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Abstract
1. Large- scale biodiversity monitoring is essential for assessing biodiversity trends, 

yet traditional surveying methods are limited in the spatial/temporal scale they 
can cover. Recent technological developments have led to computer vision- based 
species	identification	tools,	such	as	the	Pl@ntNet	application.	Increasing	accuracy	
of such algorithms presents an opportunity of integrating computer vision into 
larger monitoring schemes and could lead to automating ground- based evidence 
provision related to agri- environmental measures (e.g. flower strips, field mar-
gins).	However,	images	from	surveys	or	farmer	declarations	do	not	live	up	to	the	
standards of current applications. In order to integrate these automated methods 
into	biodiversity	monitoring,	more	generalized	models	are	needed.

2. We create a dataset using 500 manually delineated images of vegetation patches 
in	European	grasslands	 taken	during	 the	Land	Use/cover	Area	Survey	 (LUCAS)	
grassland	module.	We	train	the	Faster	R-	CNN	model	to	detect	and	extract	indi-
vidual	flower	objects.	Using	this	model,	we	extract	the	abundance	of	flowers	in	
an	image,	analyse	their	colour	distribution,	and	use	the	Pl@ntNet	application	to	
identify the species of the individual flowers detected.

3. The best model reaches precision and recall of 0.89/0.61 and predicts 1377 flow-
ers	on	the	100	test	images	distributed	between	10	colours.	Using	Pl@ntNet,	only	
52 flowers were identified with a certainty score above 0.5 due to the limitations 
in	 image	 size	 and	 quality.	Of	 these	 flowers,	 30%	were	 correctly	 automatically	
identified	at	the	species	level	and	42%	at	the	genus	level.

4. The results show that we can automatically extract valuable information on floral 
abundances,	colours,	and	sizes	from	images	of	vegetation	patches,	though	in	most	
cases better images are needed for species identification. Despite limitations with 
image	quality,	integrating	this	workflow	into	large-	scale	monitoring	could	speed	
up the sampling process and allow for better spatial and temporal data on floral 
diversity and abundance.

https://doi.org/10.1002/2688-8319.12324
www.wileyonlinelibrary.com/journal/eso3
mailto:neija.elvekjaer@geo.hu-berlin
https://orcid.org/0000-0002-7655-9287
https://orcid.org/0000-0002-1354-1792
https://orcid.org/0000-0002-2828-4389
https://orcid.org/0000-0002-2161-9940
mailto:
https://orcid.org/0000-0002-9103-7081
http://creativecommons.org/licenses/by/4.0/
mailto:neija.elvekjaer@geo.hu-berlin
mailto:marijn.van-der-velde@ec.europa.eu


2 of 15  |     ELVEKJAER et al.

1  |  INTRODUC TION

Loss of biodiversity and its impact on ecosystem stability and 
functioning	is	a	major	concern	worldwide	(IPBES,	2019). In farm-
lands, agricultural intensification has caused significant declines 
in biodiversity with detrimental effects on biodiversity- mediated 
ecosystem services such as nutrient cycling, pest regulation, and 
pollination,	 resulting	 in	 reduced	 yields	 (Boetzl	 et	 al.,	2021; Cole 
et al., 2020).	 In	 the	 European	 Union	 (EU),	 this	 decline	 in	 biodi-
versity has triggered several policies and initiatives aimed at pre-
serving	farmland	biodiversity,	such	as	the	EU	Pollinators	Initiative	
(European	Commission	Eu	Pollinators	Initiative,	2018),	the	Farm	to	
Fork	Strategy	target	to	reduce	use	and	risk	of	chemical	pesticides,	
and a larger share of the budget available for the environmen-
tal	 dimensions	 of	 the	Common	Agricultural	 Policy	 (CAP)	 for	 the	
period	 2023–2027.	 Good	 agricultural	 and	 environmental	 condi-
tions	 (GAEC)	 requirements,	 ecoschemes,	 agri-	environmental	 and	
climate measures can promote the creation and maintenance of 
biodiversity rich field margins (e.g. flower strips), increase the area 
of landscape features (e.g. hedges, tree lines), strengthen green 
corridors within patchy rural landscapes, and manage grasslands in 
a	way	that	is	beneficial	for	climate	(e.g.	carbon	sequestration)	and/
or	 biodiversity.	 However,	 monitoring	 their	 implementation	 and	
maintenance is a challenge and many practises cannot be detected 
with remote sensing methods (Sima et al., 2020).	 Furthermore,	
several studies suggest that the result of the measures is context- 
dependent and varies between landscapes and regions (Cole 
et al., 2020; Nilsson et al., 2021; Scheper et al., 2015). Temporal 
continuity, connectivity, and ecological contrast to the surrounding 
landscape are important factors for the outcome of such schemes 
(Boetzl	 et	 al.,	 2021; Nilsson et al., 2021; Scheper et al., 2013, 
2015). The effectiveness of measures aiming to increase the avail-
ability of floral resources for pollinators, such as those promoting 
flower strips, supporting environmentally sensitive grasslands, 
and establishing field margins, can be assessed by not only mea-
suring species abundance but also species composition and pres-
ence of key species (Bartual et al., 2019; Cole et al., 2020; Scheper 
et al., 2015; Sutter et al., 2017). The best implementation might, in 
fact, be a trade- off between ecosystem services supply and bio-
diversity conservation (Schaub et al., 2020; Scheper et al., 2013). 
To get the desired outcome, agri- environmental schemes must be 
targeted	 to	 local	 conditions,	 requiring	 a	 large	 amount	 of	 knowl-
edge on the ecosystem at a fine temporal and spatial scale. Lack of 
biodiversity data prevents proper targeting of such management 
and conservation efforts, reducing potential ecosystem benefits.

Large- scale and accurate biodiversity monitoring is key to un-
derstanding ecosystem interactions and the impacts of agricul-
ture (Scholes et al., 2012).	However,	such	monitoring	schemes	are	

labour intensive, may suffer from a lack of temporal/spatial repre-
sentation	as	well	as	surveyor	bias.	An	example	of	such	a	survey	is	
the	2018	Land	Use/Cover	Area	 frame	Survey	 (LUCAS)	grassland	
module (Sutcliffe et al., 2019), a pilot study aimed at collecting 
information	on	the	environmental	and	ecological	quality	of	grass-
lands	 and	 their	management	 throughout	 the	 EU.	 As	 part	 of	 the	
overall	LUCAS	campaign	in	2018,	2173	points	in	26	countries	were	
visited	 by	 surveyors	 and	 expert	 botanists.	 Various	 information	
was collected, such as intensity of management, vegetation cover, 
number of flowering plants, and presence of key species. The final 
report highlights two problems of this pilot survey: timing and ex-
pertise (Oppermann, 2021).	A	comparison	between	the	data	col-
lected by normal surveyors and expert botanists show that the 
timing of the field visit is very important—for example the species 
flowering	 change	 throughout	 the	 growing	 season.	 Furthermore,	
surveyors without expert botanist knowledge had difficulty de-
termining some variables such as vegetation composition and the 
presence of specific key species. The number of expert botanists 
is	 declining,	 and	 this	 taxonomic	 gap	 has	 been	 recognized	 as	 a	
major obstacle for conservation efforts since the Rio Conference 
in 1992 (Joly et al., 2019).	 Future	 large-	scale	 biodiversity	moni-
toring schemes need to develop new methodologies to sample at 
an	adequate	spatial	and	temporal	scale,	without	relying	solely	on	
expert botanists.

1.1  |  Computer vision in biodiversity monitoring

Recently, machine learning, especially computer vision algo-
rithms,	have	been	used	for	species	identification	of	animals	(Villon	
et al., 2020; Weinstein, 2018),	insects	(Høye	et	al.,	2021), and plants 
(Joly et al., 2014;	Mäder	et	al.,	2021;	Mann	et	al.,	2022). These al-
gorithms can mitigate the loss of expert knowledge and the limited 
spatial/temporal	cover	of	traditional	surveying	methods	(Wäldchen	
et al., 2018).	 Although	 they	 are	 far	 from	 outperforming	 the	 best	
expert botanists in complex settings (Bonnet et al., 2016), in a fast 
moving field, they can provide rapid, objective, and scalable species 
identification,	only	requiring	image	input.

These developments go hand in hand with opportunities to col-
lect	biodiversity	data.	Crowd-	sourcing	and	citizen	science	projects	
generate and continuously update massive amounts of data by vol-
unteers taking pictures of the biodiversity surrounding them (Boho 
et al., 2020;	Wäldchen	 et	 al.,	2018).	 Furthermore,	 monitoring	 for	
compliance	assurance,	such	as	in	the	CAP	context	(Sima	et	al.,	2020), 
can	 require	 farmers	 to	provide	 image	proof	 of	 implemented	prac-
tises,	for	example,	a	picture	of	a	flower	strip.	For	example,	farmers	
in	the	Thuringia	region	in	Germany	can	use	a	plant	species	identifi-
cation	app,	based	on	Flora	Incognita	(Mäder	et	al.,	2021), to prove 

K E Y W O R D S
automated	species	identification,	biodiversity	monitoring,	computer	vision,	Faster	R-	CNN,	
flower,	object	detection,	Pl@ntNet,	vegetation	survey
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the occurrences of six plant species out of a list of 44 to receive pay-
ments for biodiverse grasslands (Barmeier, 2021). In the future, and 
given ever- developing sharing mechanisms guaranteeing anonym-
ity, these potentially large amounts of geotagged photos captured 
through	CAP	monitoring	may	contribute	to	biodiversity	monitoring	
as well.

For	computer	vision	algorithms,	it	is	important	to	have	a	precise	
and	representative	training	dataset.	For	plant	detection	and	identifi-
cation, the training data set must capture the huge amount of plant 
species in the world (400K flowering plants), inter- species variation 
(some species may look similar), and intra- species variation (the 
same species may look different depending on growth stage, growth 
conditions, and disturbances), as well as variations due to image ac-
quisition	(image	quality,	light	conditions	and	viewpoints)	(Wäldchen	
et al., 2018). Current applications for plant species identification use 
citizen	science	approaches	to	generate	the	extensive	data	required.	
However,	 this	 approach	 suffers	 from	high	 variability	 in	 data	 qual-
ity, as it is hard to ensure that the data are collected in a correct 
and consistent manner. The crowd sourced data is collected by non- 
experts	with	varying	equipment,	expertise	and	skill	and	often	show	
significant biases due to (1) the geographical variation in sampling 
effort (e.g. affected by population density and accessibility) and (2) 
citizens/non-	experts	are	more	likely	to	miss	rare	species	and	sample	
‘eye catching’ species, resulting in long tailed distribution (de Lutio 
et al., 2021; Jones, 2020) with many observations of common spe-
cies and few/no observations of rare species. These problems are 
mitigated to some extent by automatically filtering and relying on 
data	quality	checks	by	a	network	of	experts.

iNaturalist	 (Unger	 et	 al.,	 2021),	 Flora	 Incognita	 (Mäder	
et al., 2021),	 and	Pl@ntNet	 (Joly	 et	 al.,	2014) are examples of au-
tomated image- based species identification applications with global 
reach	that	exploit	 the	potential	of	computer	vision	and	citizen	sci-
ence.	In	this	paper,	we	use	Pl@ntNet,	an	app	developed	by	a	consor-
tium	of	four	French	research	organizations.	Users	can	send	up	to	4	
images	per	plant	query	which	returns	a	list	of	species	classifications	
and	probability	scores.	Including	several	images	of	high	quality	with	
focus on different plant organs can enhance the model classification 
score. The detected species can be verified by a network of experts 
and, if the images include a location, incorporated into the training 
dataset	as	well	as	the	species	occurrence	data	that	Pl@ntNet	con-
tributes	to	the	GBIF	 (Global	Biodiversity	 Information	Facility).	The	
plant	query	made	by	curious	citizens	becomes	part	of	large	species	
distribution monitoring and useful information for the scientific 
community	(Pl@ntNet	Contribution	to	GBIF,	2024).

Recently, species identification applications have started to in-
clude metadata in order to account for the high variability of nat-
ural	 environments.	Many	 applications	 allow	multiple	 input	 images	
with	different	viewpoints	 (flowers,	 leaf,	whole	plant,	 etc.)	 (Rzanny	
et al., 2019). Others include geo- location of the image, and from 
the position various environmental conditions such as climate and 
terrain can be inferred (de Lutio et al., 2021; Terry et al., 2020). 
Finally,	 recent	 studies	 suggest	 to	 take	 the	 hierarchical	 nature	 of	
taxonomy into account, possibly using taxonomic knowledge to 

infer family- level information of species unknown to the algorithm 
(de Lutio et al., 2021; Seeland et al., 2019).	 All	 this	 ancillary	 data	
is improving the detection algorithm, to the point that it can com-
pete with human experts in simple settings (de Lutio et al., 2021; 
Jones, 2020;	Mahecha	et	al.,	2021;	Wäldchen	et	al.,	2018).

This combination of artificial intelligence and increasing amount 
of image data has been used for species distribution modelling 
(Botella et al., 2018),	extraction	of	macroecological	patterns	(Mäder	
et al., 2021;	Mahecha	et	al.,	2021),	tracking	invasive	species	(August	
et al., 2015; Terry et al., 2020), and various conservation projects 
around the world (Bonnet et al., 2020).	Hicks	et	al.	 (2021) showed 
that species recognition can be used to estimate nectar sugar mass, 
in order to monitor conservation efforts directed towards pollina-
tors. Their computer vision- based approach could cut pollinator- 
plant survey time per stand of vegetation from hours to minutes. 
These studies suggest that automated species recognition is mature 
enough to contribute to large- scale monitoring efforts. Taking ad-
vantage	 of	 such	 automated	methods	 and	 citizen	 science	 for	 data	
acquisition	 makes	 it	 possible	 to	 revisit	 the	 sites	 multiple	 times	
during the growing season or expand the spatial scale of the survey. 
Extended spatial and temporal knowledge on biodiversity patterns 
will greatly improve the targeting ability of conservation efforts and 
agri- environmental schemes such as the implementation of green 
corridors, flower strips, etc.

Current efforts to use computer vision- based methodology 
in monitoring are limited to identification of specific species using 
closeup images taken of single flowers for computer vision purposes. 
However,	in	field	settings,	images	captured	might	not	be	suitable	for	
such identification algorithms due to varying light conditions, picture 
quality,	multiple	flowers	in	the	images,	etc.	In	the	context	of	environ-
mental monitoring and assessing the impact of agri- environmental 
management practices, these algorithms ultimately need to move 
from the individual flower level towards community-  or ecosystem 
level. In this paper, we aim to develop a generic flower detection 
model that can bridge this gap. The detection model could automat-
ically generate information on floral resources and diversity at rele-
vant spatial scales currently missing for monitoring floral diversity 
in	 farmlands.	 Using	 such	 a	model	 biodiversity	 information	 can	 be	
extracted from images covering larger vegetation patches/commu-
nities and metrics such as flower abundance and colour composition 
can be obtained in a snapshot. Ideally, the individual flower objects 
detected by our generic flower model could then be identified using 
existing	identification	applications	such	as	Pl@ntNet.	Such	a	frame-
work can scale up if implemented within larger monitoring efforts or 
within compliance assurance monitoring schemes.

1.2  |  Objectives

This paper aims to develop a generic flower detection algorithm and 
automatically extract information on flower presence, abundance, 
and	diversity,	from	images	taken	during	the	LUCAS	grassland	survey	
in 2018. Detailed objectives are:
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1. Create a training dataset for object detection of flowers by 
manually	 delineated	 images	 from	 the	 LUCAS	 grassland	 survey.

2.	 Train	the	Faster	R-	CNN	object	detection	model	to	detect	flowers	
on images and evaluate model performance.

3. Extract information from images on flower presence, abundance, 
and diversity using our flower detection model.

4.	 Identify	the	detected	flowers	using	the	Pl@ntNet	application	for	
species identification.

5. Identify limitations in this methodology and provide recommen-
dations on how this could be adapted to future needs with a 
view on increasingly automated surveying of flower species and 
habitats.

2  |  MATERIAL S AND METHODS

To	accomplish	our	objectives	we	train	a	Faster	R-	CNN	model	(Ren	
et al., 2015) to detect flowers in photos. We construct a training 
dataset	from	images	taken	during	the	LUCAS	grassland	survey	and	

label	them	with	the	annotation	CVAT	tool	(Sekachev	et	al.,	2020). 
We detect and extract flowers with the trained model and at-
tempt	 to	 identify	 species	 by	 using	 the	 Pl@ntNet	 API	 (Affouard	
et al., 2017).	Finally,	we	evaluate	 the	 limitations	of	 this	method-
ology and provide recommendations on how to better integrate 
computer vision- based tools in large- scale biodiversity monitoring 
of	grassland	flowering	plants.	An	overview	of	the	workflow	can	be	
seen in Figure 1.

2.1  |  Image dataset

2.1.1  |  LUCAS	grassland	module

The	images	used	in	this	study	were	collected	through	the	LUCAS,	
coordinated	by	Eurostat,	 the	statistical	office	of	the	EU.	The	sur-
veys in 2006, 2009, 2012, 2015, 2018, and 2022, cover the ex-
tent	 of	 the	 EU	with	 a	 sampling	 grid	 of	 2 km2. In each campaign, 
a stratified sample of points is surveyed (e.g. 330k in the 2018 

F I G U R E  1 Flowchart	showing	workflow	(left)	and	outcomes	(right)	of	this	paper.
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    |  5 of 15ELVEKJAER et al.

campaign); data is collected on land cover, land use, environmental 
variables,	and	photos	taken	in	four	cardinal	directions	(d'Andrimont	
et al., 2020). In 2018, the grassland module was added to the sur-
vey, a pilot study to collect detailed information on the environ-
mental	and	ecological	quality	of	grasslands	(Oppermann,	2021).	A	
stratified	 sub-	sample	 of	 the	 LUCAS	 points	was	 derived	 covering	
different grassland regions of Europe. These points were visited 
in	the	field	within	a	predefined	optimal	time	frame	by	both	LUCAS	
surveyors	and,	in	20%	of	the	cases,	expert	botanists.	The	additional	
visit by experts was done to evaluate the accuracy of the informa-
tion collected by the surveyors with limited knowledge of grass-
lands	and	species	 identification.	3734	LUCAS	points	were	visited	
by surveyors and 747 of these were also visited by expert bota-
nists.	At	each	sample	point	a	transect	of	2.5 × 20 m	was	established	
and information on environmental and ecological variables was col-
lected, including vegetation structural parameters, presence of key 
species,	and	land	use	practices.	All	samples	include	three	images,	
two taken from each end of the transect towards the centre and 
one top- down image taken of a representative patch of vegetation 

at	 any	 location	within	 the	 transect,	 1.5 m	 above	 the	 ground	 (see	
Figure 2).

2.1.2  |  Image	selection	and	processing

A	 total	 of	 250	 points	 were	 selected	 from	 the	 LUCAS	 grassland	
survey	to	create	an	image	dataset.	A	60/20/20	split	was	done	re-
sulting in 150 points used for training data, 50 points for valida-
tion	data	and	50	points	for	test	data.	To	ensure	high	quality	of	the	
images taken in the field, only images from the expert surveyed 
points were used. This was done since we assessed that the ex-
perts used better cameras, were better at following the protocol, 
and used their botanical expertise to capture the flower as best as 
possible.	For	a	first	dataset,	we	reasoned	that	these	were	impor-
tant parameters. To ensure a good representation of the European 
grasslands regions defined by the survey, a stratified sub- sample 
was selected based on the geographic distribution of the surveyed 
points	 within	 these	 regions.	 Photos	 taken	 from	 above	 at	 these	

F I G U R E  2 Overview	of	the	protocol	and	pictures	taken	during	the	LUCAS	grassland	module.	Illustrating	the	transect	and	the	three	
pictures taken during the survey. (a) Image from start to end of the transect. (b) Image of a representative patch of vegetation in the transect, 
taken 1.5 m from above the ground. (c) Image from end to start of the transect.

 26888319, 2024, 2, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/2688-8319.12324 by C

IR
A

D
, W

iley O
nline L

ibrary on [30/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 15  |     ELVEKJAER et al.

selected points were used for the image dataset and the presence 
of	 flowers	on	the	 images	was	visually	confirmed.	Hereby,	a	geo-
graphically representative sample with flowers present on all im-
ages was selected.

All	visible	 flowers	 in	 the	250	 images	were	manually	annotated	
using	 the	CVAT	 tool	 (Sekachev	 et	 al.,	2020) by drawing bounding 
boxes around the flowers. The dataset created has one class named 
‘flower’. This class includes all flowers with visible petals in the im-
ages, including flowers that are only partially within the image bor-
ders; the ‘flower’ category does not include grasses. To improve 
model	performance	and	avoid	errors	due	to	large	image	size	and	high	
object density, each image was split into four slices. The final dataset 
follows the same point division as the initial dataset (60/20/20) and 
includes 300 image slices from 150 points for model training, 100 
image slices from 50 points for validation data, 100 image slices from 
50 points for test data. The slices coming from the same point were 
only ever used in one of the three datasets. Therefore, no image 
information is shared between training, validation, or test.

2.2  |  Model training and parameter tuning

To	detect	individual	flower	in	the	images	we	trained	the	Faster	R-	CNN	
model	on	the	manually	delineated	training	dataset.	Faster	R-	CNN	is	
a computer vision model for object detection (Ren et al., 2015). This 
model	improves	the	speed	of	the	Fast	R-	CNN	model	by	incorporat-
ing a region proposal network to extract initial object- like regions. 
The	Faster	R-	CNN	model	was	 implemented	using	Detectron2,	 the	
Facebook	AI	Research	 library	 (Wu	et	al.,	2019).	We	used	the	SGD	
optimizer	with	random	clipping	and	Nesterov	Accelerated	Gradient	
following	 the	original	Faster	R-	CNN	publication	 (Ren	et	al.,	2015). 
This model has previously been used in similar workflows to esti-
mate	nectar	mass	 from	 images	 (Hicks	et	 al.,	2021) and the exten-
sions of this model was used to monitor phonology from time- lapse 
cameras	(Mann	et	al.,	2022).

We used weights pre- trained on the coco- dataset from the 
Detectron2	model	zoo	(Wu	et	al.,	2019).	Following	preliminary	tests	we	
selected	the	ResNet-	50	FPN	model	backbone	with	gamma	of	0.1	and	
a	ROI-	heads	batch	size	of	512.	Finally,	a	hyper	parameter	tuning	was	
done to explore two other model parameters: learning rate and mo-
mentum. 40 learning rates between 1e- 8 and 1e- 2, and 40 momentums 
between 0.9 and 0.99 were randomly generated. These intervals were 
selected following the values set in several other use cases using the 
same	architecture	(Hicks	et	al.,	2021; Li et al., 2021; Ren et al., 2015; Sys 
et al., 2022).	After	50	epochs	half	of	the	model	settings	were	discarded	
and the 20 remaining models were trained for an additional 25 epochs.

2.2.1  |  Performance	metrics	and	final	
model selection

Performance	 metrics	 for	 the	 models	 are	 calculated	 based	 on	 the	
test dataset. The predicted flower is evaluated using an intersect 

over	union	 (IoU)	 threshold	of	0.5.	The	 IoU	 is	 equal	 to	 the	 area	of	
the overlap (intersection) between the predicted bounding box and 
the	reference	bounding	box	divided	by	the	area	of	their	union.	For	
each model all the objects of the test dataset were summed up into 
True	 positives	 (TP),	 False	 positives	 (FP),	 and	 False	 negatives	 (FN).	
Finally	 precision,	 recall,	 and	 F1,	 was	 calculated	 as	 follows	 Padilla	
et al. (2021):

Performance	metrics	of	the	models	were	extracted	three	times	
during the workflow. The model with the highest F1 score was cho-
sen as the best model. The F1 score provides a balanced score be-
tween precision and recall, thus is a measure of how precise and 
generalizing	the	model	is.	To	evaluate	the	impact	of	different	image	
input	sizes	on	model	performance,	we	further	trained	the	final	model	
on	five	datasets	cropped	to	different	sizes	of	1500,	1000,	750,	500,	
and 224 pixels.

2.3  |  Flower abundance, colour, and identification 
with Pl@ntNet

Having	identified	best	performing	model	we	predict	the	flower	ob-
jects in the test dataset. The predicted flowers are then analysed 
to determine abundance and diversity of colour. The dominant col-
our pixel values is extracted from each predicted flower using a 
k- means clustering algorithm and the most dominant colour values 
are	translated	to	a	colour	category.	Finally,	we	attempt	to	identify	
the	species	of	the	predicted	flowers	using	the	Pl@ntNet	applica-
tion	API	 (Affouard	 et	 al.,	2017).	 Inspired	 by	 the	work	 of	August	
et al. (2020),	 a	pipeline	 for	querying	each	predicted	 flower	 indi-
vidually	with	the	Pl@ntNet	API	was	developed.	We	set	a	threshold	
of 0.8 for the score of the identification and discuss how many 
flowers were ‘correctly’ identified using this methodology.

3  |  RESULTS

3.1  |  Dataset creation

The final 250 points selected for the train/validation/test data-
set are mapped in Figure 3	with	blue.	As	 can	be	 seen	 for	 the	bar	
plots, the geographical distribution of the points in our sub- sample 
is proportional to the geographical distribution of the expert sur-
veyed	 LUCAS	 grassland	 points.	 The	 lowest	 amount	 of	 points	 are	
selected	for	the	Atlantic	Northwest	(n = 3)	grassland	region	and	the	

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1score =
2 × Precision × Recall

Precision + Recall
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    |  7 of 15ELVEKJAER et al.

F I G U R E  3 Map	of	the	LUCAS	grassland	regions	and	all	the	surveyed	points.	Blue	points	are	selected	for	the	train/test	data.	The	bar	plot	
shows the number of points within each region for the expert surveyed points (white) from which our test/train dataset (blue) was sampled.
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8 of 15  |     ELVEKJAER et al.

highest amount of points (n = 81)	are	selected	for	the	West	Central	
Mediterranean	grassland	region.

Using	CVAT	we	manually	delineated	12,192	flowers	on	250	im-
ages. The number of flowers delineated within one image ranges 
between 1 and 402 with an average of 59 flowers per image. Due 
to overpopulation in many of the images, each image was sliced in 
4 slices and the delineations were cleaned, creating a final and im-
proved version of the dataset consisting of 500 image slices with 
9516 delineated flowers. The final dataset aimed to use two slices 
from each original image; however, since some images only had flow-
ers	present	on	one	slice,	6%	of	the	original	images	are	represented	
by	 1	 slice	 each,	 6%	 are	 represented	 by	 3	 slices	 each,	 and	 the	 re-
maining	88%	are	represented	by	2	slices.	The	sliced	images	contain	
between 1 and 170 flowers each with an average of 25 per image 
slice.	We	uses	the	native	size	of	the	images	in	our	models.	The	image	
size	ranged	from	250 × 500	to	2000 × 2500	pixels.	The	majority	of	
the	images	were	of	1500 × 1800	pixels.

3.2  |  Model tuning and performance

After	an	 initial	50	epochs	of	 training	 the	 first	performance	met-
rics were calculated and half of the hyper parameters defined in 
Section 2.2 were discarded. The remaining 20 models were trained 
an additional 25 epochs on the improved, sliced, and cleaned train-
ing dataset, and the second performance metrics were calculated, 
as	summarized	 in	Table 1. The best model was model setting 32 
with a learning rate of 943e−6 and a momentum of 0.958. Based 
on the validation data, this model had the highest recall and F1 
score compared to the other models, and thereby the best balance 
between precision and recall. The final performance metrics was 
extracted using the independent test set from ten runs of the best 
model. as seen in Table 2, the mean of the metrics are a preci-
sion of 0.89, recall of 0.61 and F1	score	of	0.72.	A	full	Table	with	
all model parameters and performance metrics can be found in 
Supporting Information.

3.3  |  Flower predictions

Using	 model	 setting	 32	 we	 inferred	 flowers	 on	 the	 test	 dataset.	
From	the	100	images	included	in	the	test	set	1377	flowers	were	de-
tected, with a minimum of 1, and a maximum of 71. The colour of the 

detected flowers was estimated using k- means colour clustering re-
sulting in 849 yellow, 364 white, 87 purple, 30 blue, 9 pink, 7 grey, 9 
red,	11	green,	6	brown	and	5	orange	flowers.	Four	visual	examples	of	
model outputs can be seen in Figure 4. In each image the boxes show 
the	TP,	FP,	and	FN.	Finally	the	Table	included	in	the	image	shows	the	
flower abundance and colour distribution extracted from the pre-
dicted flowers of each image.

3.3.1  |  Prediction	errors

Visual	inspection	of	the	inference	on	the	test	dataset	identified	com-
mon	errors	 summarized	 in	 Figure 5.	 From	 these	 examples	we	 see	
that our results include a lot of ‘hidden’ flowers, for example ob-
jects that are flowers are classified as false positives in the model 
evaluation	because	they	do	not	meet	the	IoU	criteria.	For	example	
when the model and the reference flower unit do not match due 
to multiple overlapping flowers of the same species or when one 
flower is divided into multiple objects due to its inflorescence. This 
results in one or multiple reference objects within one prediction or 
vice	versa,	thus	not	passing	the	IoU	requirements.	Simply	adjusting	
the	IoU	threshold	did	not	increase	model	performance,	as	the	prob-
lem is the variation in floral unit rather than the perfect delineation. 
Accounting	 for	 these	 ‘hidden’	 TP	 requires	 a	 visual	 check	 of	 every	
single	predicted	object.	However,	to	get	an	estimate	of	how	much	
this affected the model performance metrics, hidden errors were 
‘caught’ using the union between the reference and the prediction. If 
the area of the prediction is mostly within the reference or the other 
way around, then we count it as an overlap error and adjust this pre-
diction	 to	a	TP.	This	 rough	estimates	means	 that	 the	 cases	where	
multiple reference flowers fit within one predicted flower or vice 
versa are adjusted to true flower detections and the performance 
metrics	are	 recalculated.	 Including	 these	 ‘hidden’	TP	 increases	 the	
model	recall	on	average	by	12%.

3.4  |  Pl@ntNet species detection

For	each	flower	a	crop	of	the	original	image	was	extracted	using	the	
predicted bounding box expanded with a buffer of 0.3 to ensure that 
the complete flower was within the image crop. The extracted image 
of	the	single	flower	was	queried	with	the	Pl@ntNet	API.	From	the	
query	results	we	extracted	the	best	species	identification	and	score	

TA B L E  1 First,	second	and	adjusted	performance	metrics	summarized	by	the	min,	median	and	max	of	all	model	performance	metrics	
using the validation data.

First metrics Second metrics Adjusted metrics

Precision Recall F1 Precision Recall F1 Precision Recall F1

Min 0.00 0.00 0.00 0.62 0.00 0.01 0.92 0.01 0.01

Med 0.80 0.07 0.13 0.89 0.55 0.68 0.95 0.61 0.75

Max 1.00 0.10 0.18 0.93 0.59 0.71 0.98 0.66 0.78
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    |  9 of 15ELVEKJAER et al.

from	each	predicted	flower.	As	seen	from	Figure 6, the first species 
probability score were generally low, ranging from 0.01 to 0.97, with 
a median of 0.1. This illustrates that we cannot always automatically 
determine the species of the predicted flowers using the available 
images. Only 6 out of the 1377 predicted flowers are above the rule 
of	thumb	score	threshold	recommended	by	Pl@ntNet	of	0.8.	Setting	
the threshold at 0.5 results in 52 predicted flowers. Expert botanist 
evaluation of those 52 images resulted in the identification at the 
species level of 22 flowers (and 33 flowers at the genus level), and 
confirmation of the predicted species in 16 cases (22 cases at the 
genus level). The botanist was not able to identify the species in 37 
cases, and in 23 cases for the genus, mainly for the smallest image 
sizes.	To	summarize,	30%	of	the	52	flowers	were	correctly	automati-
cally	identified	at	the	species	level,	and	42%	at	the	genus	level.

4  |  DISCUSSION

This	study	has	shown	that	we	can	quantify	flower	abundance	from	an	
image	with	computer	vision	algorithms.	Using	the	generic	flower	detec-
tion model developed in this paper we can capture individual flowers 
from	an	image.	From	the	detected	flowers	we	can	extract	various	met-
rics	such	as	abundances,	colours,	and	sizes/shapes.	The	amount	of	floral	
resources and the diversity of flower shapes and colours in the ecosys-
tem is important for pollinators (Trunschke et al., 2021).	Using	the	flower	
detection	algorithm	makes	it	possible	to	quickly	and	efficiently	monitor	
flower diversity and abundance by simply taking a photo of a patch of 
vegetation. Integrating this into large- scale monitoring schemes can de-
crease the surveyor bias and speed up the sampling process.

4.1  |  Model performance and limitations

From	Tables 1 and 2 we can see how the two versions of our models 
and	 the	 adjusted	 IoU	 calculation,	 improved	 the	performance	met-
rics. Specifically interesting for this study is the recall, which is also 
where	we	see	the	largest	improvement.	As	the	aim	is	to	develop	a	
generic flower model capturing the large variation within the object 
category ‘flower’, the rate of omission is more important than the 
precision of the detection.

The flower predictions showed two main limitations of the de-
tection algorithm: overpopulated images and complex scenes. The 
first issue was dealt with to a certain extent by slicing the initial im-
ages into four slices, thereby reducing the average number of ob-
jects in an image. This step had a large impact on the recall of the 
models,	 increasing	 the	average	recall	by	49%	from	the	 first	 to	 the	
second performance metrics.

Since	reducing	image	size	to	a	fourth	of	the	original	had	such	a	large	
impact	we	briefly	explored	reducing	the	size	even	further.	From	our	
final dataset we extracted several cropped dataset with a constant 
image	size	of	1500,	1000,	750,	500	and	224	pixels.	We	briefly	trained	
the	best	model	on	each	of	the	further	cropped	datasets.	As	seen	from	
the performance metrics in Table 3,	smaller	input	size	reduces	preci-
sion	and	increases	recall.	This	shows	that	even	though	we	used	quarter	
image	slices	of	the	original	LUCAS	grassland	images,	flower	detection	
models	can	benefit	from	smaller	and	controlled	image	input	size.

Apart	from	overpopulated	images	we	also	note	the	importance	
of	 image	quality	and	a	representative	training	dataset.	The	natural	
scenes captured in the images are complex. There are multiple flow-
ers	and	plants	overlapping,	variations	 in	 image	quality,	 light	condi-
tions, focus and, despite the protocol, taken at different distances 
to the plants. These complex scenes are reflected in the imperfect 
delineations	of	the	train/test	data.	Although	the	delineations	were	
corrected several times, there are still tiny flowers omitted by acci-
dent, areas where multiple flowers overlapping are delineated as one 
single flower, and variations in the definition of the floral units due to 
different inflorescence of the flowers and different growth stages. 
For	example,	from	a	computer	vision	perspective	flowers	from	the	
umbellifers	 family	 (i.e.	 Apiaceae)	with	 an	 umbel	 inflorescence	 can	
appear as a single flower unit or several separate flower units de-
pending on the growth stage/density of the umbel. These variations 
in flower unit and omissions of small or unclear flowers in the delin-
eated	flowers	in	the	result,	has	for	consequence	the	fact	that	many	
of the prediction errors being ‘hidden flowers’, for example objects 
that are classified as false positives even though they are actually 
flowers, as seen in in Figure 5. To briefly explore how much such er-
rors influenced the model performance we reclassified all predicted 
objects within the reference flower object and vice versa into true 
positives and calculate the adjusted performance metrics. With this 
rough	estimate	we	increased	the	model	recall	with	11%	with	respect	
to	the	second	set	of	performance	metrics.	However,	in	order	to	un-
derstand the full impact of such errors in this work visual, inspection 
of all predictions is needed.

To mitigate the issues with imperfect delineations and floral unit 
variation, further development of the training dataset is needed for 
better representation of the huge variation in the floral domain. 
Both capturing the large amount of flower species that could occur 
but also capturing the within species variation resulting from growth 
stage	and	regional	variability.	Advances	are	being	made	in	this	field,	
focusing	 on	 two	 species,	Mann	 et	 al.	 (2022)	 quantified	 fine-	scale	
flower abundance and phenology dynamics on images using deep 
learning.	Finally,	improved	deep	learning	models	may	also	be	tested.	
For	 example	 vision	 transformers	 trained	 in	 a	 self-	supervised	 way	

TA B L E  2 Performance	metrics	extracted	from	10	runs	of	the	
best model (32) based on the validation dataset and independent 
test dataset.

Second metrics Adjusted metrics

Precision Recall F1 Precision Recall F1

Best model (32) validation data

Mean 0.89 0.58 0.70 0.95 0.65 0.77

Std 0.01 0.01 0.01 0.00 0.01 0.01

Best model (32) test data

Mean 0.89 0.61 0.72 0.95 0.68 0.79

Std 0.01 0.01 0.01 0.01 0.01 0.01
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10 of 15  |     ELVEKJAER et al.

that have been shown to have better segmentation capabilities than 
CNNs (Bao et al., 2021; Caron et al., 2021).

4.2  |  Species identification

Pl@ntNet	queries	of	the	predicted	flowers	in	the	test	dataset	gen-
erally	 resulted	 in	 low	 identification	 scores.	 From	 Figure 6 we see 

that the few flowers with higher identification scores are larger and 
brighter	 images.	 This	 indicates	 that	 the	 image	 quality	 of	 the	 indi-
vidual flower crops are not sufficient for this recognition algorithm, 
because	the	flower	images	extracted	from	the	LUCAS	grassland	data	
do not correspond to the type of imagery used to train the algorithm. 
Pl@ntNet	is	primarily	trained	on	closeup	and	sharp	images	focusing	
on	a	single	plant,	while	the	images	from	the	LUCAS	grassland	survey	
show	a	patch	of	vegetation.	Previous	studies	shows	that	the	 input	

F I G U R E  4 Example	of	inference	using	the	best	model	on	four	images	from	the	test	dataset.	The	table	shows	the	final	counts	of	the	
reference delineated flowers and predicted flowers in each image as well as predicted colour.
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    |  11 of 15ELVEKJAER et al.

image	 quality	 is	 vital	 for	 species	 identification	 algorithms	 (Rzanny	
et al., 2019;	Wäldchen	et	al.,	2018).	Furthermore,	using	several	pic-
tures of various flower organs and ancillary information increases 
the	 identification	 certainty.	 The	 imagery	 provided	 by	 the	 LUCAS	
grassland module was not taken with computer vision purposes in 
mind,	therefore,	does	not	include	closeup	images	of	high	quality	that	

the	identification	requires.	Image	crops	of	individual	flowers	are	in	
this case sufficient for detecting colour groups but not for identifi-
cation	of	individual	species	at	large	scale.	Perhaps	identification	at	a	
coarser taxonomic rank would result in higher confidence score and 
thereby reliable information on flower taxa could still be extracted 
from images of vegetation patches.

F I G U R E  5 Closeup	visual	examples	of	some	common	errors	occurring	in	the	inference	of	the	test	dataset.

F I G U R E  6 The	top	prediction	score	from	the	Pl@ntNet	species	identification	queries	of	all	the	predicted	flowers	in	the	test	dataset.	
The	scatter	plot	shows	the	distribution	of	scores	according	to	size	(left)	and	average	brightness,	for	example	average	grey	scale	pixel	values	
(right).
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12 of 15  |     ELVEKJAER et al.

Improving image input through upscaling the cropped flowers 
is another option to enhance the identification. This analysis found 
that	 simply	 expanding	 the	 predicted	 bounding	 box	 by	 30%,	 and	
thereby including some background in the images to be identified 
resulted	in	better	identification	scores	from	Pl@ntNet.	Finally,	previ-
ous studies have showed that including ancillary information such as 
geo- location could improve identification scores.

4.3  |  Outlook

The	2018	LUCAS	grassland	survey	is	just	one	example	of	a	large-	
scale biodiversity monitoring scheme. Large- scale surveys are the 
outcome of an optimisation procedure, aiming at gathering the 
maximum of information while containing the costs. The time the 
surveyor needs to remain on the point, to be able to survey all 
requested	 parameters,	 is,	 therefore,	 a	 key	 element	 of	 a	 survey.	
Incorporating computer vision into such workflows show a great 
potential for extracting valuable information on biodiversity using 
quick	snapshots	taken	in	the	field,	and	increasing	the	accuracy	of	
the output for selected parameters. Such automated methods can 
also	support	the	process	of	CAP	compliance	assurance	based	on	
pictures	provided	by	farmers.	In	fact,	in	Thuringen,	Germany,	farm-
ers	can	make	use	of	the	Flora	Incognita	app	(Mäder	et	al.,	2021) to 
provide evidence on their management of environmentally sensi-
tive grasslands.

Further	 improvement	of	 the	detection	workflow	could	 include	
benchmarking	 other	 backbone	 options	 for	 Faster	 R-	CNN	 like	
Transformer- based backbones (Dian et al., 2022), or different mod-
els	like	Detection	with	Multi-	modal	Transformer	(Maaz	et	al.,	2021) 
or	Hierarchical	Shot	Detector	(Cao	et	al.,	2019). The last two models 
mentioned	show	high	MAP	(mean	average	precision)	in	the	PASCAL	
VOC	(2007)	benchmarking.	However,	taking	into	account	that	flower	
detection is a binary classification, the improvements in precision 
probably will not be proportional to the increase in model complex-
ity. This can be seen from the benchmark with the Oxford flower 
dataset	(Flowers-	102	Benchmark,	n.d.). Even though this benchmark 
is based on image classification and not object detection, we can see 
that	the	introduction	of	various	SOTA	models	did	not	lead	to	signifi-
cant performance improvements. Whether the inherent simplicity of 
our specific flower detection task may limit the impact of adopting 

more complex models needs to be investigated further in future 
work. Nonetheless, for our methodological workflow, the choice of 
Faster	R-	CNN	with	a	ResNet-	50	backbone	remains	a	good	option.

Improvements to structured surveys with automated work 
flows is one of the ingredients to improve overall biodiversity mon-
itoring at scale. Increasingly information is also gathered ad- hoc 
through	 citizen	 science	 activities.	 Explicitly	 integrating	 the	 sam-
pling	 design	 of,	 for	 example	 the	 LUCAS	 grassland	 biodiversity	 or	
EMBAL	 (Environmental	 Monitoring	 of	 Biodiversity	 in	 Agricultural	
Landscapes)	surveys	in	citizen	science	apps	could	improve	the	tem-
poral sampling at those points. By using the algorithm we developed, 
a single picture of the sampling point can generate information on 
floral diversity and abundance in a systematic way. Besides the 
single species recognition capacity of current apps, surveyors and 
citizen	 scientists	will	 benefit	 from	 instantaneously	obtaining	 com-
munity level information on floral diversity. In the future, this will 
likely expand to the identification of multiple species or species as-
semblages. In this study we focused on identifying multiple flower 
objects on a single photo, species identification on these objects 
proved	difficult.	Future	endeavours	in	this	field	may	quantify	multi-
ple species on a single photo instantaneously using advanced deep 
learning	approaches.	Platforms	such	as	GBIF	are	bringing	all	these	
datastreams	 together.	 A	 possible	 next	 step	 is	 to	 create	 feedback	
loops from such repositories and link them to the type of photos 
that we have used here and that contain a mix of flowers. This could 
allow upscaling to computer vision models that directly derive habi-
tat related information from such imagery.

The	 LUCAS	 grassland	 survey	was	 repeated	 in	 2022	with	 20K	
points with images surveyed throughout European grasslands; si-
multaneously	 image	data	 is	 increasingly	generated	 through	citizen	
science projects. Exploiting this large amount of images through 
computer vision can give us an understanding of biodiversity cov-
ering temporal and spatial scales not possible through traditional 
surveying methods. With more focus on how to extract meaning-
ful	information	from	these	images	of	varying	quality	we	can	unlock	
information needed for better targeting conservation and resto-
ration efforts in agricultural landscapes and other types of land-
scapes with floral resources, and to support specific initiatives on 
pollinators	 (Duque-	Trujillo	 et	 al.,	 2022; European Commission Eu 
Pollinators	Initiative,	2018). The generic flower detection algorithm 
developed in this research is a step in this direction. The algorithm 
will	be	enriched	to	improve	generalization	ability,	and	in	the	future	
may	be	included	in	operational	services	such	as	Pl@ntNet	with	post-	
processing	results	tailored	to	particular	objectives	(e.g.	quantifying	
colour diversity).

5  |  CONCLUSIONS

A	 generic	 flower	 object	 detector	 was	 built	 using	 Faster	 R-	CNN	
trained	on	2018	LUCAS	surveyed	top-	down	looking	grassland	im-
agery. Individual flowers were successfully detected with a preci-
sion and recall of, respectively, 0.89 and 0.61 Biodiversity relevant 

TA B L E  3 Best	model	trained	on	further	cropped	flower	datasets	
with	fixed	input	image	size.	Performance	metrics	extracted	based	
on the independent test set.

Precision Recall F1 score

Original data 0.88 0.62 0.73

Crop 224 0.18 0.77 0.29

Crop 500 0.52 0.83 0.64

Crop 750 0.70 0.77 0.73

Crop 1000 0.82 0.72 0.76

Crop 1500 0.90 0.62 0.74

 26888319, 2024, 2, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/2688-8319.12324 by C

IR
A

D
, W

iley O
nline L

ibrary on [30/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  13 of 15ELVEKJAER et al.

data on abundance and colour distribution were automatically re-
trieved.	Due	to	the	image	quality	of	extracted	flower	objects,	spe-
cies	 identification	 with	 Pl@ntNet	 was	 a	 challenge.	 The	 research	
presented here allows for a further integration of computer vision- 
based tools in large- scale biodiversity monitoring of grassland 
flowering plants.
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