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Abstract

Water and disaster risk management require accurate information about
hydrometeorological extremes. However, estimation of rare events using
extreme value analysis is hampered by short observational records, with large
resulting uncertainties. Here, we present a surrogate world setup that makes
use of data samples from meteorological and hydrological seasonal re-forecasts
to explore extremes for long return periods. The surrogate timeseries allow us
to pool the re-forecasts into 1000-year-long timeseries. We can then calculate
return values of extremes and explore how they are affected by the size of sub-
samples as method for estimating the uncertainty. The approach relies on the
fact that probabilistic seasonal re-forecasts, initialized with perturbed initial
conditions, have limited predictive skill with increasing lead time. At long lead
times re-forecasts will diverge into independent samples. The meteorological
seasonal re-forecasts are taken from the SEASS5 system, and hydrological re-
forecasts are generated with the E-HYPE process-based model for the
pan-European domain. Extreme value analysis is applied to annual maxima of
precipitation and streamflow for return periods of 100 years. The analysis
clearly demonstrates the large uncertainty in long return period estimates with
typical available samples of only few decades. The uncertainty is somewhat
reduced for 100-year samples, but several 100 years seem to be necessary to
have robust estimates. The bootstrap with replacement approach is applied to
shorter timeseries, and is shown to well reproduce the uncertainty range of the
longer samples. However, the main estimate of the return value can be signifi-
cantly offset. Although the method is model based, with the associated uncer-
tainties and bias compared to the real world, the surrogate approach is likely
useful to explore rare and compounding extremes.
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1 | INTRODUCTION

Extremes of precipitation and floods are among the most
damaging water-related hazards for society and ecosys-
tems (van Loenhout et al., 2020). Still, the fraction of peo-
ple living in flood-prone areas has increased in the last
decades (Tellman et al., 2021). The hazard is in many
places expected to become worse with a warming climate,
with a growing probability for changes in the frequency,
intensity and duration of many types of extreme events
including heavy precipitation, floods, droughts or heat
waves (Belusic et al., 2019; Pachauri et al., 2014; Reyer
et al., 2012; Seneviratne et al., 2012, 2021; Stott, 2016).
Although societies adapt to the more frequent extremes,
with return periods of a few decades, the largest conse-
quences remain for higher return periods. Further, the
damages may even be worsened by adaptation measures
to frequent extremes, such as bursting levees, if they were
built using too low design levels. Reliable and robust
information, that is, reduced uncertainty in the estima-
tion of hydrometeorological extremes is therefore essen-
tial for effective water and disaster risk management.
Disciplines working with risk analysis or engineering
often use return periods to define extreme thresholds
(Poschlod et al., 2020), which can be calculated by fitting
an extreme value distribution to the data (Coles, 2001).
However, many meteorological and hydrological esti-
mates of, for example, 100- or 1000-year return levels are
limited by relatively short observational data records of
only few decades, with resulting large uncertainties (van
den Brink et al., 2004, 2005). In cases where the variable's
distribution is homogeneous in space, one can increase
the sample by appending several spatially separated time-
series into a single longer timeseries. The independence
must of course be ensured between the spatial samples,
and this approach is sometimes called the station-year
method (Olsson et al., 2019). For precipitation, this may
be applicable for cases where translational invariance is
fulfilled, such as over relatively flat land regions (Olsson
et al., 2019; Overeem et al., 2008). Where precipitation is
affected by, for example, strong orographic lifting, land-
sea contrast and so forth, the method is not applicable.
Similarly, the station-year method is far from straightfor-
ward to apply to hydrological extremes, as they are
strongly affected by the characteristics of the catchment,
such as its location, size, surface properties, response
time and so forth. However, a detailed assessment of the
characteristics for each catchment can be worthwhile to
allow regionalization of the samples (Hosking &
Wallis, 1997). The issue is further exacerbated by observa-
tion issues with streamflow timeseries, as sedimentation
and other changes to the river may affect the rating curve

over time, causing inhomogeneity or discontinuities in
the streamflow records.

Several methods have been proposed to solve the sam-
ple issue by using model simulations to increase
the length of the timeseries. van den Brink et al. (2004)
proposed to use probabilistic seasonal re-forecasts to
increase the sample from a few decades to over 1000 years,
when investigating extreme storm surge levels in the
Netherlands. Similarly, Brunner and Slater (2022) made
use of extended range re-forecasts of streamflow using the
European Flood Awareness System (EFAS), and con-
cluded that the increase in sample size allowed reducing
the uncertainty bounds by on average 80% for the over
200 catchments studied. Global climate models have also
been used to produce single model large ensembles by
running several so-called realizations of the model, often
starting from different natural oscillations of a pre-
industrial quasi-equilibrium simulation. Such simulations
produce a large number of timeseries that can be
appended to feed the extreme value analysis with more
data (van der Wiel et al., 2019). For example, Poschlod
et al. (2020) used a single-model initial condition ensemble
with 50 members in order to assess the frequency of heavy
precipitation events over Europe, thus extending the his-
torical timeseries from 30 to 1500 years. In a series of stud-
ies, pooling of single model ensembles was performed
using the UNSEEN approach (UNprecedented Simulated
Extreme ENsemble) (Thompson et al., 2017). The different
studies explored extreme rainfall and summer heat waves
in the United Kingdom (Thompson et al., 2017; Thompson
et al., 2019) and drought hazards in China (Kent et al.,
2019), based on global climate models. (Kelder et al., 2020)
applied the UNSEEN approach to seasonal forecasts to
assess trends in extreme precipitation.

In this study, we investigate the uncertainty in
extreme value estimation of daily precipitation and
streamflow across Europe using the ECMWEF SEASS seasonal
re-forecasts (Johnson et al., 2019) as well as re-forecasts from
the hydrological model E-HYPE (Pechlivanidis et al., 2020),
respectively. We pose the following scientific questions:
(1) How does the sample size of constructed timeseries
influence the robustness of precipitation and streamflow
extremes? (2) Can the uncertainty bounds be estimated
by common bootstrap methods? and (3) How do the spa-
tial characteristics of return values differ depending on
the sample size? To address these questions we construct
synthetic timeseries by pooling single seasonal forecasts and
forecast members into timeseries of several 1000 years; suit-
able for extreme value theory analysis. We employ the fore-
cast skill as an indicator of independence of the members.
Initial months of the forecasts with positive skill are excluded
from the pooling. We then fit a Generalized Extreme Value
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(GEV) distribution to annual maxima to derive return values
for daily precipitation and streamflow using different sample
sizes of the constructed surrogate timeseries.

2 | DATA AND METHODS

2.1 | Seasonal meteorological
re-forecasts

We use outputs of daily mean temperature and precipita-
tion for Europe provided by the ECMWF SEASS5 system
(Johnson et al., 2019). Our focus is on the re-forecast
period of 1993-2015, where SEAS5 provides 25 members
with perturbed initial conditions. Each re-forecast covers
215 days and are initialized from the 1st of each month,
thus always covering seven complete months. The data
are extracted from the ECMWF MARS archive directly to
a 0.5° regular grid. Analysis of precipitation extremes are
based on these original SEAS5 data, without any bias
adjustment applied.

2.2 | Hydrological seasonal re-forecasts
Hydrological seasonal forecasts are performed with ver-
sion 3.0 of the E-HYPE model (Hundecha et al., 2016),
with over 35,000 catchments across Europe. E-HYPE is
forced by daily precipitation and temperature, and was
set up and calibrated with the version 2.0 of the
HydroGFD reference data (Berg et al., 2021). The same
meteorological data is used to initialize the model until
the start of each re-forecast, starting from a continuous
historical simulation.

SEAS5 deviates from HydroGFD to an extent that
urges bias adjustment to fit with the calibration of
E-HYPE. Bias adjustment was performed with a modified
version of the Distribution Based Scaling (DBS) method
(Yang et al., 2010). The original version of DBS performs
bias adjustment by fitting a distribution (double gamma
for precipitation and normal for temperature) to the ref-
erence and the model data, and then producing a transfer
function that maps the model distribution to that of the
reference. The modification of DBS is to include all
the 25 members of SEASS in the model distribution fit by
first appending all members to a long timseries, rather
than performing the calibration of DBS separately for
each member. The reason is to retain variability between
the members. Further, the transfer function is derived
separately for each lead month and start month for the
forecasts. A detailed description of the seasonal hydrolog-
ical forecasts and the forecasting skill is available in

of Climatology

Pechlivanidis et al. (2020), and aspects of this are further
explored in the current paper.

The E-HYPE model performance has been explored
in several studies (Donnelly et al., 2016; Hundecha
et al., 2016, 2020). The main philosophy behind the
E-HYPE calibration is to regionalize parameters across
cluster regions based on catchment characteristics, to
allow a reliable performance also in ungauged basins.
Hundecha et al. (2016) present the current calibration of
E-HYPE, which is based on catchment physiographic
and climate descriptors to set parameters in a final clus-
tering of eight groups with similar character. Evaluation
using a subset of 538 stations which were divided into
calibration stations and independent validation stations
across Europe resulted in a median NSE of over 0.5 for
both calibration and validation data. Hundecha et al.
(2016) also explored the Q95 flows, and found generally
good performance across the stations, and no systematic
bias in relation to flow magnitude.

2.3 | Extreme value analysis

By applying extreme value theory, it is possible to calcu-
late return values of different return periods of precipita-
tion and streamflow by fitting extreme value distributions
to a sample of independent and identically distributed
events. In this study, we use the “block maxima” method
by selecting the maximum value of 1-year blocks
(Coles, 2001), for example, using calendar years. We note
that in some catchments the 1-year block is not always
sufficient—likely due to the extremes occurring around
the break point at the 1st of January, or due to long-term
memory effects that make extremes dependent. Sample
independence can be assured in several ways, such as
using multi-year blocks, a more flexible definition of the
dates of the 1-year block, or using a peak-over-threshold
approach. For the current analysis, the first option was
investigated with 2 and 5-year blocks, without significant
impact on the overall results presented here.

According to the Fisher-Tippett theorem, the distribu-
tion of the block maxima sample, y, can be described
with the Generalized Extreme Value (GEV) distribution,
G, which is defined as:

exp(— [1+6(4)]7 ) £ 0

o -o(-71) e

with y, o and & representing the location, scale and shape
parameters of the distribution. Note that G will be undefined

G(x;&)=
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unless 1+¢ ((x—u)/c)>0 when & # 0. The parameter esti-
mation was explored with both maximum likelihood
(Jenkinson, 1955) and L-moments (Hosking, 1990). It
was found that the maximum likelihood estimation often
gave huge discrepancies for larger rivers where the esti-
mation did not converge. This issue is not apparent with
the L-moment estimator, while the results were similar
for other catchments and grid points. The analysis shows
the benefits of using L-moments, and as the results are
very similar for all timeseries where the maximum likeli-
hood did converge, we opted for using L-moments for all
calculations presented in the paper. Return values are
calculated by inverting Equation (1).

2.4 | Estimation of sample independence
The method of using seasonal forecasts as surrogate data
rests on the assumption that the data are physically and
statistically independent (van den Brink et al., 2004). The
chaotic development at weather scales means that precip-
itation typically becomes independent after around 5-
10 days, although large scale features may sometimes
have longer predictability with some impact on precipita-
tion (Kelder et al., 2020) and thus, to some extent,
streamflow. Streamflow forecasting is to a large extent
determined by the initial hydrological states (Musuuza
et al., 2023; Shukla & Lettenmaier, 2011), and can for
some catchments and seasons retain traces of the initial
state for days, weeks or even months. This implies that
the different forecast members will retain a dependence
with each other even though the meteorological drivers
have become independent.

Previous studies have explored the forecast member
independence of annual maxima using Spearman'’s rank cor-
relation with member-pairs of annual maxima time series.
Kelder et al. (2020) found independence after short lead
times of less than a few weeks for precipitation in the SEAS5
re-forecasts. Brunner and Slater (2022) explored streamflow
re-forecasts in a medium range forecast system and found
sometimes much longer lead times with some dependence,
in particular for catchments with snow-fed summer flood
regimes in the Alps and Scandinavia. They used a general
limit where the first 22 days' lead time is considered depen-
dent and removed from each forecast member.

Forecast skill is a measure of the added value of a
forecast, typically compared to climatology. This can
serve as a proxy to estimate the independence between
the members of a forecast ensemble. For example, a skil-
ful forecast can be interpreted as a dependence between
several of the forecast members on the initial states and
the evolution of the hydrology (Girons Lopez et al., 2021;
Pechlivanidis et al.,, 2020; Sutanto & Lanen, 2022).

Therefore, as a first step, the seasonal forecast skill for
precipitation and streamflow extremes is assessed with
the hypothesis that when the skill drops below a certain
level, we can assume independence between the fore-
casts. The skill of precipitation and streamflow forecasts
is assessed based on the Continuous Ranked Probability
Skill Score (CRPSS). Additionally, the skill of extreme
streamflow forecasts is assessed based on the Brier Score
Skill score (BSS). The skill assessment was applied to the
25 members for 1993-2015.

CRPSS offers an overall picture of forecast skill by
accounting for reliability, resolution and uncertainties
(Hersbach, 2010). The reference used in the evaluation
was HydroGFD for precipitation and for streamflow the
perfect forecast, that is, a historical simulation with
E-HYPE forced with HydroGFD. A benchmark is con-
structed for each forecast date by sampling 25 years from
the historical timeseries for the same dates as the refore-
cast excluding the forecasted year. The CRPSS was thus
assessed for each forecast initialisation month (January
to December) and each forecast horizon (weeks ahead),
as well as for the corresponding benchmark.

In addition, to confirm the skill assessment for
extreme streamflow forecasts, we applied the Brier Score
(Brier, 1950; Wilks, 1995) for high flows (defined as
weekly streamflows above the 90th non-exceedance
streamflow percentile). BS follows a strictly proper scor-
ing rule to measure the accuracy of the probabilistic fore-
casts, and is given by:

BS=1 " (P(X(1)) - sgn(ref) @)

t=1

Here, sgn(ref) gives a binary value of 0 and 1, indicat-
ing whether the reference exceeds the event threshold
(0.9 in this study), P(X(t)) provides the probability of
exceeding the threshold from every model forecast at
time t.

The Skill Score (both BSS and CRPSS) is computed to
determine the added performance of the forecasts (Sgt)
with respect to a benchmark (Spen). In this study, the pre-
cipitation climatology serves as benchmark in the CRPSS
in precipitation, and the simulated streamflow climatol-
ogy serves as benchmark in the BSS in streamflow. The
skill is computed with the following formula:

stt

ben

SS=1-

(3)

The skill scores (BSS or CRPSS) range from —oo to
1, with 1 indicating perfect skill and negative values indi-
cating superiority of the benchmark.
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BSS90, that is BSS for an event threshold of 0.9 of
high streamflow extremes, is examined only for time
steps within high streamflow periods to account for the
intra-annual variability of the hydrological response
between sub-basins, given Europe's strong hydro-climatic
gradient (Du et al., 2023). The high streamflow period is
defined by flows exceeding the upper tercile (66th percen-
tile) as terciles are one of the standard measures to clas-
sify streamflow conditions as above-normal, near-normal
or below-normal in operational applications. Detailed
steps are as follows:

1. Define high streamflow periods for each sub-basin
based on the upper tercile (66th percentile) from the
streamflow climatology in the reference simulation
(i.e., the historical simulation with E-HYPE forced
with HydroGFD). Weeks with streamflow higher than
the 66th percentile are considered as high streamflow
weeks.

2. Define the high streamflow event threshold as the
90th percentile of weekly mean streamflow from all
weeks in the reference simulation, and calculate BSg
based on the threshold for each sub-basin, target week
and lead time.

3. Construct the benchmark system for each forecast
date by sampling 20 years from the historical time
series for the same dates as the re-forecast excluding
the current, previous and following year, to minimize
artefacts related to similar initial conditions; calculate
BSpen accordingly.

4. Calculate BSS90 based on results from step 2 and
3. BSS within the high streamflow periods identified
in step 1 are pooled regardless of initialization month
and analysed as a function of lead weeks.

The skill of the forecasts deteriorates with time. We
argue that the lack of forecast skill, that is, after CRPSS
or BSS90 score become lower than 0, indicates indepen-
dent ensemble members—suitable for the present analy-
sis. We note that large scale features may lead to member
dependence even if the skill drops below zero. Here, the
use of randomly selected historical years should allow for
a benchmark whose members evenly represent large
scale configurations, and whose spread should thus
ensure independence. The CRPSS is influenced by the
forecast spread: for an unbiased forecast, a forecast
ensemble sharper (wider) than climatology will have a
positive (negative) skill. This condition of no bias is
ensured here by using model climatology for streamflow
and bias adjusted precipitations. In the case of the BSS90,
any deviation from the probability of being above the
90th percentile indicates that the ensemble spread

of Climatology

defers from the climatological spread, indicating some
dependence.

Moreover, observational uncertainty could partially
impact the results from forecast verification (Jolliffe, 2017),
particularly in regions where the reanalysis products lack of
accuracy, the monitoring weather networks lack of high
density and/or due to the representativeness error, that is,
the mismatch between gridded forecasts and the inter-
polated observations (Bouallegue et al., 2020). Here, we
are driven by operational limitations where a single prod-
uct is used to represent the meteorological information
and hence our investigation does not consider the aspect
of observational uncertainty assuming that the reference
dataset (HydroGFD) is “accurate”.

2.5 | Construction of surrogate
timeseries

Because the seasonal forecast form incomplete years, we
combine two or more individual seasonal forecast mem-
bers based on their start times into a sequence of com-
plete surrogate years. This is a valid approach since the
continuity of the timeseries is not required when sam-
pling daily extremes with block maxima. However, if
multi-day extreme events are analysed, care would need
to be taken to not split the days of maximum values
when pooling different forecasts to a one-year timeseries.
In practice, one would like to work with samples of 1, 2,
3, 4 or 6 months forecasts lengths, which can easily be
aggregated to yearly data needed for the block maxima
analysis. The pooling of individual seasonal forecasts to
surrogate years is done after assessing the independence
of the samples (see Section 2.4, Section 3.1). In this step
we determine how many lead months we need to exclude
from the forecasts before they are appended to yearly
timeseries. For example, if independence is achieved after
1 month or less, we remove the first month from the fore-
casts and pair it with forecasts starting half a year later to
form complete years (see Figure 1). When 4 months are
retained, three forecasts will form a complete year,
and so on.

The first step of merging forecasts to one surrogate
timeseries allows the record to be extended by a multi-
plier equal to the number of available months. This is
already a large increase from the original 23 years and
25 members, resulting, for example, in 3450 surrogate
years when working with samples of 6 months forecasts
lengths (23 years x 25 members X 6 months). In addition,
one could repeat the construction of the surrogate years
with different combinations, which can provide informa-
tion for further analysis of robustness. For example, the
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FIGURE 1 Diagram of the

procedure to append re-forecasts to

Seasonal forecasts SEASS construct the surrogate years.
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annual maxima might be different depending on which
two timeseries were appended, which would affect a block
maxima, but not a peak-over-threshold approach to
extreme value analysis. Note that the re-combinations
were initially explored, but from the perspective of having
over 1000 years of data at disposal the results and conclu-
sions made in the paper did not change, and the analysis
was therefore left out.

2.6 | Robustness of the extreme value
estimation

To evaluate the robustness of return values for different
sample sizes, that is, the number of years in the time-
series, a random selection of years of 50, 100, and
500 years is made from the complete timeseries, for
example, from a timeseries of 3450 surrogate years (see
Section 2.5). The selection was repeated 100 times, which
is found sufficient to inform on the uncertainty intervals
and the median value of the selections. GEV fits are
made based on each selection and used for the analysis,
which consists of inspections of box plots for single cases,
and the inter-quartile range for spatial analysis.

In addition, the robustness is assessed from single
shorter samples, to simulate the case with a limited
observed timeseries. The robustness analysis is then per-
formed using bootstrap with replacement (Gilleland, 2020),
that is, to select a set of N annual maxima from an N year
timeseries, while allowing the same year to be selected
several times. The random selection is repeated until a
stable statistic is found. Three sets of bootstrap experi-
ments are performed starting from the original long

timeseries.

timeseries, where the respective shorter timeseries are
selected to avoid overlap within the same-length periods:
BS1 uses years 1-50, 1-100 and 1-500 of the main time
series, BS2 uses years 51-100, 101-200, and 501-1000,
and BS3 uses years 101-150, 201-300, and 1001-1500. A
set of 100 bootstraps are found sufficient for robust statis-
tics of the GEV fit and return value calculations.

3 | RESULTS
3.1 | Forecast skill and sample
independence

The forecast skill analysis for precipitation shows a very
sharp decline in the skill with time (not shown), which is
well known (Kelder et al., 2020). With some regional var-
iations and a slight dependence on the start month, inde-
pendence of precipitation forecasts can safely be assumed
from 2 to 4 weeks into the forecasts for most regions
across Europe. Such relatively homogeneous patterns
were expected and are likely due to the chaotic nature of
the atmosphere which leads to uncertainties within the
range of climatological records for horizons further than
10 days ahead. Therefore, we decided to exclude the first
month from each of the precipitation forecasts and work
with 6 month forecast lengths (instead of the full
7-month forecasts) when pooling to surrogate years.
Streamflow is more challenging, due to the longer
predictability scales. Figure 2 shows a summary of the
median BSS90 for all catchments, with fast declining skill
over the first 4 weeks, and then a gradually slower rate of
decline for longer lead times. The skill generally drops
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FIGURE 2 Median BSS90 of streamflow for all catchments as
a function of the lead week into the forecast. The skill level at week

16 is indicated, see main text.

below 0.1 from lead week 8 (Figure 2), but this is more
uniformly observed across all catchments from lead week
16 (Figure 3).

Larger regions have zero or negative skill, and most
other regions have skill below 0.1. There are, however,
regions with higher skill, which roughly correspond with
regions of low runoff coefficient and a larger spring flood
or large base flow (Pechlivanidis et al., 2020). A few large
lakes have much higher remaining skill, which is likely
due to the large reservoirs and flow management. The
results are similar for the CRPSS (not shown).

Based on this result, we set a general lead time of
4 months after which we assume independence of the
individual members. This is larger than the limit of
22 days set by Brunner and Slater (2022), and can be con-
sidered a conservative choice for this pan-European
study. A more detailed assessment of single catchments
might lead to a less conservative choice and allow for a
larger sample. Removing the four lead months in each
forecast period for streamflow allows us to construct
a timeline with 1725 surrogate years (23 years X 25
members X 3 months), while removing only a single
month from the precipitation data results in 3450 surro-
gate years.

3.2 | Estimation of return periods for
different sample sizes

To investigate the robustness of the extreme value esti-
mation, we perform GEV fits to data of different record
lengths (see Section 2.6). Figure 4 presents selected
results from the experiment based on a set of 100 surro-
gates and sample sizes from 50, 100 and 500 years. We
focus first on the blue boxplots that show the effect of dif-
ferent sub-samples from the main timeseries. The median
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FIGURE 3
catchment for lead week 16.

A map of the skill level for streamflow in each

of the return values for all sub-samples converges on that
calculated from the complete timeseries, which is a sign
that the number of random samples is sufficient. The
uncertainty is very large for the 50 year samples, which
would be considered a long timeseries had it been obser-
vations. Taking Vindeldlven as an example, the range
around the median (about 285m®s™!) is about
+55m®s~!, which is about 20%—a substantial uncer-
tainty. A similar uncertainty is present for all cases. With
100 year samples, the spread is somewhat reduced, but
still substantial. However, at 500 years the uncertainty is
much better constrained with a range of about +15 m® s/,
which is about 5%.

We simulate the access to only a single shorter record
using a bootstrap with replacement strategy, which is
shown as red boxplots for each of the record lengths, with
three completely separate selections of sub-periods.
Clearly, the sub-period strongly affects the median result
of the bootstrap, which is offset from the target value of
the complete timeseries. This is expected from the result-
ing large uncertainty shown in the blue boxplots. How-
ever, the uncertainty range of the boxplots is still similar
in magnitude to that of the blue boxes, although it varies
quite a lot between samples and case studies. That is, the
bootstrap based on a single shorter timeseries represents
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FIGURE 4

100-year return values for precipitation (top row) and streamflow (bottom row) for three representative catchments in

Europe. The return values are presented as a function of the sample size, where each x-year long timeseries was sampled 100 times to derive

the confidence intervals shown as boxplots. The dashed lines mark the return value calculated from the complete timeseries (3450 years for
precipitation and 1725 years for streamflow). The boxplots are grouped by the length of the timeseries used and show the effect of random
sub-sampling from the complete timeseries (blue) and bootstrap from a fixed timeseries from three independent samples (BS; red colours).
The locations are at (latitude, longitude): NW-Sweden (65.95, 16.33), SW-Norway (62.10, 8.86), and NE-Spain (42.05, 2.19).

the full range of uncertainty from a much longer record.
The issue of the offset from the target value remains,
which gives an error in the estimate of the return values.
There is further a large random component in the selec-
tion of the sub-samples, which is seen as the large offsets
between the different red boxplots for each single record
length.

3.3 | Spatial patterns of 100-year
return value

We now extend the analysis to all grid points and catch-
ments in Europe. For precipitation, Figure 5 shows
100-year return values in three rows for (i) randomly
selected single timeseries of different lengths, (ii) the
median of 100 samples for each timeseries, and (iii) the
interquartile range (IQR) of the samples relative to the
median and expressed as a percentage. In comparison
with Figure 4, the rows correspond to (i) any random

point along the boxplot whiskers, (ii) the median line in
the boxplot, (iii) the difference between the top and bot-
tom of the box divided by the median and multiplied
by 100.

Focusing first on the 50 year timeseries (left column
of Figure 5), the single return value estimates show a
generally consistent pattern with that seen for the
median of all samples. This means that there are spatial
features of the precipitation extremes that are more
prominent than the “noise” of the data. However, at any
given grid point, the return value can differ by tens of
mm/d, depending on the character of the single time-
series. This can lead to both over- and underestimations
in different regions. We note that the station-year method
is taking advantage of this fact, but requires careful selec-
tion of stations to remain in a spatial region with coher-
ent extremes. The relative IQR in the bottom row shows
that the range of values is rather homogeneous across
Europe at between 15% and 30% for the 50-year long time-
series. However, some regions with strong orography, such
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FIGURE 5 100-year return values for precipitation obtained
from timeseries of 50, 100 and 500 years. Upper row: the 100-year
return values of a single randomly selected surrogate timeseries.
Middle row: the median of the 100-year return values of all

100 surrogate timeseries. Lower row: the interquartile range (IQR)
of the 100-year return values of all 100 surrogate timeseries relative
to the median.

as the coast of Norway and the Alps, have a systematically
lower relative IQR.

When timeseries of 100 years are sampled (middle
column of Figure 5), the single sample shows a reduced
spatial variability compared to the 50 year sample, and
looks more similar to the median of all samples. The rela-
tive IQR has been reduced by about half compared to the
50 year long timeseries. For the 500 year timeseries (right
column of Figure 5), the relative IQR is close to zero, and
there are only few visible differences between a single
sample and the median of all 100 samples. The 500-year
timeseries have yet less difference between the single
sample and the median, and the IQR is now reduced to
less than 10%.
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FIGURE 6
by the upstream area obtained from the experiment of

100 surrogate timeseries selecting 50, 100 and 500 years. Upper
row: the 100-year return values of 1 surrogate timeseries is shown.
Middle row: the median of the 100-year return values of all

100 surrogate timeseries is shown. Lower row: the interquartile
range (IQR) of the 100-year return values of all 100 surrogate
timeseries is shown relative to the median.

100-year return values for streamflow normalized

Streamflow follows a very similar pattern as precipita-
tion, but with overall larger variability across the domain,
although the streamflow has been normalized by the
upstream catchment area to give units of mm/d instead
of m*/s (Figure 6). This larger spatial variability is due to
the vastly different volumes of water passing through the
different river basins and the various hydrological
regimes and catchment responses, and the figures convey
only the larger differences and not much nuances. The
relative IQR best conveys the uncertainty for each sam-
ple, with 10 to several 100% for the 50-year timeseries,
which are reduced to 0%-100% for the 100-year time-
series. At 500 years, the IQR is again reduced to less than
10%, as for precipitation. A region in eastern Europe, just
north of the Black Sea, stands out with markedly higher
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return values and IQR for streamflow. This is a region
with substantial anthropogenic influences, such as irriga-
tion, and thus poor performances of the E-HYPE model
(Hundecha et al., 2016), resulting in highly uncertain
streamflow and return periods.

Finally, we conclude again on the robustness that can
be achieved from bootstrapping within a single time-
series. As shown in Figure 4, the difference between the
median result can be substantial depending on the cho-
sen timeseries. There is no way around that, as one can-
not easily estimate this value from a short timeseries. We
focus instead on how well the bootstrap method describes
the uncertainty of the return value, in the form of the
IQR. Figure 7 shows the IQR from the surrogate method,
as before, and for the three bootstrap experiments. The
general pattern is similar between BS1-3 and the

surrogate method already for the shortest 50-year time-
series. However, the BS experiments are all both under-
and overestimating the IQR, depending on the region
and on the chosen timeseries. The differences are
reduced for the 100-year timeseries, and for 500-years
BS1-3 are generally underestimating the IQR by a few
percentage units. In a broad perspective, the bootstrap
method gives a good overview of the uncertainty range,
but the local deviations can be substantial.

4 | DISCUSSION

When using models as a replacement for observations to
estimate extremes, one is essentially substituting the
uncertainty in the observations to that of the model's
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performance in realistically simulating extremes and
their frequency. The model needs to achieve at least a
basic accuracy in simulating extremes to be a plausible
replacement of observations. At the same time, the pre-
sented results indicate the substantial noise levels in the
extreme value estimations, which makes such evaluation
very challenging when only short timeseries of a few
decades are available.

The gain of using model surrogate timeseries is in the
long timeseries that can be constructed with the models.
This constitutes a huge advantage over observations, con-
sidering the rapidly widening confidence intervals of any
extreme value theory estimation outside the range of the
data records. With increasing attention to extremes, often
in the context of adapting society to current and a chang-
ing climate, there is a great need for this kind of back-
ground information about uncertainty.

The similarities between single small sample time-
series to the more robust large samples in the overall pat-
tern across large areas (on the order of several decades of
percent of the land mass of Europe) means that one can
expect noise levels to cancel out. A path forward in asses-
sing model performance in extremes is therefore to perform
analysis over large regions with accumulated statistics. This
is similar to the station-year method (Olsson et al., 2019)
mentioned above, or continent-scale analysis performed by,
for example, Guerreiro et al. (2018).

Independence between the ensemble members is
explored using skill metrics of the forecast system,
assuming independence when there is no skill.

This approach could be refined to pair different fore-
cast lengths together subject to the skill score of each grid
point and catchment. Furthermore, the CRPSS and
BSS90 skill metrics are applied to weekly averages. This
procedure certainly smooths the high extremes to some
extent.

The question whether large-scale atmospheric drivers
have a higher predictive skill in the SEAS5 forecasts than
precipitation or streamflow extremes itself and how this
affects the assumption of independent ensemble mem-
bers deserves further research. We have explored the
weather regimes of the SEASS5 re-forecasts in earlier
work, with emphasis on Sweden. In the study 12 weather
regimes were classified based on daily anomalies of mean
sea level pressure from ERA-Interim and optimized by
historical observed precipitation in Sweden and then pre-
dict the occurrence of those patterns from ensemble sea-
sonal forecast. We found essentially no correlations
between the ensemble members of the large scales on
day-to-day basis. However, some studies have indicated
predictability on certain weather regimes over the North
Atlantic and Europe, such as NAO+ and ENSO (Falkena
et al., 2021). This could affect the ensemble member

of Climatology

independence of precipitation and streamflow extremes
over Europe. Additional analysis along this reference and
with respect to the understanding of the connections
between hydrometeoroloigcal extremes and large-scale
weather patterns (Lavers et al., 2013) would be needed.
However, this analysis is beyond the scope of this paper.

A somewhat different approach for the independence
testing is applied in the UNSEEN studies following the
idea of the potential predictability (Kelder et al., 2020;
Lavers et al., 2014). Kelder et al. (2020) instead assessed
the dependency of data by applying a pairwise correlation
test between all ensemble members. The data were
resampled and data points were randomly selected from
all members, years and lead times to remove potential cor-
relations. Our independence testing of ensemble members
provides an alternative to the one in the UNSEEN
approach, with data that can generally be derived from
forecast evaluations.

The 23 years of the meteorological and hydrological
re-forecasts used in this study represent only part of the
present-day climate variability. For a full spectrum of
extreme value estimation under general climate condi-
tions one would need to include data of several decades,
if available (van den Brink et al., 2005). A viable option is
to make use of single model multiple realizations from
climate models, for example, CMIP6 (Coupled Model
Intercomparison Project Phase 6), where centennial cli-
mate simulations are performed with varying initial con-
ditions. Although of coarser spatial resolution, these
models allow for large ensembles across long historical
and future projections to assess extremes under different
climatic states, as well as natural variability thereof.
However, unless such ensembles include hundreds of
members, they do not reach the same number of samples
for a given historical period as the currently presented
use of seasonal forecasts. The optional use of a multi-
model ensemble from CMIP6 requires additional checks
to ensure that the included models share a sufficiently
similar distribution of extremes.

In this study, precipitation and streamflow extremes
are estimated separately. In a future development this
method can be extended to investigate multiple extremes
or compound events to account for the increasing risk of
interconnected extremes.

Further, the analysis is based on the GEV distribution
to determine extreme precipitation and streamflow esti-
mates. This might not be ideal for all regions. Various
processes affect especially streamflow such as regulations
included in the model. A naturalized hydrological model
could be used, but is generally not of interest for the users
of the forecasts. If specific regions and catchments are
investigated, one way forward could be to allow the
method to find best fits for alternative or extended
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distributions (Nascimento et al., 2016) or even mixed dis-
tributions (Gruss et al., 2020). However, here we wanted
to focus our analysis on the European scale, we therefore
had to sacrifice some detail in the distribution fits.

5 | CONCLUSIONS

We present a method to pool seasonal re-forecasts to gen-
erate synthetic timeseries with several 1000 surrogate
years suitable for extreme value analysis. The method is
evaluated on a pan-European scale using both meteoro-
logical and hydrological seasonal re-forecasts. The pair-
ing of seasonal forecasts ensembles used in this study
enables the record to be extended from the original
23 years (1993-2015) to 3450 and 1725 surrogate years for
precipitation and streamflow, respectively. The different
record lengths arise from the exclusion of 1 and 4 month
(s) from the full 7-month forecasts after assessing the
sample independence. We investigate the robustness of
return value estimates for precipitation and streamflow
using a 1-year block-maxima fitted to the GEV distribu-
tion. We do this by applying two approaches. In a first
step we assess the robustness of the GEV fits to data of
different record lengths. This investigation provides the
opportunity to identify the timeseries length needed to
obtain more robust extreme value estimates. In a second
step we assess the robustness to only a single shorter
record using a bootstrap with replacement to assess the
uncertainty. The main conclusions are:

+ The forecast skill and testing of independence between
ensemble members for precipitation indicates some
regional variations and a slight dependence on the
start month. Independence can be assumed from 2 to
4 weeks into the forecasts for most regions across
Europe. The skill and independence analysis for
streamflow indicates a more complex pattern with
topographic and hydrological heterogeneities varying
with the month of forecast initialisation.

« Constructing long surrogate timeseries offers a clear
statistical advantage in the extreme value theory esti-
mation, particularly over short observed data records.
It provides a great potential in reducing the uncer-
tainty of return period estimates for both precipitation
and streamflow. The improvement is particularly visi-
ble for precipitation all over Europe from a sample size
of about 500 years. This increase in robustness is also
evident for streamflow.

« The more common approach of assessing uncertainty,
or confidence levels, with a bootstrap method shows
overall similar assessments of the range of possible
values, although it might severely under- or overestimate

at the local scale. Still, the best estimate of the return
value is still subject to the large uncertainty in the
timeseries sample, and the uncertainty range will be
equally offset.

With increasing use of seasonal forecasts in impact
modelling, the presented method may gain attention and
be useful to more robustly assess the current state of
extremes as background information to increase resil-
ience to floods or other natural hazards.

The larger sample sizes allow better assessments of
multiple extremes. The more robust return period esti-
mates of unprecedented extreme streamflow events may
be helpful in improving the risk estimation of hazards
associated with flooding and in designing risk manage-
ment options for decision-makers.
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is coarser than the one used in this study (0.5° resolution)
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perform the analysis can be accessed from the corresponding
author upon request.

ORCID
Katharina Klehmet
2908

Peter Berg ‘© https://orcid.org/0000-0002-1469-2568
Denica Bozhinova ® https://orcid.org/0000-0003-0611-

https://orcid.org/0000-0002-1503-

321X

Louise Crochemore ‘2 https://orcid.org/0000-0001-5776-
6275

Yiheng Du @ https://orcid.org/0000-0002-5176-8111
Ilias Pechlivanidis ® https://orcid.org/0000-0002-3416-
317X

Wei Yang ‘© https://orcid.org/0000-0002-6803-5563

REFERENCES

Belusic, D., Berg, P., Bozhinova, D., Birring, L., Doescher, R,
Eronn, A. et al. (2019) Climate extremes for Sweden. SMHI.
Berg, P., Almén, F. & Bozhinova, D. (2021) Hydrogfd3.0 (hydrologi-
cal global forcing data): a 25 km global precipitation and tem-
perature data set updated in near-real time. Earth System

Science Data, 13, 1531-1545.

Bouallegue, Z.B., Haiden, T., Weber, J.N.,, Hamill, T.M. &
Richardson, D.S. (2020) Accounting for representativeness in
the verification of ensemble precipitation forecasts. Monthly
Weather Review, 148, 2049-2062.

Brier, G.W. (1950) Verification of forecasts expressed in terms of
probability. Monthly Weather Review, 78, 1-3.

Brunner, M.I. & Slater, L.J. (2022) Extreme floods in Europe: going
beyond observations using reforecast ensemble pooling. Hydrol-
ogy and Earth System Sciences, 26, 469-482.

Coles, S. (2001) An introduction to statistical modeling of extreme
values. In: Statistics. London, England: Springer Series.

Donnelly, C., Andersson, J.C.M. & Arheimer, B. (2016) Using flow
signatures and catchment similarities to evaluate the e-hype
multi-basin model across Europe. Hydrological Sciences Jour-
nal, 61, 255-273.

Du, Y., Clemenzi, I. & Pechlivanidis, I.G. (2023) Hydrological
regimes explain the seasonal predictability of streamflow
extremes. Environmental Research Letters, 18, 094060. Available
from: https://doi.org/10.1088/1748-9326/acf678

Falkena, S.K.J., de Wiljes, J., Weisheimer, A. & Shepherd, T.G.
(2021) Detection of interannual ensemble forecast signals over
the north Atlantic and Europe using atmospheric circulation
regimes. Quarterly Journal of the Royal Meteorological Society,
148, 434-453. Available from: https://doi.org/10.1002/qj.4213

Gilleland, E. (2020) Bootstrap methods for statistical inference. Part
II: extreme-value analysis. Journal of Atmospheric and Oceanic
Technology, 37, 2135-2144.

of Climatology

Gruss, L., Pollert, J., Jr., Pollert, J., Sr., Wiatkowski, M. &
Czaban, S. (2020) The application of new distribution in deter-
mining extreme hydrologic events such as floods. Hydrology
and Earth System Sciences Discussions, 2020, 1-31.

Guerreiro, S.B., Fowler, H.J., Barbero, R., Westra, S., Lenderink, G.,
Blenkinsop, S. et al. (2018) Detection of continental-scale inten-
sification of hourly rainfall extremes. Nature Climate Change, 8,
803-807.

Hersbach, H. (2010) Decomposition of the continuous ranked prob-
ability score for ensemble prediction systems. Weather and
Forecasting, 15, 559-570.

Hosking, J.R.M. (1990) L-moments: analysis and estimation of dis-
tributions using linear combinations of order statistics. Journal
of the Royal Statistical Society: Series B: Methodological, 52,
105-124.

Hosking, J.R.M. & Wallis, J.R. (1997) Regional frequency analysis:
an approach based on L-moments. Cambridge, England: Cam-
bridge University Press.

Hundecha, Y., Arheimer, B., Berg, P., Capell, R., Musuuza, J.,
Pechlivanidis, I. et al. (2020) Effect of model calibration strategy
on climate projections of hydrological indicators at a continen-
tal scale. Climatic Change, 163, 1287-1306.

Hundecha, Y., Arheimer, B., Donnelly, C. & Pechlivanidis, I. (2016)
A regional parameter estimation scheme for a pan-European
multi-basin model. Journal of Hydrology: Regional Studies, 6,
90-111.

Jenkinson, A.F. (1955) The frequency distribution of the annual
maximum (or minimum) values of meteorological elements.
Royal Meteorological Society, 81, 158-171.

Johnson, S., Stockdale, T., Ferranti, L., Balmaseda, M., Molteni, F.,
Magnusson, L. et al. (2019) Seas5: the new ECMWF seasonal
forecast system. Geoscientific Model Development, 12, 1087-1117.

Jolliffe, I.T. (2017) Probability forecasts with observation error:
what should be forecast? Meteorological Applications, 24, 276-
278. Available from: https://doi.org/10.1002/met.1626

Kelder, T., Miiller, M., Slater, L.J., Marjoribanks, T.I., Wilby, R.L.,
Prudhomme, C. et al. (2020) Using unseen trends to detect
decadal changes in 100-year precipitation extremes. NPJ Cli-
mate and Atmospheric Science, 3, 47.

Kent, C., Pope, E., Dunstone, N., Scaife, A.A., Tian, Z., Clark, R.
et al. (2019) Maize drought hazard in the northeast farming
region of China: unprecedented events in the current climate.
Journal of Applied Meteorology and Climatology, 58, 2247-2258.

Lavers, D., Prudhomme, C. & Hannah, D.M. (2013) European pre-
cipitation connections with large-scale mean sea-level pressure
(MSLP) fields. Hydrological Sciences Journal, 58, 310-327.
Available from: https://doi.org/10.1080/02626667.2012.754545

Lavers, D.A., Pappenberger, F. & Zsoter, E. (2014) Extending
medium-range predictability of extreme hydrological events in
Europe. Nature Communications, 5, 5382.

Girons Lopez, M., Crochemore, L. & Pechlivanidis, I.G. (2021)
Benchmarking an operational hydrological model for providing
seasonal forecasts in Sweden. Hydrology and Earth System Sci-
ences, 25, 1189-1209. https://doi.org/10.5194/hess-25-1189-2021

Musuuza, J.L., Crochemore, L. & Pechlivanidis, 1.G. (2023) Evalua-
tion of earth observations and in situ data assimilation for
seasonal hydrological forecasting. Water Research, 59,
€2022WRO033655. Available from: https://doi.org/10.1029/
2022WR033655

85U8017 SUOWILIOD AITeID) 8|qeotjdde ay) Aq peusenob a.e ool VO ‘88N JO S9N 10} AeIqIT]8UIUO AB]1/MW UO (SUORIPUOD-PUR-SLLIBY WD A8 im Aleq 1 jBulu//SANY) SUORIPUOD Pue SWie | 8y} 8es *[202/S0/82] Uo Akidiauljuo 8|1 ‘soueI auelyoD Aq Z0v8901/200T 0T/I0p/L00 A8 | IM AreIqUTIUO'SIBWL//SANY WO1) PPROIUMO ‘S ‘¥Z0Z ‘8800260T


http://hypeweb.smhi.se/model-water
http://hypeweb.smhi.se/model-water
https://orcid.org/0000-0002-1503-2908
https://orcid.org/0000-0002-1503-2908
https://orcid.org/0000-0002-1503-2908
https://orcid.org/0000-0002-1469-2568
https://orcid.org/0000-0002-1469-2568
https://orcid.org/0000-0003-0611-321X
https://orcid.org/0000-0003-0611-321X
https://orcid.org/0000-0003-0611-321X
https://orcid.org/0000-0001-5776-6275
https://orcid.org/0000-0001-5776-6275
https://orcid.org/0000-0001-5776-6275
https://orcid.org/0000-0002-5176-8111
https://orcid.org/0000-0002-5176-8111
https://orcid.org/0000-0002-3416-317X
https://orcid.org/0000-0002-3416-317X
https://orcid.org/0000-0002-3416-317X
https://orcid.org/0000-0002-6803-5563
https://orcid.org/0000-0002-6803-5563
https://doi.org/10.1088/1748-9326/acf678
https://doi.org/10.1002/qj.4213
https://doi.org/10.1002/met.1626
https://doi.org/10.1080/02626667.2012.754545
https://doi.org/10.5194/hess-25-1189-2021
https://doi.org/10.1029/2022WR033655
https://doi.org/10.1029/2022WR033655

1738 International Journal

KLEHMET ET AL.

of Climatology

Nascimento, F.F., Bourguigon, M. & Leao, J.S. (2016) Extended gen-
eralized extreme value distribution with applications in envi-
ronmental data. Hacettepe Journal of Mathematics and
Statistics, 45, 1847-1864.

Olsson, J., S6dling, J., Berg, P., Wern, L. & Eronn, A. (2019) Short-
duration rainfall extremes in Sweden: a regional analysis.
Hydrology Research, 50, 945-960.

Overeem, A., Buishand, A. & Holleman, I. (2008) Rainfall depth-
duration-frequency curves and their uncertainties. Journal of
Hydrology, 348, 124-134.

Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W.,
Christ, R. et al. (2014) Climate change 2014: synthesis report.
In: Contribution of working groups I, II and III to the fifth assess-
ment report of the Intergovernmental Panel on Climate Change.
Geneva: IPCC.

Pechlivanidis, 1.G., Crochemore, L., Rosberg, J. & Bosshard, T.
(2020) What are the key drivers controlling the quality of sea-
sonal streamflow forecasts? Water Resources Research, 56,
€2019WR026987.

Poschlod, B., Ludwig, R. & Sillmann, J. (2020) Return levels of sub-
daily extreme precipitation over Europe. Earth System Science
Data, 2020, 1-35.

Reyer, C.P.O., Leuzinger, S., Rammig, A., Wolf, A,
Bartholomeus, R.P., Bonfante, A. et al. (2012) A plant's perspec-
tive of extremes: terrestrial plant responses to changing climatic
variability. Global Change Biology, 19, 75-89.

Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae, S.,
Kossin, J. et al. (2012) Changes in climate extremes and their
impacts on the natural physical environment. In: Field, C.B.,
Barros, V., Stocker, T.F., Qin, D., Dokken, D., Ebi, K.L. et al.
(Eds.) A special report of working groups I and II of the Intergov-
ernmental Panel on Climate Change (IPCC). New York, NY:
Cambridge University Press, pp. 109-230.

Seneviratne, S., Zhang, X., Badi, M.A'W., Dereczynski, C.,
Luca, A.D., Ghosh, S. et al. (2021) Weather and climate extreme
events in a changing climate. In: Climate change 2021: the phys-
ical science basis. Contribution of working group I to the sixth
assessment report of the Intergovernmental Panel on Climate
Change. Cambridge: Cambridge University Press.

Shukla, S. & Lettenmaier, D.P. (2011) Seasonal hydrologic predic-
tion in the United States: understanding the role of initial
hydrologic conditions and seasonal climate forecast skill.
Hydrology and Earth System Sciences, 15, 3529-3538.

Stott, P. (2016) How climate change affects extreme weather events.
Science, 352, 1517-1518.

Sutanto, S.J. & Lanen, H.A.J.V. (2022) Catchment memory explains
hydrological drought forecast performance. Scientific Reports,
12, 2689.

Tellman, B., Sullivan, J.A., Kuhn, C., Kettner, A.J., Doyle, C.S,,
Brakenridge, G.R. et al. (2021) Satellite imaging reveals
increased proportion of population exposed to floods. Nature,
596, 80-86.

Thompson, V., Dunstone, N.J., Scaife, A.A., Smith, D.M,
Hardiman, S.C., Ren, H.-L. et al. (2019) Risk and dynamics of
unprecedented hot months in south East China. Climate
Dynamics, 52, 2585-2596.

Thompson, V., Dunstone, N.J., Scaife, A.A., Smith, D.M,,
Slingo, J.M., Brown, S. et al. (2017) High risk of unprecedented
UK rainfall in the current climate. Nature Communications,
8, 107.

van den Brink, H.W. Konnen, G.P., Opsteegh, J.D., van
Oldenborgh, G.J. & Burgers, G. (2004) Improving 104-year
surge level estimates using data of the ecmwf seasonal predic-
tion system. Geophysical Research Letters, 31(17), L17210.
https://doi.org/10.1029/2004GL020610

van den Brink, H.W., Konnen, G.P., Opsteegh, J.D., van
Oldenborgh, G.J. & Burgers, G. (2005) Estimating return
periods of extreme events from ecmwf seasonal forecast ensem-
bles. International Journal of Climatology, 25, 1345-1354.

van der Wiel, K., Wanders, N., Selten, F.M. & Bierkens, M.F.P.
(2019) Added value of large ensemble simulations for assessing
extreme river discharge in a 2°C warmer world. Geophysical
Research Letters, 46, 2093-2102.

van Loenhout, J., Below, R. & McClean, D.C. (2020) Human costs
of disasters. An overview of the last 20 years, 2000-2019. Tech-
nical Report, UNDRR and CRED.

Wilks, D. (1995) Statistical methods in the atmospheric sciences: an intro-
duction. International Geophysics Series. San Diego: Academic Press.
464. https://books.google.se/books?id=s]_ZCddUW60C

Yang, W., Andréasson, J., Phil Graham, L., Olsson, J., Rosberg, J. &
Wetterhall, F. (2010) Distribution-based scaling to improve
usability of regional climate model projections for hydrological
climate change impacts studies. Hydrology Research, 41,
211-229.

How to cite this article: Klehmet, K., Berg, P.,
Bozhinova, D., Crochemore, L., Du, Y.,
Pechlivanidis, I., Photiadou, C., & Yang, W. (2024).
Robustness of hydrometeorological extremes in
surrogated seasonal forecasts. International Journal
of Climatology, 44(5), 1725-1738. https://doi.org/
10.1002/joc.8407

85US01 T SUOWIWOD SAIE8ID 3(dedl|dde auyy Aq peusenob ke e e YO ‘8sn Jo sejni 1oy A%l 8ul|UO A8]IAN UO (SUOTPUOD-PUB-SWBH 00" AB 1M AReIq 1 U1 |UO//STIY) SUOTPUOD PUe SWB | 8L 88S *[7202/50/82] Uo ARiqiTauliuo A8]im ‘soueld 8ueIyo0D Ad Z0v800(/200T 0T/I0p/W0o" A8 1w Alelq | pul|uo s/ Sdny Woiy pepeojumod ‘G ‘vZ0Z ‘8800260T


https://doi.org/10.1029/2004GL020610
https://books.google.se/books?id=sJ_ZCddUW6oC
https://books.google.se/books?id=sJ_ZCddUW6oC
https://doi.org/10.1002/joc.8407
https://doi.org/10.1002/joc.8407

	Robustness of hydrometeorological extremes in surrogated seasonal forecasts
	1  INTRODUCTION
	2  DATA AND METHODS
	2.1  Seasonal meteorological re-forecasts
	2.2  Hydrological seasonal re-forecasts
	2.3  Extreme value analysis
	2.4  Estimation of sample independence
	2.5  Construction of surrogate timeseries
	2.6  Robustness of the extreme value estimation

	3  RESULTS
	3.1  Forecast skill and sample independence
	3.2  Estimation of return periods for different sample sizes
	3.3  Spatial patterns of 100-year return value

	4  DISCUSSION
	5  CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


