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Abstract
1.	 Large-scale biodiversity monitoring is essential for assessing biodiversity trends, 

yet traditional surveying methods are limited in the spatial/temporal scale they 
can cover. Recent technological developments have led to computer vision-based 
species identification tools, such as the Pl@ntNet application. Increasing accuracy 
of such algorithms presents an opportunity of integrating computer vision into 
larger monitoring schemes and could lead to automating ground-based evidence 
provision related to agri-environmental measures (e.g. flower strips, field mar-
gins). However, images from surveys or farmer declarations do not live up to the 
standards of current applications. In order to integrate these automated methods 
into biodiversity monitoring, more generalized models are needed.

2.	 We create a dataset using 500 manually delineated images of vegetation patches 
in European grasslands taken during the Land Use/cover Area Survey (LUCAS) 
grassland module. We train the Faster R-CNN model to detect and extract indi-
vidual flower objects. Using this model, we extract the abundance of flowers in 
an image, analyse their colour distribution, and use the Pl@ntNet application to 
identify the species of the individual flowers detected.

3.	 The best model reaches precision and recall of 0.89/0.61 and predicts 1377 flow-
ers on the 100 test images distributed between 10 colours. Using Pl@ntNet, only 
52 flowers were identified with a certainty score above 0.5 due to the limitations 
in image size and quality. Of these flowers, 30% were correctly automatically 
identified at the species level and 42% at the genus level.

4.	 The results show that we can automatically extract valuable information on floral 
abundances, colours, and sizes from images of vegetation patches, though in most 
cases better images are needed for species identification. Despite limitations with 
image quality, integrating this workflow into large-scale monitoring could speed 
up the sampling process and allow for better spatial and temporal data on floral 
diversity and abundance.
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1  |  INTRODUC TION

Loss of biodiversity and its impact on ecosystem stability and 
functioning is a major concern worldwide (IPBES, 2019). In farm-
lands, agricultural intensification has caused significant declines 
in biodiversity with detrimental effects on biodiversity-mediated 
ecosystem services such as nutrient cycling, pest regulation, and 
pollination, resulting in reduced yields (Boetzl et  al., 2021; Cole 
et  al.,  2020). In the European Union (EU), this decline in biodi-
versity has triggered several policies and initiatives aimed at pre-
serving farmland biodiversity, such as the EU Pollinators Initiative 
(European Commission Eu Pollinators Initiative, 2018), the Farm to 
Fork Strategy target to reduce use and risk of chemical pesticides, 
and a larger share of the budget available for the environmen-
tal dimensions of the Common Agricultural Policy (CAP) for the 
period 2023–2027. Good agricultural and environmental condi-
tions (GAEC) requirements, ecoschemes, agri-environmental and 
climate measures can promote the creation and maintenance of 
biodiversity rich field margins (e.g. flower strips), increase the area 
of landscape features (e.g. hedges, tree lines), strengthen green 
corridors within patchy rural landscapes, and manage grasslands in 
a way that is beneficial for climate (e.g. carbon sequestration) and/
or biodiversity. However, monitoring their implementation and 
maintenance is a challenge and many practises cannot be detected 
with remote sensing methods (Sima et  al.,  2020). Furthermore, 
several studies suggest that the result of the measures is context-
dependent and varies between landscapes and regions (Cole 
et al., 2020; Nilsson et al., 2021; Scheper et al., 2015). Temporal 
continuity, connectivity, and ecological contrast to the surrounding 
landscape are important factors for the outcome of such schemes 
(Boetzl et  al.,  2021; Nilsson et  al.,  2021; Scheper et  al.,  2013, 
2015). The effectiveness of measures aiming to increase the avail-
ability of floral resources for pollinators, such as those promoting 
flower strips, supporting environmentally sensitive grasslands, 
and establishing field margins, can be assessed by not only mea-
suring species abundance but also species composition and pres-
ence of key species (Bartual et al., 2019; Cole et al., 2020; Scheper 
et al., 2015; Sutter et al., 2017). The best implementation might, in 
fact, be a trade-off between ecosystem services supply and bio-
diversity conservation (Schaub et al., 2020; Scheper et al., 2013). 
To get the desired outcome, agri-environmental schemes must be 
targeted to local conditions, requiring a large amount of knowl-
edge on the ecosystem at a fine temporal and spatial scale. Lack of 
biodiversity data prevents proper targeting of such management 
and conservation efforts, reducing potential ecosystem benefits.

Large-scale and accurate biodiversity monitoring is key to un-
derstanding ecosystem interactions and the impacts of agricul-
ture (Scholes et al., 2012). However, such monitoring schemes are 

labour intensive, may suffer from a lack of temporal/spatial repre-
sentation as well as surveyor bias. An example of such a survey is 
the 2018 Land Use/Cover Area frame Survey (LUCAS) grassland 
module (Sutcliffe et  al.,  2019), a pilot study aimed at collecting 
information on the environmental and ecological quality of grass-
lands and their management throughout the EU. As part of the 
overall LUCAS campaign in 2018, 2173 points in 26 countries were 
visited by surveyors and expert botanists. Various information 
was collected, such as intensity of management, vegetation cover, 
number of flowering plants, and presence of key species. The final 
report highlights two problems of this pilot survey: timing and ex-
pertise (Oppermann, 2021). A comparison between the data col-
lected by normal surveyors and expert botanists show that the 
timing of the field visit is very important—for example the species 
flowering change throughout the growing season. Furthermore, 
surveyors without expert botanist knowledge had difficulty de-
termining some variables such as vegetation composition and the 
presence of specific key species. The number of expert botanists 
is declining, and this taxonomic gap has been recognized as a 
major obstacle for conservation efforts since the Rio Conference 
in 1992 (Joly et  al.,  2019). Future large-scale biodiversity moni-
toring schemes need to develop new methodologies to sample at 
an adequate spatial and temporal scale, without relying solely on 
expert botanists.

1.1  |  Computer vision in biodiversity monitoring

Recently, machine learning, especially computer vision algo-
rithms, have been used for species identification of animals (Villon 
et al., 2020; Weinstein, 2018), insects (Høye et al., 2021), and plants 
(Joly et al., 2014; Mäder et al., 2021; Mann et al., 2022). These al-
gorithms can mitigate the loss of expert knowledge and the limited 
spatial/temporal cover of traditional surveying methods (Wäldchen 
et  al.,  2018). Although they are far from outperforming the best 
expert botanists in complex settings (Bonnet et al., 2016), in a fast 
moving field, they can provide rapid, objective, and scalable species 
identification, only requiring image input.

These developments go hand in hand with opportunities to col-
lect biodiversity data. Crowd-sourcing and citizen science projects 
generate and continuously update massive amounts of data by vol-
unteers taking pictures of the biodiversity surrounding them (Boho 
et  al.,  2020; Wäldchen et  al., 2018). Furthermore, monitoring for 
compliance assurance, such as in the CAP context (Sima et al., 2020), 
can require farmers to provide image proof of implemented prac-
tises, for example, a picture of a flower strip. For example, farmers 
in the Thuringia region in Germany can use a plant species identifi-
cation app, based on Flora Incognita (Mäder et al., 2021), to prove 

K E Y W O R D S
automated species identification, biodiversity monitoring, computer vision, Faster R-CNN, 
flower, object detection, Pl@ntNet, vegetation survey
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the occurrences of six plant species out of a list of 44 to receive pay-
ments for biodiverse grasslands (Barmeier, 2021). In the future, and 
given ever-developing sharing mechanisms guaranteeing anonym-
ity, these potentially large amounts of geotagged photos captured 
through CAP monitoring may contribute to biodiversity monitoring 
as well.

For computer vision algorithms, it is important to have a precise 
and representative training dataset. For plant detection and identifi-
cation, the training data set must capture the huge amount of plant 
species in the world (400K flowering plants), inter-species variation 
(some species may look similar), and intra-species variation (the 
same species may look different depending on growth stage, growth 
conditions, and disturbances), as well as variations due to image ac-
quisition (image quality, light conditions and viewpoints) (Wäldchen 
et al., 2018). Current applications for plant species identification use 
citizen science approaches to generate the extensive data required. 
However, this approach suffers from high variability in data qual-
ity, as it is hard to ensure that the data are collected in a correct 
and consistent manner. The crowd sourced data is collected by non-
experts with varying equipment, expertise and skill and often show 
significant biases due to (1) the geographical variation in sampling 
effort (e.g. affected by population density and accessibility) and (2) 
citizens/non-experts are more likely to miss rare species and sample 
‘eye catching’ species, resulting in long tailed distribution (de Lutio 
et al., 2021; Jones, 2020) with many observations of common spe-
cies and few/no observations of rare species. These problems are 
mitigated to some extent by automatically filtering and relying on 
data quality checks by a network of experts.

iNaturalist (Unger et  al.,  2021), Flora Incognita (Mäder 
et  al.,  2021), and Pl@ntNet (Joly et  al., 2014) are examples of au-
tomated image-based species identification applications with global 
reach that exploit the potential of computer vision and citizen sci-
ence. In this paper, we use Pl@ntNet, an app developed by a consor-
tium of four French research organizations. Users can send up to 4 
images per plant query which returns a list of species classifications 
and probability scores. Including several images of high quality with 
focus on different plant organs can enhance the model classification 
score. The detected species can be verified by a network of experts 
and, if the images include a location, incorporated into the training 
dataset as well as the species occurrence data that Pl@ntNet con-
tributes to the GBIF (Global Biodiversity Information Facility). The 
plant query made by curious citizens becomes part of large species 
distribution monitoring and useful information for the scientific 
community (Pl@ntNet Contribution to GBIF, 2024).

Recently, species identification applications have started to in-
clude metadata in order to account for the high variability of nat-
ural environments. Many applications allow multiple input images 
with different viewpoints (flowers, leaf, whole plant, etc.) (Rzanny 
et  al.,  2019). Others include geo-location of the image, and from 
the position various environmental conditions such as climate and 
terrain can be inferred (de Lutio et  al.,  2021; Terry et  al.,  2020). 
Finally, recent studies suggest to take the hierarchical nature of 
taxonomy into account, possibly using taxonomic knowledge to 

infer family-level information of species unknown to the algorithm 
(de Lutio et  al.,  2021; Seeland et  al.,  2019). All this ancillary data 
is improving the detection algorithm, to the point that it can com-
pete with human experts in simple settings (de Lutio et  al.,  2021; 
Jones, 2020; Mahecha et al., 2021; Wäldchen et al., 2018).

This combination of artificial intelligence and increasing amount 
of image data has been used for species distribution modelling 
(Botella et al., 2018), extraction of macroecological patterns (Mäder 
et al., 2021; Mahecha et al., 2021), tracking invasive species (August 
et  al.,  2015; Terry et  al.,  2020), and various conservation projects 
around the world (Bonnet et al., 2020). Hicks et al.  (2021) showed 
that species recognition can be used to estimate nectar sugar mass, 
in order to monitor conservation efforts directed towards pollina-
tors. Their computer vision-based approach could cut pollinator-
plant survey time per stand of vegetation from hours to minutes. 
These studies suggest that automated species recognition is mature 
enough to contribute to large-scale monitoring efforts. Taking ad-
vantage of such automated methods and citizen science for data 
acquisition makes it possible to revisit the sites multiple times 
during the growing season or expand the spatial scale of the survey. 
Extended spatial and temporal knowledge on biodiversity patterns 
will greatly improve the targeting ability of conservation efforts and 
agri-environmental schemes such as the implementation of green 
corridors, flower strips, etc.

Current efforts to use computer vision-based methodology 
in monitoring are limited to identification of specific species using 
closeup images taken of single flowers for computer vision purposes. 
However, in field settings, images captured might not be suitable for 
such identification algorithms due to varying light conditions, picture 
quality, multiple flowers in the images, etc. In the context of environ-
mental monitoring and assessing the impact of agri-environmental 
management practices, these algorithms ultimately need to move 
from the individual flower level towards community- or ecosystem 
level. In this paper, we aim to develop a generic flower detection 
model that can bridge this gap. The detection model could automat-
ically generate information on floral resources and diversity at rele-
vant spatial scales currently missing for monitoring floral diversity 
in farmlands. Using such a model biodiversity information can be 
extracted from images covering larger vegetation patches/commu-
nities and metrics such as flower abundance and colour composition 
can be obtained in a snapshot. Ideally, the individual flower objects 
detected by our generic flower model could then be identified using 
existing identification applications such as Pl@ntNet. Such a frame-
work can scale up if implemented within larger monitoring efforts or 
within compliance assurance monitoring schemes.

1.2  |  Objectives

This paper aims to develop a generic flower detection algorithm and 
automatically extract information on flower presence, abundance, 
and diversity, from images taken during the LUCAS grassland survey 
in 2018. Detailed objectives are:
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1.	 Create a training dataset for object detection of flowers by 
manually delineated images from the LUCAS grassland survey.

2.	 Train the Faster R-CNN object detection model to detect flowers 
on images and evaluate model performance.

3.	 Extract information from images on flower presence, abundance, 
and diversity using our flower detection model.

4.	 Identify the detected flowers using the Pl@ntNet application for 
species identification.

5.	 Identify limitations in this methodology and provide recommen-
dations on how this could be adapted to future needs with a 
view on increasingly automated surveying of flower species and 
habitats.

2  |  MATERIAL S AND METHODS

To accomplish our objectives we train a Faster R-CNN model (Ren 
et al., 2015) to detect flowers in photos. We construct a training 
dataset from images taken during the LUCAS grassland survey and 

label them with the annotation CVAT tool (Sekachev et al., 2020). 
We detect and extract flowers with the trained model and at-
tempt to identify species by using the Pl@ntNet API (Affouard 
et al., 2017). Finally, we evaluate the limitations of this method-
ology and provide recommendations on how to better integrate 
computer vision-based tools in large-scale biodiversity monitoring 
of grassland flowering plants. An overview of the workflow can be 
seen in Figure 1.

2.1  |  Image dataset

2.1.1  |  LUCAS grassland module

The images used in this study were collected through the LUCAS, 
coordinated by Eurostat, the statistical office of the EU. The sur-
veys in 2006, 2009, 2012, 2015, 2018, and 2022, cover the ex-
tent of the EU with a sampling grid of 2 km2. In each campaign, 
a stratified sample of points is surveyed (e.g. 330k in the 2018 

F I G U R E  1 Flowchart showing workflow (left) and outcomes (right) of this paper.
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    |  5 of 15ELVEKJAER et al.

campaign); data is collected on land cover, land use, environmental 
variables, and photos taken in four cardinal directions (d'Andrimont 
et al., 2020). In 2018, the grassland module was added to the sur-
vey, a pilot study to collect detailed information on the environ-
mental and ecological quality of grasslands (Oppermann, 2021). A 
stratified sub-sample of the LUCAS points was derived covering 
different grassland regions of Europe. These points were visited 
in the field within a predefined optimal time frame by both LUCAS 
surveyors and, in 20% of the cases, expert botanists. The additional 
visit by experts was done to evaluate the accuracy of the informa-
tion collected by the surveyors with limited knowledge of grass-
lands and species identification. 3734 LUCAS points were visited 
by surveyors and 747 of these were also visited by expert bota-
nists. At each sample point a transect of 2.5 × 20 m was established 
and information on environmental and ecological variables was col-
lected, including vegetation structural parameters, presence of key 
species, and land use practices. All samples include three images, 
two taken from each end of the transect towards the centre and 
one top-down image taken of a representative patch of vegetation 

at any location within the transect, 1.5 m above the ground (see 
Figure 2).

2.1.2  |  Image selection and processing

A total of 250 points were selected from the LUCAS grassland 
survey to create an image dataset. A 60/20/20 split was done re-
sulting in 150 points used for training data, 50 points for valida-
tion data and 50 points for test data. To ensure high quality of the 
images taken in the field, only images from the expert surveyed 
points were used. This was done since we assessed that the ex-
perts used better cameras, were better at following the protocol, 
and used their botanical expertise to capture the flower as best as 
possible. For a first dataset, we reasoned that these were impor-
tant parameters. To ensure a good representation of the European 
grasslands regions defined by the survey, a stratified sub-sample 
was selected based on the geographic distribution of the surveyed 
points within these regions. Photos taken from above at these 

F I G U R E  2 Overview of the protocol and pictures taken during the LUCAS grassland module. Illustrating the transect and the three 
pictures taken during the survey. (a) Image from start to end of the transect. (b) Image of a representative patch of vegetation in the transect, 
taken 1.5 m from above the ground. (c) Image from end to start of the transect.
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selected points were used for the image dataset and the presence 
of flowers on the images was visually confirmed. Hereby, a geo-
graphically representative sample with flowers present on all im-
ages was selected.

All visible flowers in the 250 images were manually annotated 
using the CVAT tool (Sekachev et  al., 2020) by drawing bounding 
boxes around the flowers. The dataset created has one class named 
‘flower’. This class includes all flowers with visible petals in the im-
ages, including flowers that are only partially within the image bor-
ders; the ‘flower’ category does not include grasses. To improve 
model performance and avoid errors due to large image size and high 
object density, each image was split into four slices. The final dataset 
follows the same point division as the initial dataset (60/20/20) and 
includes 300 image slices from 150 points for model training, 100 
image slices from 50 points for validation data, 100 image slices from 
50 points for test data. The slices coming from the same point were 
only ever used in one of the three datasets. Therefore, no image 
information is shared between training, validation, or test.

2.2  |  Model training and parameter tuning

To detect individual flower in the images we trained the Faster R-CNN 
model on the manually delineated training dataset. Faster R-CNN is 
a computer vision model for object detection (Ren et al., 2015). This 
model improves the speed of the Fast R-CNN model by incorporat-
ing a region proposal network to extract initial object-like regions. 
The Faster R-CNN model was implemented using Detectron2, the 
Facebook AI Research library (Wu et al., 2019). We used the SGD 
optimizer with random clipping and Nesterov Accelerated Gradient 
following the original Faster R-CNN publication (Ren et al., 2015). 
This model has previously been used in similar workflows to esti-
mate nectar mass from images (Hicks et  al., 2021) and the exten-
sions of this model was used to monitor phonology from time-lapse 
cameras (Mann et al., 2022).

We used weights pre-trained on the coco-dataset from the 
Detectron2 model zoo (Wu et al., 2019). Following preliminary tests we 
selected the ResNet-50 FPN model backbone with gamma of 0.1 and 
a ROI-heads batch size of 512. Finally, a hyper parameter tuning was 
done to explore two other model parameters: learning rate and mo-
mentum. 40 learning rates between 1e-8 and 1e-2, and 40 momentums 
between 0.9 and 0.99 were randomly generated. These intervals were 
selected following the values set in several other use cases using the 
same architecture (Hicks et al., 2021; Li et al., 2021; Ren et al., 2015; Sys 
et al., 2022). After 50 epochs half of the model settings were discarded 
and the 20 remaining models were trained for an additional 25 epochs.

2.2.1  |  Performance metrics and final 
model selection

Performance metrics for the models are calculated based on the 
test dataset. The predicted flower is evaluated using an intersect 

over union (IoU) threshold of 0.5. The IoU is equal to the area of 
the overlap (intersection) between the predicted bounding box and 
the reference bounding box divided by the area of their union. For 
each model all the objects of the test dataset were summed up into 
True positives (TP), False positives (FP), and False negatives (FN). 
Finally precision, recall, and F1, was calculated as follows Padilla 
et al. (2021):

Performance metrics of the models were extracted three times 
during the workflow. The model with the highest F1 score was cho-
sen as the best model. The F1 score provides a balanced score be-
tween precision and recall, thus is a measure of how precise and 
generalizing the model is. To evaluate the impact of different image 
input sizes on model performance, we further trained the final model 
on five datasets cropped to different sizes of 1500, 1000, 750, 500, 
and 224 pixels.

2.3  |  Flower abundance, colour, and identification 
with Pl@ntNet

Having identified best performing model we predict the flower ob-
jects in the test dataset. The predicted flowers are then analysed 
to determine abundance and diversity of colour. The dominant col-
our pixel values is extracted from each predicted flower using a 
k-means clustering algorithm and the most dominant colour values 
are translated to a colour category. Finally, we attempt to identify 
the species of the predicted flowers using the Pl@ntNet applica-
tion API (Affouard et  al., 2017). Inspired by the work of August 
et  al.  (2020), a pipeline for querying each predicted flower indi-
vidually with the Pl@ntNet API was developed. We set a threshold 
of 0.8 for the score of the identification and discuss how many 
flowers were ‘correctly’ identified using this methodology.

3  |  RESULTS

3.1  |  Dataset creation

The final 250 points selected for the train/validation/test data-
set are mapped in Figure  3 with blue. As can be seen for the bar 
plots, the geographical distribution of the points in our sub-sample 
is proportional to the geographical distribution of the expert sur-
veyed LUCAS grassland points. The lowest amount of points are 
selected for the Atlantic Northwest (n = 3) grassland region and the 

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1score =
2 × Precision × Recall

Precision + Recall
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F I G U R E  3 Map of the LUCAS grassland regions and all the surveyed points. Blue points are selected for the train/test data. The bar plot 
shows the number of points within each region for the expert surveyed points (white) from which our test/train dataset (blue) was sampled.
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highest amount of points (n = 81) are selected for the West Central 
Mediterranean grassland region.

Using CVAT we manually delineated 12,192 flowers on 250 im-
ages. The number of flowers delineated within one image ranges 
between 1 and 402 with an average of 59 flowers per image. Due 
to overpopulation in many of the images, each image was sliced in 
4 slices and the delineations were cleaned, creating a final and im-
proved version of the dataset consisting of 500 image slices with 
9516 delineated flowers. The final dataset aimed to use two slices 
from each original image; however, since some images only had flow-
ers present on one slice, 6% of the original images are represented 
by 1 slice each, 6% are represented by 3 slices each, and the re-
maining 88% are represented by 2 slices. The sliced images contain 
between 1 and 170 flowers each with an average of 25 per image 
slice. We uses the native size of the images in our models. The image 
size ranged from 250 × 500 to 2000 × 2500 pixels. The majority of 
the images were of 1500 × 1800 pixels.

3.2  |  Model tuning and performance

After an initial 50 epochs of training the first performance met-
rics were calculated and half of the hyper parameters defined in 
Section 2.2 were discarded. The remaining 20 models were trained 
an additional 25 epochs on the improved, sliced, and cleaned train-
ing dataset, and the second performance metrics were calculated, 
as summarized in Table 1. The best model was model setting 32 
with a learning rate of 943e−6 and a momentum of 0.958. Based 
on the validation data, this model had the highest recall and F1 
score compared to the other models, and thereby the best balance 
between precision and recall. The final performance metrics was 
extracted using the independent test set from ten runs of the best 
model. as seen in Table  2, the mean of the metrics are a preci-
sion of 0.89, recall of 0.61 and F1 score of 0.72. A full Table with 
all model parameters and performance metrics can be found in 
Supporting Information.

3.3  |  Flower predictions

Using model setting 32 we inferred flowers on the test dataset. 
From the 100 images included in the test set 1377 flowers were de-
tected, with a minimum of 1, and a maximum of 71. The colour of the 

detected flowers was estimated using k-means colour clustering re-
sulting in 849 yellow, 364 white, 87 purple, 30 blue, 9 pink, 7 grey, 9 
red, 11 green, 6 brown and 5 orange flowers. Four visual examples of 
model outputs can be seen in Figure 4. In each image the boxes show 
the TP, FP, and FN. Finally the Table included in the image shows the 
flower abundance and colour distribution extracted from the pre-
dicted flowers of each image.

3.3.1  |  Prediction errors

Visual inspection of the inference on the test dataset identified com-
mon errors summarized in Figure  5. From these examples we see 
that our results include a lot of ‘hidden’ flowers, for example ob-
jects that are flowers are classified as false positives in the model 
evaluation because they do not meet the IoU criteria. For example 
when the model and the reference flower unit do not match due 
to multiple overlapping flowers of the same species or when one 
flower is divided into multiple objects due to its inflorescence. This 
results in one or multiple reference objects within one prediction or 
vice versa, thus not passing the IoU requirements. Simply adjusting 
the IoU threshold did not increase model performance, as the prob-
lem is the variation in floral unit rather than the perfect delineation. 
Accounting for these ‘hidden’ TP requires a visual check of every 
single predicted object. However, to get an estimate of how much 
this affected the model performance metrics, hidden errors were 
‘caught’ using the union between the reference and the prediction. If 
the area of the prediction is mostly within the reference or the other 
way around, then we count it as an overlap error and adjust this pre-
diction to a TP. This rough estimates means that the cases where 
multiple reference flowers fit within one predicted flower or vice 
versa are adjusted to true flower detections and the performance 
metrics are recalculated. Including these ‘hidden’ TP increases the 
model recall on average by 12%.

3.4  |  Pl@ntNet species detection

For each flower a crop of the original image was extracted using the 
predicted bounding box expanded with a buffer of 0.3 to ensure that 
the complete flower was within the image crop. The extracted image 
of the single flower was queried with the Pl@ntNet API. From the 
query results we extracted the best species identification and score 

TA B L E  1 First, second and adjusted performance metrics summarized by the min, median and max of all model performance metrics 
using the validation data.

First metrics Second metrics Adjusted metrics

Precision Recall F1 Precision Recall F1 Precision Recall F1

Min 0.00 0.00 0.00 0.62 0.00 0.01 0.92 0.01 0.01

Med 0.80 0.07 0.13 0.89 0.55 0.68 0.95 0.61 0.75

Max 1.00 0.10 0.18 0.93 0.59 0.71 0.98 0.66 0.78
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from each predicted flower. As seen from Figure 6, the first species 
probability score were generally low, ranging from 0.01 to 0.97, with 
a median of 0.1. This illustrates that we cannot always automatically 
determine the species of the predicted flowers using the available 
images. Only 6 out of the 1377 predicted flowers are above the rule 
of thumb score threshold recommended by Pl@ntNet of 0.8. Setting 
the threshold at 0.5 results in 52 predicted flowers. Expert botanist 
evaluation of those 52 images resulted in the identification at the 
species level of 22 flowers (and 33 flowers at the genus level), and 
confirmation of the predicted species in 16 cases (22 cases at the 
genus level). The botanist was not able to identify the species in 37 
cases, and in 23 cases for the genus, mainly for the smallest image 
sizes. To summarize, 30% of the 52 flowers were correctly automati-
cally identified at the species level, and 42% at the genus level.

4  |  DISCUSSION

This study has shown that we can quantify flower abundance from an 
image with computer vision algorithms. Using the generic flower detec-
tion model developed in this paper we can capture individual flowers 
from an image. From the detected flowers we can extract various met-
rics such as abundances, colours, and sizes/shapes. The amount of floral 
resources and the diversity of flower shapes and colours in the ecosys-
tem is important for pollinators (Trunschke et al., 2021). Using the flower 
detection algorithm makes it possible to quickly and efficiently monitor 
flower diversity and abundance by simply taking a photo of a patch of 
vegetation. Integrating this into large-scale monitoring schemes can de-
crease the surveyor bias and speed up the sampling process.

4.1  |  Model performance and limitations

From Tables 1 and 2 we can see how the two versions of our models 
and the adjusted IoU calculation, improved the performance met-
rics. Specifically interesting for this study is the recall, which is also 
where we see the largest improvement. As the aim is to develop a 
generic flower model capturing the large variation within the object 
category ‘flower’, the rate of omission is more important than the 
precision of the detection.

The flower predictions showed two main limitations of the de-
tection algorithm: overpopulated images and complex scenes. The 
first issue was dealt with to a certain extent by slicing the initial im-
ages into four slices, thereby reducing the average number of ob-
jects in an image. This step had a large impact on the recall of the 
models, increasing the average recall by 49% from the first to the 
second performance metrics.

Since reducing image size to a fourth of the original had such a large 
impact we briefly explored reducing the size even further. From our 
final dataset we extracted several cropped dataset with a constant 
image size of 1500, 1000, 750, 500 and 224 pixels. We briefly trained 
the best model on each of the further cropped datasets. As seen from 
the performance metrics in Table 3, smaller input size reduces preci-
sion and increases recall. This shows that even though we used quarter 
image slices of the original LUCAS grassland images, flower detection 
models can benefit from smaller and controlled image input size.

Apart from overpopulated images we also note the importance 
of image quality and a representative training dataset. The natural 
scenes captured in the images are complex. There are multiple flow-
ers and plants overlapping, variations in image quality, light condi-
tions, focus and, despite the protocol, taken at different distances 
to the plants. These complex scenes are reflected in the imperfect 
delineations of the train/test data. Although the delineations were 
corrected several times, there are still tiny flowers omitted by acci-
dent, areas where multiple flowers overlapping are delineated as one 
single flower, and variations in the definition of the floral units due to 
different inflorescence of the flowers and different growth stages. 
For example, from a computer vision perspective flowers from the 
umbellifers family (i.e. Apiaceae) with an umbel inflorescence can 
appear as a single flower unit or several separate flower units de-
pending on the growth stage/density of the umbel. These variations 
in flower unit and omissions of small or unclear flowers in the delin-
eated flowers in the result, has for consequence the fact that many 
of the prediction errors being ‘hidden flowers’, for example objects 
that are classified as false positives even though they are actually 
flowers, as seen in in Figure 5. To briefly explore how much such er-
rors influenced the model performance we reclassified all predicted 
objects within the reference flower object and vice versa into true 
positives and calculate the adjusted performance metrics. With this 
rough estimate we increased the model recall with 11% with respect 
to the second set of performance metrics. However, in order to un-
derstand the full impact of such errors in this work visual, inspection 
of all predictions is needed.

To mitigate the issues with imperfect delineations and floral unit 
variation, further development of the training dataset is needed for 
better representation of the huge variation in the floral domain. 
Both capturing the large amount of flower species that could occur 
but also capturing the within species variation resulting from growth 
stage and regional variability. Advances are being made in this field, 
focusing on two species, Mann et  al.  (2022) quantified fine-scale 
flower abundance and phenology dynamics on images using deep 
learning. Finally, improved deep learning models may also be tested. 
For example vision transformers trained in a self-supervised way 

TA B L E  2 Performance metrics extracted from 10 runs of the 
best model (32) based on the validation dataset and independent 
test dataset.

Second metrics Adjusted metrics

Precision Recall F1 Precision Recall F1

Best model (32) validation data

Mean 0.89 0.58 0.70 0.95 0.65 0.77

Std 0.01 0.01 0.01 0.00 0.01 0.01

Best model (32) test data

Mean 0.89 0.61 0.72 0.95 0.68 0.79

Std 0.01 0.01 0.01 0.01 0.01 0.01
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10 of 15  |     ELVEKJAER et al.

that have been shown to have better segmentation capabilities than 
CNNs (Bao et al., 2021; Caron et al., 2021).

4.2  |  Species identification

Pl@ntNet queries of the predicted flowers in the test dataset gen-
erally resulted in low identification scores. From Figure  6 we see 

that the few flowers with higher identification scores are larger and 
brighter images. This indicates that the image quality of the indi-
vidual flower crops are not sufficient for this recognition algorithm, 
because the flower images extracted from the LUCAS grassland data 
do not correspond to the type of imagery used to train the algorithm. 
Pl@ntNet is primarily trained on closeup and sharp images focusing 
on a single plant, while the images from the LUCAS grassland survey 
show a patch of vegetation. Previous studies shows that the input 

F I G U R E  4 Example of inference using the best model on four images from the test dataset. The table shows the final counts of the 
reference delineated flowers and predicted flowers in each image as well as predicted colour.
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    |  11 of 15ELVEKJAER et al.

image quality is vital for species identification algorithms (Rzanny 
et al., 2019; Wäldchen et al., 2018). Furthermore, using several pic-
tures of various flower organs and ancillary information increases 
the identification certainty. The imagery provided by the LUCAS 
grassland module was not taken with computer vision purposes in 
mind, therefore, does not include closeup images of high quality that 

the identification requires. Image crops of individual flowers are in 
this case sufficient for detecting colour groups but not for identifi-
cation of individual species at large scale. Perhaps identification at a 
coarser taxonomic rank would result in higher confidence score and 
thereby reliable information on flower taxa could still be extracted 
from images of vegetation patches.

F I G U R E  5 Closeup visual examples of some common errors occurring in the inference of the test dataset.

F I G U R E  6 The top prediction score from the Pl@ntNet species identification queries of all the predicted flowers in the test dataset. 
The scatter plot shows the distribution of scores according to size (left) and average brightness, for example average grey scale pixel values 
(right).
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12 of 15  |     ELVEKJAER et al.

Improving image input through upscaling the cropped flowers 
is another option to enhance the identification. This analysis found 
that simply expanding the predicted bounding box by 30%, and 
thereby including some background in the images to be identified 
resulted in better identification scores from Pl@ntNet. Finally, previ-
ous studies have showed that including ancillary information such as 
geo-location could improve identification scores.

4.3  |  Outlook

The 2018 LUCAS grassland survey is just one example of a large-
scale biodiversity monitoring scheme. Large-scale surveys are the 
outcome of an optimisation procedure, aiming at gathering the 
maximum of information while containing the costs. The time the 
surveyor needs to remain on the point, to be able to survey all 
requested parameters, is, therefore, a key element of a survey. 
Incorporating computer vision into such workflows show a great 
potential for extracting valuable information on biodiversity using 
quick snapshots taken in the field, and increasing the accuracy of 
the output for selected parameters. Such automated methods can 
also support the process of CAP compliance assurance based on 
pictures provided by farmers. In fact, in Thuringen, Germany, farm-
ers can make use of the Flora Incognita app (Mäder et al., 2021) to 
provide evidence on their management of environmentally sensi-
tive grasslands.

Further improvement of the detection workflow could include 
benchmarking other backbone options for Faster R-CNN like 
Transformer-based backbones (Dian et al., 2022), or different mod-
els like Detection with Multi-modal Transformer (Maaz et al., 2021) 
or Hierarchical Shot Detector (Cao et al., 2019). The last two models 
mentioned show high MAP (mean average precision) in the PASCAL 
VOC (2007) benchmarking. However, taking into account that flower 
detection is a binary classification, the improvements in precision 
probably will not be proportional to the increase in model complex-
ity. This can be seen from the benchmark with the Oxford flower 
dataset (Flowers-102 Benchmark, n.d.). Even though this benchmark 
is based on image classification and not object detection, we can see 
that the introduction of various SOTA models did not lead to signifi-
cant performance improvements. Whether the inherent simplicity of 
our specific flower detection task may limit the impact of adopting 

more complex models needs to be investigated further in future 
work. Nonetheless, for our methodological workflow, the choice of 
Faster R-CNN with a ResNet-50 backbone remains a good option.

Improvements to structured surveys with automated work 
flows is one of the ingredients to improve overall biodiversity mon-
itoring at scale. Increasingly information is also gathered ad-hoc 
through citizen science activities. Explicitly integrating the sam-
pling design of, for example the LUCAS grassland biodiversity or 
EMBAL (Environmental Monitoring of Biodiversity in Agricultural 
Landscapes) surveys in citizen science apps could improve the tem-
poral sampling at those points. By using the algorithm we developed, 
a single picture of the sampling point can generate information on 
floral diversity and abundance in a systematic way. Besides the 
single species recognition capacity of current apps, surveyors and 
citizen scientists will benefit from instantaneously obtaining com-
munity level information on floral diversity. In the future, this will 
likely expand to the identification of multiple species or species as-
semblages. In this study we focused on identifying multiple flower 
objects on a single photo, species identification on these objects 
proved difficult. Future endeavours in this field may quantify multi-
ple species on a single photo instantaneously using advanced deep 
learning approaches. Platforms such as GBIF are bringing all these 
datastreams together. A possible next step is to create feedback 
loops from such repositories and link them to the type of photos 
that we have used here and that contain a mix of flowers. This could 
allow upscaling to computer vision models that directly derive habi-
tat related information from such imagery.

The LUCAS grassland survey was repeated in 2022 with 20K 
points with images surveyed throughout European grasslands; si-
multaneously image data is increasingly generated through citizen 
science projects. Exploiting this large amount of images through 
computer vision can give us an understanding of biodiversity cov-
ering temporal and spatial scales not possible through traditional 
surveying methods. With more focus on how to extract meaning-
ful information from these images of varying quality we can unlock 
information needed for better targeting conservation and resto-
ration efforts in agricultural landscapes and other types of land-
scapes with floral resources, and to support specific initiatives on 
pollinators (Duque-Trujillo et  al.,  2022; European Commission Eu 
Pollinators Initiative, 2018). The generic flower detection algorithm 
developed in this research is a step in this direction. The algorithm 
will be enriched to improve generalization ability, and in the future 
may be included in operational services such as Pl@ntNet with post-
processing results tailored to particular objectives (e.g. quantifying 
colour diversity).

5  |  CONCLUSIONS

A generic flower object detector was built using Faster R-CNN 
trained on 2018 LUCAS surveyed top-down looking grassland im-
agery. Individual flowers were successfully detected with a preci-
sion and recall of, respectively, 0.89 and 0.61 Biodiversity relevant 

TA B L E  3 Best model trained on further cropped flower datasets 
with fixed input image size. Performance metrics extracted based 
on the independent test set.

Precision Recall F1 score

Original data 0.88 0.62 0.73

Crop 224 0.18 0.77 0.29

Crop 500 0.52 0.83 0.64

Crop 750 0.70 0.77 0.73

Crop 1000 0.82 0.72 0.76

Crop 1500 0.90 0.62 0.74
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    |  13 of 15ELVEKJAER et al.

data on abundance and colour distribution were automatically re-
trieved. Due to the image quality of extracted flower objects, spe-
cies identification with Pl@ntNet was a challenge. The research 
presented here allows for a further integration of computer vision-
based tools in large-scale biodiversity monitoring of grassland 
flowering plants.
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