate non-overlapping subsets of
loci that reduce the influence of pseudoreplication on confidence
intervals (Waples et al., 2022). However, increasing the number of
SNPs beyond a few thousands per chromosome does not produce
significant changes in the N_ estimates, as we observed in wild
apricots; Waples (2024) also observed that the benefit of adding
over a few thousand SNPs on precision is little, but increases if the
true N, is very large.

e most importantly, having SNPs fully mapped to chromosomes is
essential to obtain reliable estimates when using the software
GONE (as observed in the P. armeniaca dataset); other programs
should be preferred to estimate contemporary N, when SNPs
mapping is not available (i.e., currentNe).

In addition, the bias on N, estimates due to the occurrence of
gene flow and admixture can significantly affect the performance
of single-sample estimators (as observed in the P. armeniaca gene
pools), as previously described (e.g., Neel et al., 2013). Other bi-
ases associated with (i) further sources of population structure (i.e.,
overlapping generations, demographic fluctuations including bottle-
necks, reproductive strategies causing variance in reproductive suc-
cess, etc.) and (ii) further technical issues associated with sampling
strategies and genomic datasets can add up and generate results
that are misleading for conservation. Therefore, a careful consid-
eration of the issues above is essential when designing and inter-
preting studies focused on the estimation of N, and other related

indicators for conservation.
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