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Abstract
Effective population size (Ne) is a pivotal evolutionary parameter with crucial im-
plications in conservation practice and policy. Genetic methods to estimate Ne 
have been preferred over demographic methods because they rely on genetic data 
rather	than	time-	consuming	ecological	monitoring.	Methods	based	on	linkage	dise-
quilibrium (LD), in particular, have become popular in conservation as they require a 
single sampling and provide estimates that refer to recent generations. A software 
program based on the LD method, GONE, looks particularly promising to estimate 
contemporary	and	recent-	historical	Ne (up to 200 generations in the past). Genomic 
datasets	from	non-	model	species,	especially	plants,	may	present	some	constraints	
to the use of GONE, as linkage maps and reference genomes are seldom available, 
and	SNP	genotyping	is	usually	based	on	reduced-	representation	methods.	In	this	
study, we use empirical datasets from four plant species to explore the limitations 
of plant genomic datasets when estimating Ne using the algorithm implemented in 
GONE, in addition to exploring some typical biological limitations that may affect 
Ne estimation using the LD method, such as the occurrence of population structure. 
We show how accuracy and precision of Ne estimates potentially change with the 
following	factors:	occurrence	of	missing	data,	limited	number	of	SNPs/individuals	
sampled,	and	lack	of	information	about	the	location	of	SNPs	on	chromosomes,	with	
the latter producing a significant bias, previously unexplored with empirical data. 
We finally compare the Ne estimates obtained with GONE for the last generations 
with the contemporary Ne estimates obtained with the programs currentNe and  
NeEstimator.
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1  |  INTRODUC TION

Effective population size (Ne) is an evolutionary parameter in-
troduced by Wright (1931), which determines the rate of genetic 
change due to genetic drift and is therefore linked with inbreeding 
and loss of genetic variation in populations, including adaptive po-
tential	(Franklin,	1980; Jamieson & Allendorf, 2012; Waples, 2022). 
The importance of contemporary effective population size in con-
servation biology is increasingly recognized, and the concept im-
plemented	in	conservation	practice	(Frankham	et	al.,	2014; Luikart 
et al., 2010;	Montes	et	 al.,	2016) and policy (Graudal et al., 2014; 
Hoban	 et	 al.,	 2013; Kershaw et al., 2022; O'Brien et al., 2022). 
For	example,	Ne has been included as a headline genetic indicator 
to	 support	 Goal	 A	 and	 Target	 4	 of	 the	 Kunming-	Montreal	 Global	
Biodiversity	 Framework	 of	 the	 UN's	 Convention	 on	 Biological	
Diversity (CBD, 2022), as the proportion of populations within 
species with Ne > 500,	that	are	expected	to	have	sufficient	genetic	
diversity	 to	 adapt	 to	 environmental	 change	 (Hoban	 et	 al.,	 2020; 
Jamieson & Allendorf, 2012).

Contemporary Ne can be estimated using demographic or genetic 
methods	(Felsenstein,	2019; Luikart et al., 2010; Wang et al., 2016; 
Waples, 2016; Wright, 1969). Demographic estimators require de-
tailed ecological observations over time for the populations of in-
terest	(Felsenstein,	2019; Nunney, 1993; Wright, 1969), which is not 
necessary for genetic estimators (Wang et al., 2016; Waples, 2016). 
Methods	that	can	provide	Ne estimates based on a single sampling 
point in time (Wang, 2016) have become particularly popular, es-
pecially in studies focused on species for which budget and time 
allocated are limited, elusive species that are difficult to track and 
monitor (Luikart et al., 2010), and species for which information 
about distribution is scarce. The current biodiversity crisis and the 
limited resources for conservation have recently fuelled the devel-
opment and application of  Ne	estimators	that	rely	on	cost-	effective,	
non-	genetic	proxy	data	across	a	wide	 range	of	 species	of	 conser-
vation	concern	 (Hoban	et	al.,	2020;	Hoban,	Bruford,	et	al.,	2021). 
Population	census	size,	NC, has been used to infer Ne when genetic 
Ne estimates are not available, relying on the ratio Ne/NC = 0.1	
(where NC	 is	 the	 adult	 census	 size	 of	 a	 population)	 (Frankham	
et al., 2014;	Hoban,	Paz-	Vinas,	et	al.,	2021;	Palstra	&	Fraser,	2012). 
This	 rule-	of-	thumb	 ratio	 is	 pragmatic	 for	 conservation	 (but	 see	
Fady	&	Bozzano,	2021), as shown in application tests in different 
countries	 for	 different	 species	 of	 conservation	 concern	 (Hoban	
et al., 2023; Thurfjell et al., 2022).	 However,	 research	 needs	 to	
progress to better understand Ne estimation methods and potential 
deviations from the ratio Ne/NC = 0.1,	which	are	expected	for	exam-
ple	across	populations	within	species	or	in	species	with	life-	history	
traits	that	favour	individual	persistence	(Frankham,	2021; Gargiulo 
et al., 2023;	 Hoban	 et	 al.	 2020;	 Hoban,	 Paz-	Vinas,	 et	 al.,	 2021; 
Jamieson & Allendorf, 2012; Laikre et al., 2021). Current genetic 
estimators of contemporary Ne work well in small and isolated pop-
ulations, which match many populations of conservation concern, 
but they are difficult to apply in species with a large and continuous 
distribution	(Fady	&	Bozzano,	2021;	Santos-	del-	Blanco	et	al.,	2022). 

In such species, genetic isolation by distance, overlapping gener-
ations, and difficulty to define representative sampling strategies 
can affect the accuracy of estimates of NC, Ne and their ratio (Neel 
et al., 2013; Nunney, 2016;	 Santos-	del-	Blanco	 et	 al.,	2022).	 Plant	
species embody some of the features mentioned above, as they 
often	have	complex	life-	history	traits	(e.g.,	overlapping	generations,	
long lifespans), reproductive systems (i.e., mixed clonal and sexual 
reproduction, mixed selfing and outcrossing strategies) and continu-
ous distribution ranges (De Kort et al., 2021;	Petit	&	Hampe,	2006). 
Therefore, they are particularly interesting to help improve our un-
derstanding of Ne estimation methods.

Genetic drift generates associations between alleles at different 
loci, known as linkage disequilibrium (LD), at a rate inversely pro-
portional to Ne	 (Hill,	1981; Waples et al., 2016). LD between loci 
can be used to obtain a robust estimate of contemporary Ne from 
genetic data at a single time point, and this explains the popularity 
of	 the	LD	method	compared	 to	 the	earlier	developed	 two-	sample	
temporal methods (Luikart et al., 2010; Waples, 2024) and the devel-
opment of numerous tools for the estimation of LDNe from genetic 
and genomic data (Barbato et al., 2015; Do et al., 2014; Santiago 
et al., 2020; Wang et al., 2016). The Ne estimates obtained with the 
LD method generally refer to a few generations back in time (Do 
et al., 2014; Luikart et al., 2010) and, depending on the genetic dis-
tances between loci, it is possible to obtain Ne at different times in 
the past (Santiago et al., 2024; see also the review on timescales 
of Ne	 estimates	 in	Nadachowska-	Brzyska	 et	 al.,	2022). In particu-
lar, LD between closely linked loci can be used to estimate Ne over 
the historical past (Barbato et al., 2015; Do et al., 2014;	 Hayes	
et al., 2003; Qanbari et al., 2010; Santiago et al., 2020; Sved, 1971; 
Wang et al., 2016), whereas loosely linked or unlinked loci can be 
used to estimate Ne in the recent past (Novo, Ordás, et al., 2023; 
Novo,	Pérez-	Pereira,	et	al.,	2023; Qanbari, 2019; Sved et al., 2013; 
Wang et al., 2016; Waples, 2006a; Waples & Do, 2008).	However,	
as other methods to estimate Ne, the LD method is not devoid of 
biases and drawbacks, mostly relating to the assumption that the 
population is isolated, which is rarely satisfied (England et al., 2010; 
Hill,	1981; Waples, 2024; Waples & England, 2011), and to the occur-
rence	of	age	structure	(Hössjer	et	al.,	2016; Nunney, 1991; Robinson 
&	Moyer,	2013; Ryman et al., 2019; Waples et al., 2014; Waples & 
Do, 2010; Yonezawa, 1997).

In this study, we aimed to explore the limitations of plant ge-
nomic datasets when estimating contemporary Ne. We mostly fo-
cused on estimating Ne using the software program GONE (Santiago 
et al., 2020), but we also provide Ne estimates obtained with 
NeEstimator (Do et al., 2014) and the recently developed program, 
currentNe (Santiago et al., 2024). These programs provide recent 
historical and contemporary Ne estimates, respectively, using the 
LD method, though they differ mostly in the data requirement and 
timescales of estimates provided. GONE is capable of exploiting the 
full range of LD among loci in a dataset, therefore providing Ne esti-
mates that are reliable up to 200 generations ago; NeEstimator and 
currentNe provide Ne estimates that represent the average over a 
few recent generations, and the number of generations representing 
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an estimate increases with the number of chromosomes of the spe-
cies (Santiago et al., 2024).

We explored the technical requirements of GONE by conduct-
ing	power	analyses	aimed	at	testing	how	the	number	of	SNPs,	the	
proportion of missing data, the number of individuals, the lack of 
information	about	 the	 location	of	SNPs	on	chromosomes,	and	 the	
occurrence of population structure might affect Ne estimation. The 
Ne estimates obtained with GONE were then compared to the ones 
obtained with NeEstimator and currentNe, and discussed in light of 
the biological and ecological features of the species. Our findings 
help better understand the limitations and potentialities of genomic 
datasets	when	estimating	LD-	based,	one-	sample	Ne, providing new 
insights on how to use current methods.

2  |  METHODS

2.1  |  Datasets

We	selected	four	datasets	obtained	with	different	high-	throughput	
sequencing techniques from different plant taxa (Symphonia globu-
lifera L. f. (Clusiaceae), Mercurialis annua L. (Euphorbiaceae), Fagus 
sylvatica	 L.	 (Fagaceae),	Prunus armeniaca L. (Rosaceae)), to repre-
sent different botanical groups, ecosystems, generation times and 
reproductive strategies. Sampling strategies in the datasets en-
compassed different sample sizes for markers and individuals, and 
datasets featured distinct levels of population genetic structure 
(Table 1).

For	boarwood,	S. globulifera s.l., a widespread and predominantly 
outcrossing evergreen tree typical of mature rainforests in Africa and 
the Neotropics (Degen et al., 2004;	Torroba-	Balmori	et	al.,	2017), we 
used the targeted sequence capture dataset described in Schmitt 
et al. (2021). Three sympatric gene pools were identified in a lowland 
forest	in	French	Guiana,	likely	corresponding	to	three	biological	spe-
cies, described as Symphonia sp. 1, Symphonia sp. 2 and Symphonia 
sp. 3 (Schmitt et al., 2021). To avoid the influence of admixture on 
the estimation of Ne, we first divided the dataset in three subsets 
based on the analysis of genetic structure performed in the soft-
ware Admixture v1.3.0 (see Schmitt et al., 2021), selecting only the 
individuals with a Q-	value	(cluster	membership	coefficient) ≥ 95%	to	
each of the three genetic clusters (Species 1, Species 2 and Species 
3;	 File	S1). We then selected the 125 genomic scaffolds with the 
largest	number	of	SNPs	(see	Table 1).

For	the	annual	mercury,	M. annua, an annual plant with variable 
mating systems (monoecious, dioecious, androdioecious), ploidy lev-
els (2×, 4×–12×)	 (Obbard,	Harris,	Buggs,	&	Pannell,	2006; Obbard, 
Harris,	&	Pannell,	2006), potential to produce seed banks, and typ-
ical of open or disturbed habitats in Europe and North Africa, we 
used	 the	 gene	 capture	 dataset	 described	 in	 González-	Martínez	
et al. (2017), obtained from 40 diploid dioecious individuals grown 
from seeds, representative of 10 localities and three main gene 
pools in the species (as described after the fastStructure analysis 
in	 González-	Martínez	 et	 al.,	 2017). We selected the 48 scaffolds 

with	the	largest	number	of	SNPs	and	ran	the	analyses	by	consider-
ing each gene pool separately: (1) ancestral populations from Turkey 
and	Greece	(“Core”),	(2)	range-	front	populations	from	northeastern	
Spain	(“Mediterranean”),	or	(3)	range-	front	populations	from	north-
ern	France	and	the	UK	(“Atlantic”)	(see	Table 1).

For	 the	 common	 beech,	 F. sylvatica, a deciduous predomi-
nantly	 outcrossing	 tree	 of	 European	 temperate	 forests	 (Merzeau	
et al., 1994), we analyzed genomic scaffolds from a single, contigu-
ous	stand	(plot	N1;	Oddou-	Muratorio	et	al.,	2021) within a relatively 
isolated	 French	 population	 (Mt.	 Ventoux,	 southeastern	 France,	
NC ≃ hundreds	 of	 thousands,	 also	 depending	 on	 the	 gene	 flow	
range), in which population genetic structure is neither observed 
nor expected (Csilléry et al., 2014).	Mapping	of	short-	reads	paired	
Illumina sequences was independently performed for each one of 
the 167 individuals of the population against the genome assembly 
(available at www. genos cope. cns. fr/ plants)	using	bwa-	mem2	2.0	(Li	
& Durbin, 2009).	 SNPs	were	 first	 called	using	GATK	3.8	 (Van	der	
Auwera & O'Connor, 2020)	 using	 the	 following	 parameters:	 -	nct	
20	-	variant_index_type	LINEAR	variant_index_parameter	128,000.	
SNPs	were	also	called	using	samtools	v1.10/bcftools	v1.9	(Danecek	
et al., 2021)	with	default	parameters.	Following	these	two	SNPs	call-
ing	steps,	we	performed	a	three-	steps	filtering	process:	(i)	only	dial-
lelic	SNPs	were	kept,	(ii)	the	minimum	allele	frequency	(MAF,	upper	
case used at the individual level), calculated on the basis of all the 
reads	 containing	 the	 SNP,	was	 set	 to	 30%	 (note	 that	GONE	does	
not	require	the	application	of	MAF	filtering,	and	such	filtering	might	
cause a small upward bias in the estimation), (iii) individual genotypes 
with sequencing depth less than 10 were recoded into «./.» mean-
ing	that	both	alleles	are	missing.	We	then	identified	SNPs	found	by	
both	GATK	and	samtools	using	the	-		diff	flag	of	vcftools	v0.1.15	with	
tabix-	0.2.5	(Danecek	et	al.,	2011). A nucleotide polymorphism was 
considered	to	be	a	SNP	if	at	least	one	individual	was	found	to	be	het-
erozygous	at	the	position.	On	average,	for	each	individual,	88.5%	of	
the sequencing reads mapped properly onto the assembly. The final 
VCF	 contained	 18,192,174	 variants,	 and	 is	 available	 at	 the	 Portail	
Data INRAe (https://	doi.	org/	10.	57745/		FJRYI1).

We	 re-	ordered	 the	 406	 genomic	 scaffolds	 available	 based	 on	
their	number	of	SNPs,	and	selected	150	scaffolds	with	the	 largest	
number	of	SNPs.	We	tested	different	combinations	of	input	subsets,	
with numbers of scaffolds ranging from 12 to 150 (provided that 
SNPs	per	scaffold	<1	million	and	total	number	of	SNPs	<10 million, 
see the requirements of GONE below), and numbers of individuals 
ranging from 5 to 167 (the total sample size).

For	the	apricot,	P. armeniaca, we estimated Ne using whole ge-
nome resequencing data (21×	depth	of	coverage	by	ILLUMINA	tech-
nology)	for	wild	Central	Asian,	self-	incompatible	populations	of	the	
species (Groppi et al., 2021). Variant sites were mapped to the eight 
chromosomes of the species and ranged between 2.3 and 6.2 mil-
lion	per	chromosome	(total	number	of	variant	sites:	24 M).	As	these	
exceeded the total number allowed in GONE, we downsampled the 
number	of	SNPs	prior	to	the	analyses.	We	also	analyzed	the	data-
sets by considering the different gene pools recovered in Groppi 
et al. (2021)	 (see	Supp.	Fig.	S20	 in	Groppi	et	al.	2021), namely the 

 17524571, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/eva.13691 by C

ochrane France, W
iley O

nline L
ibrary on [27/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.genoscope.cns.fr/plants
https://doi.org/10.57745/FJRYI1


4 of 16  |     GARGIULO et al.

TA
B

LE
 1
 
D
et
ai
ls
	o
f	t
he
	d
iff
er
en
t	p
la
nt
	g
en
om
ic
	d
at
as
et
s	
an
al
yz
ed
	in
	th
e	
pr
es
en
t	s
tu
dy
.

Sp
ec

ie
s n

am
e

Li
fe

- f
or

m

Re
pr

od
uc

tiv
e 

sy
st

em
 

of
 p

op
ul

at
io

ns
 

an
al

yz
ed

G
en

e 
po

ol
s 

(#
sa

m
pl

es
)

D
at

a 
ty

pe

Av
er

ag
e 

fr
eq

ue
nc

y 
of

 
m

is
si

ng
 d

at
a 

pe
r 

in
di

vi
du

al

#c
hr

om
os

om
es

/
sc

af
fo

ld
s/

co
nt

ig
s a

na
ly

ze
d 

in
 G

O
N

E

Av
er

ag
e 

#S
N

Ps
 p

er
 

sc
af

fo
ld

 o
r 

ch
ro

m
os

om
ea

To
ta

l #
SN

Ps
b

Re
fe

re
nc

e

Is
su

es
 e

xp
lo

re
d 

(a
ff

ec
tin

g 
N

e 
es

tim
at

io
n 

in
 G

O
N

E)

Sy
m

ph
on

ia
 

gl
ob

ul
ife

ra
 

L.
 f.

Pe
re
nn
ia
l	

(tr
ee

)
M
on
oe
ci
ou
s,
	m
ix
ed
	

m
at

in
g 

w
ith

 
pr

ed
om

in
an

t 
ou

tc
ro

ss
in

g 
(D

eg
en

 
et

 a
l.,

 2
00

4)

Sp
ec

ie
s 

1 
(2

28
)

Sp
ec

ie
s 

2 
(1

07
)

Sp
ec

ie
s 

3 
(3

0)

Ta
rg

et
ed

 
se

qu
en

ce
 

ca
pt

ur
e

0.
04

12
5 

(c
on

tig
s)

24
7

30
,8

63
Sc

hm
itt

 
et

 a
l. 

(2
02

1)
M
in
im
um
	n
um
be
r	o
f	

SN
Ps
	re
qu
ire
d

M
er

cu
ria

lis
 

an
nu

a 
L.

A
nn

ua
l

Va
rio

us
 m

at
in

g 
sy

st
em

s,
 a

na
ly

se
s 

ba
se

d 
on

 d
io

ec
io

us
 

po
pu

la
tio

ns
; 

ob
lig

at
e 

ou
tc

ro
ss

er
 

(G
on
zá
le
z-
	

M
ar
tín
ez
	

et
 a

l.,
 2

01
7)

A
tla

nt
ic

 (1
2)

C
or

e 
(1

6)
M
ed
ite
rr
an
ea
n	

(1
2)

Ta
rg

et
ed

 g
en

e 
(e

xo
m

e)
 

ca
pt

ur
e

0.
01

48
 (c

on
tig

s)
67

0
32

,1
51

G
on
zá
le
z-
	

M
ar
tín
ez
	

et
 a

l. 
(2

01
7)

In
flu

en
ce

 o
f s

am
pl

e 
si

ze

Fa
gu

s sy
lv

at
ic

a 
L.

Pe
re
nn
ia
l	

(tr
ee

)
M
on
oe
ci
ou
s,
	

pr
ed

om
in

an
t 

ou
tc

ro
ss

in
g 

(M
er
ze
au
	

et
 a

l.,
 1

99
4)

M
t.	
Ve
nt
ou
x,
	

Fr
an
ce
	(1
67
)

W
ho

le
 g

en
om

e 
se

qu
en

ci
ng

0.
81

 (w
ith

 2
7 

sc
af

fo
ld

s)
12

–1
50

 
(s

ca
ff

ol
ds

)
~4
70
 K
	

(w
ith

 2
7 

sc
af

fo
ld

s)

~1
3 
M
	(w
ith
	2
7	

sc
af

fo
ld

s)
Se

e 
da

ta
 

av
ai

la
bi

lit
y 

se
ct

io
n

In
flu

en
ce

 o
f m

is
si

ng
 

da
ta

Pr
un

us
 

ar
m

en
ia

ca
 L

.
Pe
re
nn
ia
l	

(tr
ee

)
M
on
oe
ci
ou
s,
	s
el
f-
	

in
co

m
pa

tib
le

 
(G

ro
pp

i 
et

 a
l.,

 2
02

1)

So
ut

he
rn

 (5
6)

N
or

th
er

n 
(1

99
)

(s
ee

 T
ab

le
 S

1)

W
ho

le
 g

en
om

e 
se

qu
en

ci
ng

0.
07

8 
(c

hr
om

os
om

es
)

~3
 M
	(4
40
 K
)

~2
4 
M
	(3
.5
 M
	in
	th
e	

su
bs

am
pl

ed
 

da
ta

se
t)

G
ro

pp
i 

et
 a

l. 
(2

02
1)

In
flu

en
ce

 o
f n

um
be

r 
of
	S
N
Ps
,	o
f	

m
is

si
ng

 d
at

a,
 

of
 s

am
pl

e 
si

ze
, 

of
 p

op
ul

at
io

n 
st

ru
ct

ur
e,

 o
f 

us
in

g 
sc

af
fo

ld
s 

in
st

ea
d 

of
 

ch
ro

m
os

om
es

a In
 th

e 
m

ap
 fi

le
, n

um
be

r o
f l

in
es

 d
iv

id
ed

 b
y 

nu
m

be
r o

f s
ca

ff
ol

ds
/c

hr
om

os
om

es
;

b N
um

be
r o

f l
in

es
 in

 th
e 

m
ap

 fi
le

.

 17524571, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/eva.13691 by C

ochrane France, W
iley O

nline L
ibrary on [27/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  5 of 16GARGIULO et al.

Southern (red cluster) and Northern (yellow cluster) gene pools, as 
obtained with fastStructure (Raj et al., 2014) (see next subsection).

2.2  |  Data analyses in GONE

2.2.1  |  Analyses	for	all	species

We performed Ne estimation with the software GONE (Santiago 
et al., 2020). GONE generates contemporary or recent histori-
cal estimates of Ne (i.e., in the 100–200 most recent generations) 
using the LD method. GONE uses linkage information represented 
by	mapped	 SNPs,	 ideally	 mapped	 to	 chromosomes.	 Chromosome	
mapping	 is	 rarely	available	 for	non-	model	species,	and	 in	our	case	
was only fully available for the apricot (P. armeniaca) dataset. In the 
absence of chromosome mapping information for the other species, 
we treated genomic scaffolds as chromosomes. In terms of require-
ments, GONE accepts a maximum number of chromosomes of 200 
and	a	maximum	number	of	SNPs	of	10	million,	with	a	maximum	num-
ber	of	SNPs	per	chromosome	of	1	million,	although	the	program	uses	
up	to	50,000	random	SNPs	per	chromosome	for	the	computations	
when	the	 total	number	of	SNPs	 is	 larger.	A	complete	workflow	of	
the analyses carried out in GONE is available at https:// github. com/ 
Ralpi	na/	Ne-		plant	-		genom	ic-		datasets (Gargiulo, 2023); the input pa-
rameter	file	used	for	the	final	analyses	is	available	in	File	S2.

2.2.2  |  Influence	of	missing	data	on	Ne estimation

The influence of missing data on Ne estimation in GONE was evalu-
ated using the dataset from F. sylvatica. After keeping 67 individuals 
with	less	than	95%	missing	data,	we	permuted	individuals	(without	
replacement) to generate 150 datasets of 35 individuals, and es-
timated Ne	 in	GONE	 for	 each	 dataset.	 Proportion	 of	missing	 data	
per individual for each permuted dataset was calculated in vcftools 
v0.1.16 (Danecek et al., 2011) from an average of ~25%–95%;	 re-
sults were plotted in R v4.2.2 (R Core Team, 2019). In addition, we 
used the dataset of P. armeniaca to evaluate how Ne changed when 
manually introducing missing data. We selected all individuals from 
the Northern gene pool with a Q-	value	 (cluster	membership	coef-
ficient) ≥ 99%	(77	individuals)	to	rule	out	the	influence	of	admixture,	
and replaced some of the individual genotypes with missing values 
using a custom script (available at: https://	github.	com/	Ralpi	na/	Ne-		
plant	-		genom	ic-		datasets). We generated two datasets with a propor-
tion	of	missing	data	per	individual	of	20%	and	40%,	respectively,	and	
then computed Ne in GONE for each dataset obtained.

2.2.3  |  Influence	of	number	of	SNPs	on	
Ne estimation

The	 influence	of	the	number	of	SNPs	on	Ne estimation in GONE 
was evaluated using the dataset of P. armeniaca.	From	the	Northern	

gene pool, we first selected the individuals with a Q-	value	≥99%	
to rule out the influence of admixture. We drew random subsets 
of	variant	sites	(without	replacement)	including	40 K,	80 K,	150 K,	
300 K,	500 K,	3.5 M,	7 M,	and	10 M	SNPs,	respectively,	and	gener-
ated 50 replicates for each subset; we then estimated Ne in GONE 
for	 each	 subset	 and	 obtained	 the	 geometric	mean	 and	 the	 95%	
confidence intervals across the 50 replicate subsets with the same 
number	of	SNPs	(using	the	functions	exp(mean(log(x))) and quantile 
in R).

2.2.4  |  Influence	of	the	sample	size	on	Ne estimation

We used the Northern gene pool of P. armeniaca to assess how 
Ne estimates changed depending on the number of samples con-
sidered and the uncertainty associated with individual sampling. 
We	 first	 downsampled	 the	 number	 of	 SNPs	 to	 3.5 M	 (to	 satisfy	
GONE requirements), and varied the sample sizes included in the 
analyses from 15 to 75 (i.e., approx. the total number of individ-
uals of the Northern gene pool with a Q-	value ≥ 99%).	 For	 each	
sample size group, we generated 50 subsets (without replacement 
within the subset) of individuals and estimated Ne in GONE for 
each	subset;	we	then	estimated	the	geometric	mean	and	the	95%	
confidence intervals across subsets with the same sample size 
(using the functions stat_summary(fun. data = median_hilow, fun.
args = list(conf.int = 0.95) and stat_summary(fun = “geometric.mean” 
(psych package) in R).

2.2.5  |  Influence	of	population	admixture	on	
Ne estimation

We also evaluated how genetic structure within gene pools influ-
enced Ne estimation in GONE for both the Southern and Northern 
gene pools of P. armeniaca. We first downsampled the number of 
SNPs	to	3.5 M	to	satisfy	GONE	requirements,	as	described	above.	
We then distributed the individuals of each gene pool into five 
(overlapping) subsets based on individual Q-	values	(lower	bounds	
of	70%,	80%,	90%,	95%,	and	99%),	resampled	individuals	(without	
replacement) in each Q-	value	subset	50	times,	standardizing	sam-
ple sizes to the sample size of the smallest Q-	value	subset	within	
a	gene	pool	 (i.e.,	 21	 individuals	 as	 in	 the	99%	Q-	value	 subset	of	
the	Southern	gene	pool	and	77	individuals	as	in	the	99%	Q-	value	
subset of the Northern gene pool, see Table S1 for the original 
sample sizes). We then estimated Ne	 in	GONE	and	obtained	95%	
confidence intervals across the 50 resampled datasets of the same 
Q-	value	subset	within	a	gene	pool	(using	the	R	function	stat_sum-
mary mentioned above). We also combined all individuals from the 
two gene pools (255 individuals), resampled either 22 or 77 indi-
viduals 50 times without replacement, and estimated Ne in GONE 
and the related confidence intervals as explained above, to evalu-
ate the effect of missing the two gene pools on the Ne estimates 
obtained.
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2.2.6  |  Effect	of	using	genomic	scaffolds	rather	
than chromosomes

We evaluated the effect of using genomic scaffolds to estimate 
linkage groups when chromosome information is not available. 
Using	the	downsampled	dataset	of	3.5 M	SNPs	from	P. armeniaca, 
we selected from the Northern gene pool 45 random individuals 
with a Q-	value ≥ 99%,	 to	 rule	 out	 the	 influence	 of	 admixture.	 For	
this dataset, five different chromosome maps were then created, 
progressively	assigning	SNPs	to	8	(true	value),	16,	32,	64	and	128	
chromosomes (as if they were genomic scaffolds, see script and re-
lated explanation at https://	github.	com/	Ralpi	na/	Ne-		plant	-		genom	
ic-		datas	ets#	4-		effec	t-		of-		using	-		genom	ic-		scaff	olds-		inste	ad-		of-		chrom	
osome	s-		on-		ne-		estim	ation	). We then estimated Ne in GONE using 
five corresponding chromosome map files and keeping the same 
ped (genotypes) file.

2.3  |  Data analyses in NeEstimator

We also used the LD method as implemented in the software 
NeEstimator v2 (Do et al., 2014) to estimate the Ne of our popula-
tions.	NeEstimator	 uses	 unmapped	 SNP	 information	 and	 assumes	
that	 SNPs	 are	 independently	 segregating	 (typically,	 SNPs	 at	 short	
physical distances, for example those in the same short genomic 
scaffolds or loci, are filtered previous to the analysis, see below). 
Therefore, it provides an Ne estimate based on the LD generated 
by random genetic drift, which reflects Ne in very recent genera-
tions (Waples et al., 2016).	However,	accuracy	and	precision	will	be	
both affected by (1) the assumption of independent segregation in 
genomic	datasets,	as	SNPs	are	necessarily	packed	on	a	limited	num-
ber	of	chromosomes	and	thus	they	provide	non-	independent	infor-
mation, and especially (2) the occurrence of overlapping pairs of loci, 
each locus appearing in multiple pairwise comparisons (i.e., two as-
pects	of	the	issue	known	as	pseudoreplication;	Purcell	et	al.,	2007; 
Waples, 2024; Waples et al., 2016, 2022). Although the influence 
of this issue on bias and precision is difficult to address completely, 
some bias corrections have been proposed, for example applying a 
correction based on the genome size of the species being analyzed 
(formula in Waples et al., 2016), restrict comparisons to pairs of loci 
occurring on different chromosomes (Waples, 2024), or using only 
one	SNP	per	scaffold	or	thinning	scaffolds	based	on	discrete	window	
sizes	(Purcell	et	al.,	2007). To correct the bias due to physical linkage, 
we therefore applied the correction in Waples et al. (2016), by divid-
ing the Ne estimates obtained by y = 0.098 + 0.219 × ln(Chr), where 
Chr is the haploid number of chromosomes, when information about 
the number of chromosomes was available.

As	 low-	frequency	 alleles	 upwardly	 bias	Ne, we followed the 
recommendations in Waples (2024) and excluded singleton alleles 
(Waples, 2024; Waples & Do, 2010). We also ran the analyses 
without applying a filter for rare alleles, to be able to compare 
the results obtained with NeEstimator with those from GONE and 
currentNe. Confidence intervals were obtained via jackknifing over 

samples (Do et al., 2014; Jones et al., 2016). As NeEstimator can-
not handle very large datasets (with >100,000 loci, see https:// 
www.	molec	ularf	isher	iesla	borat	ory.	com.	au/	neest	imato	r-		softw	
are/ ),	we	 reduced	 the	 number	 of	 SNPs	 in	 the	F. sylvatica and P. 
armeniaca	datasets	by	randomly	subsampling	50,000	SNPs	across	
chromosomes.

2.4  |  Data analyses in currentNe

We used the newly developed software program currentNe (Santiago 
et al., 2024) to obtain contemporary Ne estimates that are directly 
comparable to the ones obtained with NeEstimator (referring to the 
most recent generations in the past). The practical advantages of 
currentNe	 are	 the	 possibility	 to	 include	 thousands	 of	 SNPs	 in	 the	
analyses (with an upper limit of 2 million loci), the lack of a minor 
allele frequencies requirement, and the lower computational ef-
fort.	Moreover,	the	program	produces	confidence	intervals	around	
Ne based on artificial neural networks, can accommodate complex 
mating systems and is accurate with small sample sizes (Santiago 
et al., 2024). CurrentNe produces two types of estimation, depend-
ing	on	whether	SNPs	mapping	is	available	(Ne estimation based on 
LD between chromosomes) or not (Ne estimation by integration 
over the whole genome). In the latter case, the program assumes 
that	each	of	the	given	chromosomes	is	about	1	Morgan	long.	When	
the	number	of	chromosomes	 is	unknown,	the	mapping	of	SNPs	to	
scaffolds might also be used for the first estimation type (based on 
LD	 between	 “chromosomes”).	 However,	 scaffolds	 might	 be	 much	
shorter	than	chromosomes,	and	SNPs	will	not	be	totally	independ-
ent (as scaffolds might actually belong to the same chromosome). 
Therefore, we estimated Ne in currentNe for all the species included 
in our study except S. globulifera s.l., as the number of chromosomes 
was not available for the species.

3  |  RESULTS AND DISCUSSION

3.1  |  Data analyses in GONE

Our study explores the limitations associated with genomic data-
sets when estimating Ne using the LD method as implemented in 
the program GONE, and compares estimates of recent historical Ne 
obtained with GONE with estimates of contemporary Ne as obtained 
with NeEstimator and currentNe. Below, we will first focus on the 
limitations of plant genomic datasets as explored using the software 
GONE and then discuss the differences observed when Ne was cal-
culated using GONE, NeEstimator, and currentNe.

One limitation usually associated with reduced representation 
sequencing datasets is the short length of the reads or scaffolds. 
We tested how this limitation would influence Ne estimation in 
GONE using the datasets of S. globulifera and M. annua. Ne esti-
mation in GONE failed for the three biological species of S. globu-
lifera,	as	the	program	returned	the	error	“too	few	SNPs”	for	each	
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of the three species datasets. This was caused by the relatively 
small	number	of	SNPs	per	scaffold	(averaging	≃250	SNPs)	and,	in	
turn, by the relatively short length of the scaffolds (length ranging 
from 5421 to 931 positions) which prevented GONE from pro-
ducing reliable Ne estimates. Ne estimates were instead obtained 
for M. annua,	whose	average	number	of	SNPs	per	contig	was	670	
(Table 1).

3.1.1  |  Influence	of	missing	data	on	Ne estimation

The effect of missing data on Ne estimation is evident from the 
results obtained when analysing the dataset of F. sylvatica, and 
from the results obtained when analysing the dataset of P. ar-
meniaca	 in	which	 genotype	data	were	manually	 excluded.	 For	F. 
sylvatica, 35 individuals had a proportion of missing data <50%	
(Figure 1b). Increasing the proportion of missing data in the per-
muted datasets of 35 individuals produced an acute increase in 
the Ne estimates obtained with GONE (see Figure 1a); for instance, 
increasing the median proportion of missing data per individual 
from	25%	to	35%	produced	Ne estimates increasing from 200 to 
a few millions. Likewise, when missing data proportion per indi-
vidual of P. armeniaca	increased	above	20%,	we	obtained	Ne esti-
mates	that	were > 350	times	larger	than	those	obtained	from	the	
original dataset (average missing data proportion per individual 
≃8%)	 (Figure 2). This relationship between missing data and Ne 
estimates is consistent with what was previously found (e.g., 

Marandel	 et	 al.,	 2020), although the loss of accuracy in the Ne 
estimation is extreme and suggests that either individuals with 
>20%	missing	 data	 should	 be	 removed	 from	 the	 dataset	 before	
estimating Ne	or	SNPs	with	missing	data	in	a	given	percentage	of	
individuals	(e.g.,	50%	by	default	assumed	by	GONE)	should	be	re-
moved, provided that the dataset includes a sufficient number of 
SNPs.	However,	in	species	with	large	Ne, reducing the sample size 
(S) to a number ≪ true Ne introduces further uncertainties in the 
Ne estimation using the LD method, regardless of the number of 
loci	used	(Marandel	et	al.,	2019; Waples, 2024), in addition to the 
sampling error already expected because of the finite sample size 
(e.g.,	Peel	et	al.,	2013).

3.1.2  |  Influence	of	number	of	SNPs	on	
Ne estimation

The	 influence	 of	 the	 number	 of	 SNPs	 per	 chromosome	was	 ex-
plored using the dataset from P. armeniaca (Northern gene pool), 
which	was	 the	only	dataset	with	SNPs	 fully	mapped	 to	chromo-
somes.	Increasing	the	number	of	SNPs	per	chromosome	affected	
point Ne estimates only slightly, and influenced the apparent preci-
sion of the estimates more obviously, especially for a total number 
of	SNPs	above	300,000,	corresponding	 to	an	average	of	10,000	
SNPs	per	chromosome	of	P. armeniaca used by GONE (Figure 3). 
Accuracy and precision of Ne estimates based on LD are expected 
to	 be	 affected	 by	 two	 types	 of	 pseudoreplication:	 (1)	 the	 non-	
independent information content provided by thousands of linked 
SNPs,	 and	 especially	 (2)	 the	 occurrence	 of	 overlapping	 pairs	 of	
loci, each locus appearing multiple times in pairwise comparisons 
(Waples et al., 2016, 2022). Therefore, the narrower confidence 
intervals	we	 obtained	when	 increasing	 the	 number	 of	 SNPs	 are	
partially due to the inclusion of overlapping pairs of loci for the 

F I G U R E  1 In	(a),	ranked	Ne estimates in the most recent 
generation in 150 datasets of 35 individuals with different 
proportions of missing data (excluding individuals with a proportion 
of missing data >0.95) of Fagus sylvatica; ranges represent standard 
deviations for the proportion of missing data per individual, 
whereas points represent median values over 150 datasets. 
Analyses based on the dataset with the 27 genomic scaffolds 
with	the	largest	number	of	SNPs	(excluding	the	scaffolds	with	
>1 M	SNPs).	In	(b),	proportion	of	missing	data	per	individual	in	the	
complete dataset of F. sylvatica.
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F I G U R E  2 Influence	of	missing	data	on	Ne estimation in GONE. 
Missing	genotypes	were	manually	introduced	into	the	dataset	of	
Prunus armeniaca,	generating	pseudo-	genotypes	with	an	average	
proportion	of	missing	data	ranging	from	20%	to	40%.	The	original	
dataset	is	shown	for	comparison	(missing	data = 8%).	Note	the	
different y-	scales	in	the	three	facets.
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Ne estimation, which artificially increases the degrees of freedom 
that make CIs tight. The drop in the Ne geometric mean value as-
sociated with the dataset with >20,000	SNPs	might	be	due	to	the	
inclusion	of	more	physically	linked	SNPs,	but	it	might	also	be	due	
to	 the	uncertainty	associated	with	 the	specific	SNPs	 included	 in	
the analysis.

For	practical	purposes,	our	results	in	P. armeniaca show that add-
ing	more	than	2000	SNPs	per	chromosome,	with	a	large	sample	size	
(>75), does not substantially improve the accuracy and the preci-
sion of the estimation, in line with what is shown in previous stud-
ies focusing on LDNe	(Marandel	et	al.,	2020). We have not explored 
whether	using	fewer	SNPs	in	this	dataset	would	significantly	affect	
accuracy and precision, and it is possible that Ne estimates would 
remain consistent even if using <2000	SNPs	per	chromosome.

Santiago et al. (2020) noted that the accuracy of the estimation 
is	proportional	 to	 the	 sample	 size	and	 to	 the	 square	 root	of	SNPs	
pairs, and therefore researchers might partially compensate for 
small	sample	sizes	by	increasing	the	number	of	SNPs.	However,	as	
the information content of a dataset depends on the amount of re-
combination and on the pedigree of the individuals included in the 
analyses, an estimation based on a small number of samples will not 
necessarily be representative of the entire population, especially if 
Ne is large (King et al., 2018; Santiago et al., 2020; Waples, 2024). 
Furthermore,	the	marginal	benefit	of	increasing	the	number	of	SNPs	
beyond tens of thousands is counterbalanced by poor precision if 
CIs are generated using incorrect degrees of freedom, which is often 
the	case	with	thousands	of	non-	independent	SNPs	(Do	et	al.,	2014; 

Jones et al., 2016; Luikart et al., 2021;	Moran	et	al.,	2019; Waples 
et al., 2022).	Finally,	Waples	(2024) also points out that adding more 
than	a	few	thousand	SNPs	increases	the	precision	only	slightly	and	is	
more beneficial when the true Ne is large.

3.1.3  |  Influence	of	the	sample	size	on	Ne estimation

We evaluated the influence of the sample size using the Northern 
gene pool of P. armeniaca. Increasing sample sizes to over thirty sam-
ples led to more consistent Ne estimates and reduced the chances of 
obtaining Ne estimates only representative of a few individual pedi-
grees (Figure 4), as previously observed when using the LD method 
(Antao et al., 2011;	Marandel	et	al.,	2019; Nunziata & Weisrock, 2018; 
Palstra	&	Ruzzante,	2008; Santiago et al., 2020; Tallmon et al., 2010; 
Waples et al., 2016; Waples & Do, 2010). Including in the Ne esti-
mation a number of samples that is representative of the true Ne 
of the population is crucial in large populations, where the genetic 
drift signal in recent generations is weak (Barbato et al., 2015; Do 
et al., 2014; Luikart et al., 2010;	Palstra	&	Ruzzante,	2008; Santiago 
et al., 2020; Wang et al., 2016; Waples, 2024). On the contrary, small 
populations experience more genetic drift, and therefore the LD 
method is particularly powerful in such populations. Estimates of 
Ne remain small in small populations even with larger sample sizes, 
hence the important conservation implication that small populations 
cannot be mistaken for large populations (Santiago et al., 2020; 
Waples et al., 2016; Waples & Do, 2010).	 For	 the	Northern	 gene	
pool of wild apricots, we obtained an Ne estimate <2000 when the 
sample size was equal to 15, and progressively obtained higher val-
ues increasing up to a plateau of Ne ≃ 4000,	for	larger	sample	sizes.	
This confirms the expectation that a large sample size is needed to 
estimate a large Ne (Antao et al., 2011; Tallmon et al., 2010).

F I G U R E  4 Change	in	the	Ne estimates as a function of the 
sample size in Prunus armeniaca	(Northern	gene	pool).	Points	
represent geometric means across subsets of individuals, sampled 
without	replacement	50	times.	The	insert	also	shows	95%	
confidence intervals (point ranges) estimated over the 50 replicate 
subsets.
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F I G U R E  3 Ne estimates obtained with GONE over the 
most recent generation for the Northern gene pool of Prunus 
armeniaca	as	a	function	of	the	number	of	SNPs.	Points	represent	
the geometric mean values across 50 replicates; shaded area 
represents	95%	confidence	intervals	across	replicates.	Note	that	
GONE	uses	a	maximum	of	50,000	SNPs	per	chromosome,	even	
if provided with a larger number (with 1 million per chromosome 
being	the	maximum	number	accepted);	the	number	of	SNPs	
in each of the eight subsets analyzed ranged from 104 to 107, 
corresponding to a range of ≃5000 to ≃20,000	SNPs	per	
chromosome used by GONE.
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3.1.4  |  Influence	of	admixture	on	Ne estimation

The impact of admixture on Ne estimation was explored using the 
dataset of P. armeniaca. Estimates of Ne in the most recent gen-
eration generally decreased when the Q-	value	 of	 the	 individuals	
included in the analysis increased (Figure 5a). The larger Ne esti-
mates in the most recent generations (1–4) when including more ad-
mixed individuals are consistent with the upward bias predicted by 
Waples and England (2011) for a sampled subpopulation that does 
not include all potential parents (“drift LD”); with higher admixture 
proportions (Figure 5a), the Ne estimated for each gene pool (sub-
population) using the LD method tends to approach the Ne of the 
metapopulation instead (Waples & England, 2011).	However,	the	Ne 
estimate we obtained when combining the two gene pools (“all” in 
Figure 5a) was lower than the Ne estimate obtained when consider-
ing	highly	admixed	individuals	in	the	Northern	gene	pool	(70%	in	the	
right panel of Figure 5a). A downward bias in the Ne estimation is 
expected because of the Wahlund effect associated with sampling 
and analysing different gene pools together (“mixture LD”; Neel 
et al., 2013; Nunney, 2016; Waples, 2024; Waples & England, 2011). 
Using simulations, Novo, Ordás, et al. (2023) demonstrated that both 

the time of gene pool divergence and the timing of the mixing event 
may affect the bias in the Ne estimation. The longer the time elapsed 
since the gene pools diverged, the more pronounced the downward 
bias on Ne becomes. Similarly, the more recent the mixing event (in 
our case, as a consequence of sampling strategy), the more exacer-
bated the downward bias on Ne. If the occurrence of a mixing event 
is unknown, the decrease in Ne might mistakenly be interpreted as 
a reduction in population size, such as that caused by a bottleneck.

The Southern gene pool showed a contrasting trend; Ne es-
timates for the less admixed groups remained lower than that ob-
tained when combining the two gene pools, possibly because the 
few samples from this gene pool contributed less (with any potential 
mixture LD) than the more abundant samples from the Northern 
gene pool (with their LD signal) (Figure 5a).	However,	the	large	confi-
dence intervals might also suggest a combined effect of drift LD and 
bias in the estimates induced by using a small sample (21 individuals) 
to estimate a large Ne	(of	the	metapopulation).	How	the	relationship	
between sampling and genetic structure practically affects Ne still 
deserves evaluation, as the effect on LDNe will depend on the rela-
tive strength of the “mixture LD” and the “drift LD” in the specific set 
of samples included in the analyses (Waples, 2024).

Over the last 25 generations (Figure 5b), we obtained higher 
Ne estimates when individuals from the Southern gene pool with a 
Q-	value ≥ 99%	were	 included.	For	 the	Northern	gene	pool,	 on	 the	
contrary, we obtained a lower Ne estimate when individuals with a 
Q-	value ≥ 99%	were	 included.	The	different	demographic	histories	
of the Northern and Southern gene pools certainly underlie the 
pattern observed, as the Southern gene pool seems to have under-
gone a recent bottleneck, whereas the Northern gene pool has a 
more stable demographic trend. The recent population decline for 
the Southern gene pool may be explained by the Soviet era and the 
current	 land-	use	 change	 in	 the	Fergana	valley	 (mainly	Uzbekistan)	
where native forests of wild apricot were partially replaced with 
crop species. Nevertheless, two more factors should be considered; 
first, the sample size of the Southern gene pool is smaller than that 
of the Northern gene pool (only 21 individuals vs. 77 individuals 
drawn from each Q-	value	 subset).	 Second,	 Santiago	 et	 al.	 (2020) 
warn about a typical artefactual bottleneck observed in GONE and 
caused	by	population	structure	(in	figure	2F	of	Santiago	et	al.,	2020, 
considering	a	migration	rate = 0.2%;	Novo,	Ordás,	et	al.,	2023). As we 
observed a consistent trend regardless of the individual Q-	value,	and	
the drop in Ne is particularly evident with a Q-	value = 99%,	we	inter-
pret this Ne drop as a true bottleneck, with the caveat of reduced 
accuracy linked to a small sample size for the Southern gene pool.

3.1.5  |  Effect	of	using	genomic	scaffolds	rather	than	
chromosomes

To evaluate the effect of using genomic scaffolds as a proxy for 
linkage groups when chromosome information is not available, we 
sorted	 SNPs	 from	 the	 P. armeniaca dataset into a progressively 
larger number of scaffolds or chromosomes assumed. This produced 

F I G U R E  5 Influence	of	population	structure	on	the	Ne 
estimates for the Northern and Southern gene pools of Prunus 
armeniaca, as obtained with GONE. Q-	values	refer	to	the	results	
of the fastStructure analysis performed in Groppi et al. (2021) 
(lower bounds of individual Q-	value	to	the	main	genetic	cluster).	
Ne was estimated over 50 datasets of resampled individuals (77 
in each Q-	value	subset	in	the	Northern	gene	pool	and	21	in	each	
Q-	value	subset	in	the	Southern	gene	pool,	reflecting	differences	
in sample sizes). Ne estimates for the combined gene pools are also 
shown (“all”), obtained by resampling individuals (77 individuals 
when compared with the Northern gene pool estimates and 21 
individuals when compared with the Southern gene pool estimates). 
In (a), points represent the geometric mean and ranges represent 
95%	confidence	intervals	across	50	replicates;	in	(b),	only	geometric	
mean values of the Ne estimates across 50 replicates and in the last 
25 generations are shown.
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inconsistent Ne estimates across the datasets with increasing number 
of chromosomes assumed, with Ne values progressively rising from 
around	3 × 103 for 8 chromosomes (true value) to >8 × 105 when the 
number of chromosomes assumed was equal to 128 (Figure 6). The 
algorithm implemented in GONE is based on the assumption that LD 
among	pairs	of	SNPs	at	different	genetic	distances	provides	differ-
ential information about Ne at different times in the past (Santiago 
et al., 2020). Loosely linked loci give information about Ne in recent 
generations,	 as	 their	 recombination	 rate	 is	 higher	 and	 rate	of	 LD-	
decay	slower	than	that	of	closely	linked	loci	(Sved	&	Feldman,	1973). 
Therefore, the behaviour of the Ne estimates observed in Figure 6 
can be explained if considering that when a chromosome is broken 
into smaller scaffolds, only closely linked loci will be available for the 
Ne	estimation;	pairs	of	SNPs	at	higher	genetic	distances	(i.e.,	loosely	
linked loci) will be missing, inducing biases on recent Ne estimates. 
An inflated Ne in recent generations will therefore depend on having 
fewer random associations among loci useful to estimate LD (i.e., 
fewer loosely linked loci), which will unfold as having less genetic 
drift (i.e., a larger population). Consequently, Ne estimates obtained 
with GONE for M. annua and F. sylvatica may be biased upward since 
scaffolds were used as a proxy for chromosomes (Table 1).

3.2  |  Ne estimates obtained with GONE, 
NeEstimator and currentNe

As expected, Ne estimates obtained using NeEstimator and cur-
rentNe were more in agreement with one another compared with 
those obtained with GONE for the last generations (Table 2). GONE 
estimates for all species were larger than those obtained using the 
other programs, especially in the Northern gene pool of P. armeni-
aca	 (GONE-	Ne ≃ 3500	 for	 the	 last	 generation	 while	 NeEstimator-	
Ne ≃ 716.2,	 excluding	 singletons	 and	 after	 bias	 correction,	 and	

currentNe- Ne ≃ 170).	The	point	Ne estimate obtained with currentNe 
and its confidence intervals remained consistent even when we in-
creased	the	number	of	SNPs,	suggesting	that	 there	was	no	uncer-
tainty	associated	with	the	SNPs	included	in	the	analysis.	Estimates	
from simulated populations in Santiago et al. (2024) showed con-
sistency between the output of currentNe and NeEstimator, except 
when a small sample (10 individuals) was drawn from a very large 
population (Ne = 10,000)	using	22,000	SNPs,	in	which	case	currentNe 
performed better. Our sample size for the Northern gene pool was 
much larger (77 individuals), and we do not expect the true Ne to 
be larger than 10,000. Therefore, when using the same dataset 
for currentNe and NeEstimator, we interpret the slight discrepancy 
between the two estimates to be associated with the different al-
gorithms included in the programs, which are affected in different 
ways by the occurrence of rare alleles and the deviations from ran-
dom mating, among other things (Santiago et al., 2024). When con-
sidering the Southern gene pool, for which the true Ne is expected 
to be smaller than for the Northern gene pool (Groppi et al., 2021), 
the estimates obtained with GONE (184) was higher than those ob-
tained with NeEstimator (80.9 excluding singletons and after bias 
correction) and currentNe (≃30).

Another consideration is the downward bias on Ne estimates 
caused by localized sampling in continuous populations featuring 
isolation by distance (Neel et al., 2013; Nunney, 2016;	Santos-	del-	
Blanco et al., 2022; Waples, 2024). If the range of sampling is similar 
in extent to the unknown effective range of dispersal, as it is likely 
the case in S. globulifera,	estimates	may	not	reflect	the	population-	
wide true Ne, but rather a quantity close to the neighbourhood 
size (Ns), i.e., the inverse of the probability of identity by descent 
of	two	uniting	gametes	(Santos-	del-	Blanco	et	al.,	2022). In P. arme-
niaca, where the sampling window likely exceeded the breeding 
window by much, we may still expect a downward bias because of 
the mixture LD caused by the inclusion of genetically divergent in-
dividuals (Neel et al., 2013; Waples, 2024; Waples & England, 2011). 
However,	this	bias	would	not	explain	the	discrepancy	between	the	
estimates obtained with GONE and those obtained with the other 
programs for the Northern gene pool of P. armeniaca. In S. globulifera, 
for which we also expect a large Ne (>1000), it was only possible to 
use NeEstimator, due to the short length of contigs (not appropri-
ate when using GONE), and the lack of information about the num-
ber of chromosomes (as required to obtain reliable estimates with 
currentNe). Ne	ranged	from	86	(CI:	37-	Infinite)	 in	Species	3,	to	380	
(CI: 300–510) in Species 2 and to 754 (CI: 623–949) in Species 1, 
although point estimates could not be corrected for physical link-
age due to lack of information about chromosome number and are 
therefore biased downward (Table 2). Estimates for Species 3, in par-
ticular, displayed infinite confidence intervals, suggesting that the 
sample size might be not large enough to capture the genetic drift 
signal	from	the	original	population.	However,	the	relative	magnitude	
of the estimates obtained are in agreement with the availability of 
suitable habitats for the three species (Schmitt et al., 2021) and, 
all else being equal, we would generally expect these populations 
to	have	a	 long-	term	constant	population	size,	considering	 that	 the	

F I G U R E  6 Estimates	of	Ne calculated on datasets in which 
the	same	set	of	SNPs	is	assigned	to	a	progressively	larger	
number of assumed chromosomes, where 8 is the true number 
of chromosomes for Prunus armeniaca (per haploid count); 45 
individuals from the Northern gene pool were used for this analysis.
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Guianese rainforest has experienced a continuous forest cover since 
the last glacial maximum (Barthe et al., 2017).

The uncertainty in Ne estimation using the LD method is partic-
ularly exacerbated in the dataset from F. sylvatica where, in addi-
tion to the potential downward bias induced by localized sampling 
in a continuous population, missing data also affect the estimation 
performed	 with	 the	 three	 programs	 (GONE-	Ne = 25	 for	 the	 last	
generation,	 NeEstimator-	Ne = 2.3,	 excluding	 singletons	 and	 after	
bias correction for physical linkage, and currentNe-	Ne = 4	after	bias	
correction for physical linkage), by reducing the usable sample size 
among pairs of loci (Do et al., 2014;	Peel	et	al.,	2013; Waples, 2024). 
In general, missing data affect the precision of Ne estimates from 
the LD method whereas accuracy should be less affected (Nunziata 
& Weisrock, 2018; Waples, 2024),	 unless	missing	data	occur	non-	
randomly and depend on the genotype, as it might be the case in the 
F. sylvatica dataset.

For	the	only	annual	plant	in	our	dataset,	M. annua, we would ex-
pect Ne estimated with the LD method to mainly reflect the effec-
tive number of breeders, Nb (Luikart et al., 2021; Waples, 2024) for 
the year of sampling, as individual cohorts were sampled (progeny of 
adults that reproduced in that specific year). Estimates from GONE 
were higher than those obtained with NeEstimator and currentNe 
(Table 2),	also	because	of	the	bias	induced	by	the	lack	of	SNPs	map-
ping (i.e., using scaffolds as a proxy for chromosomes in GONE). All 
point estimates fell within the estimated confidence intervals and 
usually denoted a small Ne, which is consistent with primarily re-
flecting the Nb for the population. In particular, point estimates in 
NeEstimator, excluding singletons and after bias correction for phys-
ical	 linkage,	 ranged	 from	29.1	 for	 the	Mediterranean	gene	pool	 to	
33.8	for	the	Core	gene	pool	and	27.3	for	the	Atlantic	gene	pool.	Point	
estimates in currentNe	ranged	from	20.5	for	the	Mediterranean	gene	
pool to 20.4 for the Core gene pool and 17.6 for the Atlantic gene 
pool. Even if the gene pool subdivision was consistent with the level 
of genetic admixture found in the individuals, it is still possible that 
estimates are biased downward because of mixture LD associated 
with mixing samples from different geographical locations (sampling 
window	larger	than	breeding	window).	Furthermore,	M. annua is able 
to	survive	through	multi-	annual	seed	banks	(Crocker,	1938) despite 
being an annual plant, and therefore the arithmetic mean across mul-
tigenerational Nb estimates would be needed to reliably estimate Ne 
rather than Nb (Nunney, 2002; Waples, 2006b).

3.3  |  Practical recommendations when estimating 
contemporary Ne in GONE

In this study, we have considered some of the technical limitations 
when estimating Ne from plant genomic datasets, including: (i) the 
occurrence	of	missing	data,	(ii)	the	limited	number	of	SNPs/individ-
uals sampled, and (iii) the lack of genetic/linkage maps and of in-
formation	about	how	SNPs	map	to	chromosomes	when	estimating	
Ne using the software GONE. In addition, we have explored some 
biological limitations that may affect Ne estimation using the LD 

method, such as the occurrence of population structure, although 
we recognize that our exploration is not exhaustive, as other biologi-
cal	factors	(i.e.,	associated	with	reproductive	system	and	life-	history	
traits) might affect Ne and its estimation. Our empirical results cor-
roborate some previous findings (reviewed in Waples, 2024) about 
the importance of having large samples sizes, especially when popu-
lations	are	large.	For	example,	we	found	that	>30 individuals were 
necessary to reach consistent Ne estimates (≃several thousands) for 
P. armeniaca.	Furthermore,	our	empirical	results	highlight	the	follow-
ing requirements that genomic datasets should satisfy:

•	 non-	random	missing	data	should	not	exceed	20%	per	individual.	
Missing	 data	 also	 affect	 how	 SNPs	 are	 represented	 across	 loci	
and	 individuals	sampled	and	can	generate	non-	random	patterns	
whose effect on Ne estimation is difficult to predict (as observed 
in the F. sylvatica and P. armeniaca datasets);

•	 having	a	large	number	of	SNPs	(>tens of thousands) is potentially 
important	to	allow	users	to	generate	non-	overlapping	subsets	of	
loci that reduce the influence of pseudoreplication on confidence 
intervals (Waples et al., 2022).	However,	increasing	the	number	of	
SNPs	beyond	a	few	thousands	per	chromosome	does	not	produce	
significant changes in the Ne estimates, as we observed in wild 
apricots; Waples (2024) also observed that the benefit of adding 
over	a	few	thousand	SNPs	on	precision	is	little,	but	increases	if	the	
true Ne is very large.

•	 most	importantly,	having	SNPs	fully	mapped	to	chromosomes	is	
essential to obtain reliable estimates when using the software 
GONE (as observed in the P. armeniaca dataset); other programs 
should be preferred to estimate contemporary Ne	 when	 SNPs	
mapping is not available (i.e., currentNe).

In addition, the bias on Ne estimates due to the occurrence of 
gene flow and admixture can significantly affect the performance 
of	 single-	sample	 estimators	 (as	 observed	 in	 the	P. armeniaca gene 
pools), as previously described (e.g., Neel et al., 2013). Other bi-
ases associated with (i) further sources of population structure (i.e., 
overlapping generations, demographic fluctuations including bottle-
necks, reproductive strategies causing variance in reproductive suc-
cess, etc.) and (ii) further technical issues associated with sampling 
strategies and genomic datasets can add up and generate results 
that are misleading for conservation. Therefore, a careful consid-
eration of the issues above is essential when designing and inter-
preting studies focused on the estimation of Ne and other related 
indicators for conservation.
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