
HAL Id: hal-04595809
https://hal.inrae.fr/hal-04595809

Submitted on 31 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Iota2 latest release - Deep Learning at the menu
Mathieu Fauvel

To cite this version:

Mathieu Fauvel. Iota2 latest release - Deep Learning at the menu. 2022. �hal-04595809�

https://hal.inrae.fr/hal-04595809
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

Iota2 latest release - Deep Learning at the
menu

Iota2 dev team

Table of Contents
1. New iota2 release
2. Classification using deep learning

2.1. Material
2.1.1. Satellite image time series
2.1.2. Preparation of the ground truth data

2.1.2.1. Sub data set
2.1.2.2. Clean the ground truth vector file

2.2. Configuration of iota2
2.2.1. Config and ressources files
2.2.2. Iteration over the different sub ground truth files

2.3. Results
2.4. Numerical results

2.4.1. Results for the different sub ground truth files
3. Conclusions
4. Acknowledgement
5. References

1. New iota2 release
The last version of iota2 (https://framagit.org/iota2-project/iota2) released on [2022-06-06
Mon] includes many new features. A complete list of changes is available here. Among them, let
cite a few that may be of interest for users:

• External features with padding: External features come now with a padding option. Each
chunk can have an overlap with all his adjacent chunks and therefore it possible to perform
basic spatial processing with external features without discontinuity issues. Check this for a
toy example.

issue: https://framagit.org/iota2-project/iota2/-/issues/466
doc: https://docs.iota2.net/develop/external_features.html

• External features with parameters: The function provided by the user can now have their
parameters set directly in the configuration file. It is no longer necessary to hard-coded them
in the python file.

issue: https://framagit.org/iota2-project/iota2/-/issues/393
doc: https://docs.iota2.net/develop/external_features.html#examples

• Documentation: The documentation is now hosted at https://docs.iota2.net/master/. A open
access labwork is also available https://docs.iota2.net/training/labworks.html for advanced
users that have already done the tutorial from the documentation.

1

https://docs.iota2.net/training/labworks.html
https://docs.iota2.net/master/
https://docs.iota2.net/develop/external_features.html#examples
https://framagit.org/iota2-project/iota2/-/issues/393
https://docs.iota2.net/develop/external_features.html
https://framagit.org/iota2-project/iota2/-/issues/466
https://docs.iota2.net/training/labworks.html#org62634df
https://framagit.org/iota2-project/iota2/-/blob/develop/RELEASE_NOTES.rst
https://framagit.org/iota2-project/iota2

• Deep Learning workflow: iota2 is now able to perform classification with (deep) neural
networks. It is possible to use either one of the pre-defined network architectures provided
in iota2 or to define its own architecture. The workflow is based on the library Pytorch.

issue: https://framagit.org/iota2-project/iota2/-/issues/194
doc: https://docs.iota2.net/develop/deep_learning.html

The last change was a hard one, since including all the machinery for batches training as well as
various neural architectures in the workflow has introduced some major internal changes in iota2. A
lot of work were done to ensure iota2 is able to scale well accordingly the size of the data to be
classified when deep learning is used. In the following, we will provide an example of classification
of large scale Sentinel 2 time series using deep learning.

2. Classification using deep learning
In this post we discuss about deep learning in iota2. We describe the data set used for the
experiment, the different pre-processing done to prepare the different training/validation files, the
deep neural network used and how it is learned with iota2. Then classification results (classification
accuracy as well as classification maps) will be presented to enlight the capacity of iota2 to easily
perform large scale analysis, run various experiments and compare their outputs.

2.1. Material

2.1.1. Satellite image time series
For the experiments, we use all the Level-2A acquisitions available from Theia Data Center
(https://www.theia-land.fr/en/products/) for one year (2018) over 4 Sentinel 2 tiles ([“31TCJ”,
“31TCK”, “31TDJ”, “31TDK”]). See figure 2.1.1. The raw files size amount to 777 Gigabytes.

2

https://www.theia-land.fr/en/products/
https://docs.iota2.net/develop/deep_learning.html
https://framagit.org/iota2-project/iota2/-/issues/194
https://pytorch.org/

2.1.2. Preparation of the ground truth data
For the ground truth, we have extracted the data for the considered tiles from the database used to
construct the OSO product (https://www.theia-land.fr/en/ceslist/land-cover-sec/). The database was
constructed by merging several open source databases, such as Corine Land Cover. The whole
process is described in &rs9010095. The 23-categories nomenclature is detailed here:
https://www.theia-land.fr/en/product/land-cover-map/. An overview is given figure 2.1.2.

3

 Figure 2.1.1: Sentinel 2 tiles used in the experiments (background map © OpenStreetMap
contributors).

https://www.theia-land.fr/en/product/land-cover-map/
file:///C:/Progra~2/EasyPHP5.3.0/www/ccsd_pdf_converter/pdf_queue/job_20240531122413_post.odt/&rs9010095
https://www.theia-land.fr/en/ceslist/land-cover-sec/

2.1.2.1. Sub data set
This step is not mandatory and is used here only for illustrative purpose.

In order to runs several classification and to assess quantitatively and qualitatively the capacity of
deep learning model, 4 sub-data set were build using a leave-one-tile-out procedure: training
samples for 3 tiles will be used to train the model and samples for the remaining tile will be left out
for testing. The process will be repeated for each subset of 3 tiles from a set of 4 tiles (i.e. 4 times !).
We will see later how iota2 allows to perform several classifications tasks from different ground
truth data easily.

For now, once you have a vector file containing your tiles and the (big) database, running this kind
of code

https://gitlab.cesbio.omp.eu/fauvelm/multitempblogspot/-/blob/main/scripts/prepare_vector_data.py

should do the job (at least for us it does!): construct 4 couples of training/testing vector files. You
can adapt it to your own configuration. An example of one sub data set is given figure 2.1.3.

4

 Figure 2.1.2: Zoom of the ground truth over the city of Toulouse. Each colored polygons
correspond to a labelized area (background map © OpenStreetMap contributors).

https://gitlab.cesbio.omp.eu/fauvelm/multitempblogspot/-/blob/main/scripts/prepare_vector_data.py

2.1.2.2. Clean the ground truth vector file
The final step in the ground truth data preparation is to clean the ground truth file: when
manipulating vector files it is common to have multi-polygons, empty or duplicate geometries. Such
problematic features should be handle before running iota2. Fortunately, iota2 is packed with the
necessaray tool (check_database.py, available from the iota2 conda environment) to prevent
all these annoying things that happen when you process large vector files. The code snippet in 2.1.1
shows how to run the tool on the ground truth file.

Listing 2.1.1: Shell scripts to clean the 4 sub data-set.
for i in 0 1 2 3
do
 check_database.py \

-in.vector ../data/gt_${i}.shp \
-out.vector ../data/gt_${i}_clean.shp \
-dataField code -epsg 2154 \
-doCorrections True

done

2.2. Configuration of iota2
This part is mainly based on the documentation (https://docs.iota2.net/develop/deep_learning.html)
as well as a tutorial we gave (https://docs.iota2.net/training/labworks.html). We encourage the
interested reader to carefully reads these links for a deeper (!) understanding.

2.2.1. Config and ressources files
As usual with iota2, the first step is to set-up the configuration file. This file hosts most of the
information required to run the computation (where are the data, the reference file, the output folder

5

 Figure 2.1.3: Sub data set: polygons from the brown area are used to train the model and polygons
from the gray area are used to test the model. There are 4 different configurations, one for each tile
left-out. (background map © OpenStreetMap contributors).

https://docs.iota2.net/training/labworks.html
https://docs.iota2.net/develop/deep_learning.html

etc …). The following link is a good start to understand the configuration file:
https://docs.iota2.net/develop/i2_classification_tutorial.html#understand-the-configuration-file. We
try to make the following understandable without the need to fully read it.

To compute the classification accuracy obtained on the area covered by ground truth used for
training, we indicate to iota2 to split polygons from the ground truth file into two files, one for
training and one for testing with a ratio of 75%:
split_ground_truth : True
ratio : 0.75

It means that 75% of the available polygons for each class is used for training while the remaining
is used for testing. Note that we do not talk about pixels here. By splitting at the polygons level, we
ensure that pixels from a polygon are used either for training or testing. This is a way to reduce the
spatial auto-correlation effect between pixels when assessing the classification accuracy.

We need now to set-up how training pixels are selected from the polygons. Iota2 relies on OTB
sampling tools (https://www.orfeo-
toolbox.org/CookBook/Applications/app_SampleSelection.html). For this experiment, we asked for
a maximum number of pixels of 100000 with a periodic sampler.
arg_train :
{
 sample_selection :
 {

"sampler" : "periodic"
"strategy": "constant"
"strategy.constant.nb" : 100000

 }

}

We are working of 4 different tiles, each of them having its own temporal sampling. Furthermore,
we need to deals with clouds issues &HAGOLLE20101747. Iota2 uses temporal gap-filling as
discussed in &rs70912356. In this work, we use a temporal step-size of 10 days, i.e., we have 37
dates. Iota2 also computes per default three indices (NDVI, NDWI and Brightness). Hence, for a
each pixel we have a set of 481 features (37\(\times\)13).

For the deep neural network, we use the default implementation in iota2. However, it is possible to
define its own architecture (https://docs.iota2.net/develop/deep_learning.html?highlight=deep
%20learning#desc-dl-module). In our case, the network is composed of four layers (see Table 2.2.1)
with a relu function between each of them (https://framagit.org/iota2-
project/iota2/-/blob/develop/iota2/learning/pytorch/torch_nn_bank.py#L276).

Table 2.2.1: Network architecture.

Input size Output size

First Layer 481 240

Second Layer 240 69

Third Layer 69 69

Last Layer 69 23

6

https://framagit.org/iota2-project/iota2/-/blob/develop/iota2/learning/pytorch/torch_nn_bank.py#L276
https://framagit.org/iota2-project/iota2/-/blob/develop/iota2/learning/pytorch/torch_nn_bank.py#L276
https://docs.iota2.net/develop/deep_learning.html?highlight=deep%20learning#desc-dl-module
https://docs.iota2.net/develop/deep_learning.html?highlight=deep%20learning#desc-dl-module
file:///C:/Progra~2/EasyPHP5.3.0/www/ccsd_pdf_converter/pdf_queue/job_20240531122413_post.odt/&rs70912356
file:///C:/Progra~2/EasyPHP5.3.0/www/ccsd_pdf_converter/pdf_queue/job_20240531122413_post.odt/&HAGOLLE20101747
https://www.orfeo-toolbox.org/CookBook/Applications/app_SampleSelection.html
https://www.orfeo-toolbox.org/CookBook/Applications/app_SampleSelection.html
https://docs.iota2.net/develop/i2_classification_tutorial.html#understand-the-configuration-file

ADAM solver was used for the optimization, with a learningrate of \(10^{-5}\) and a batch size
of 4096. 200 epochs were performed and a validation sample set, extracted from the training pixels
is used to monitor the optimization. The best model in terms of Fscore is selected. Off course all
these options are configurable with iota2. A full configuration file is given in Listing 2.2.1.

Listing 2.2.1: Example of configuration file. Paths need to be adapted to your set-up.
chain :
{
 output_path : "/datalocal1/share/fauvelm/blog_post_iota2_output/outputs_3"
 remove_output_path : True
 check_inputs : True
 list_tile : "T31TCJ T31TDJ T31TCK T31TDK"
 data_field : "code"
 s2_path : "/datalocal1/share/PARCELLE/S2/"
 ground_truth : "/home/fauvelm/BlogPostIota2/data/gt_3_clean.shp"

 spatial_resolution : 10
 color_table : "/home/fauvelm/BlogPostIota2/data/colorFile.txt"
 nomenclature_path : "/home/fauvelm/BlogPostIota2/data/nomenclature.txt"
 first_step : 'init'
 last_step : 'validation'
 proj : "EPSG:2154"
 split_ground_truth : True
 ratio : 0.75
}

arg_train :
{
 runs : 1
 random_seed : 0
 sample_selection :
 {

"sampler" : "periodic"
"strategy": "constant"
"strategy.constant.nb" : 100000

 }
 deep_learning_parameters :
 {

dl_name : "MLPClassifier"
epochs : 200
model_selection_criterion : "fscore"
num_workers : 12
hyperparameters_solver : {

"batch_size" : [4096],
 "learning_rate" : [0.00001]

}
 }
}

arg_classification :
{

enable_probability_map : True
}

python_data_managing :
{

number_of_chunks : 50
}

7

sentinel_2 :
{

temporal_resolution : 10
}

task_retry_limits :
{

 allowed_retry : 0
 maximum_ram : 180.0
 maximum_cpu : 40

}

The configuration file is now ready and the chain can be launched, as described in the
documentation. Classification accuracy will be outputted in the directory final as well as the final
classification map and related iota2 outputs.

2.2.2. Iteration over the different sub ground truth files
However, in this post we want to go a bit further to enlighten how easy it is to run several
simulations with iota2. As discussed in 2.1.2.1, we have generated a set of pair of spatially disjoint
ground truth vector files for training and for testing. Also, remind that iota2 starts by splitting the
provided training ground truth file into two spatially disjoints files, one used to train the model and
the other used to test the model. In such particular configuration, we have now two test files:

1. One extracted from the same area than the training samples,

2. One extracted from a different area than the training samples.

With this files, we can do a spatial cross validation estimation of the classification accuracy, as
discussed in &PAR00022233. To perform such analysis, we first stop the chain after the prediction
of the classification map (setting the parameter as last_step : 'mosaic') and we manually
add another step to estimate the confusion matrix from both sets. We rely on the OTB tools:
https://www.orfeo-toolbox.org/CookBook/Applications/app_ComputeConfusionMatrix.html?
highlight=confusion%20matrix. The last ingredient is to be able to loop over the different tiles
configurations, i.e., to iterate over the cross-validation folds. This is where iota2 is really powerful:
we just need to change few parameters in the configuration file to run all the different experiments.
In this case, we have to change the ground truth filenames and the output directory. To make it
simple, we indexed our simulations from 0 to 3 and use sed shell tool to modify the configuration
file in the big loop:
sed -i "s/outputs_\([0-9]\)/outputs_${REGION}/"
/home/fauvelm/BlogPostIota2/configs/config_base.cfg
sed -i "s/gt_\([0-9]\)_clean/gt_${REGION}_clean/"
/home/fauvelm/BlogPostIota2/configs/config_base.cfg

The global script is given in Listing 2.2.2.

Listing 2.2.2: Script to perform spatial cross validation. Paths need to be adapted to different
configuration. Merging validation samples from the train set is required because iota2 extract
samples on a tile basis for the validation samples (behavior subject to modification in future
release).
#/user/bin/bash

Set ulmit
ulimit -u 6000

8

https://www.orfeo-toolbox.org/CookBook/Applications/app_ComputeConfusionMatrix.html?highlight=confusion%20matrix
https://www.orfeo-toolbox.org/CookBook/Applications/app_ComputeConfusionMatrix.html?highlight=confusion%20matrix
file:///C:/Progra~2/EasyPHP5.3.0/www/ccsd_pdf_converter/pdf_queue/job_20240531122413_post.odt/&PAR00022233
https://docs.iota2.net/develop/i2_classification_tutorial.html#iota2-launch

Set conda env
source ~/.source_conda
conda activate iota2-env

Loop over region
for REGION in 0 1 2 3
do
 echo Processing Region ${REGION}
 # (Delate and) Create output repertory
 OUTDIR=/datalocal1/share/fauvelm/blog_post_iota2_output/outputs_${REGION}/
 if [-d "${OUTDIR}"]; then rm -Rf ${OUTDIR}; fi
 mkdir ${OUTDIR}

 # Update config file
 sed -i "s/outputs_\([0-9]\)/outputs_${REGION}/"
/home/fauvelm/BlogPostIota2/configs/config_base.cfg
 sed -i "s/gt_\([0-9]\)_clean/gt_${REGION}_clean/"
/home/fauvelm/BlogPostIota2/configs/config_base.cfg

 # Run iota2
 Iota2.py \

-config /home/fauvelm/BlogPostIota2/configs/config_base.cfg \
-config_ressources /home/fauvelm/BlogPostIota2/configs/ressources.cfg \
-scheduler_type localCluster \
-nb_parallel_tasks 2

 # Compute Confusion Matrix for test samples
 otbcli_ComputeConfusionMatrix \

-in ${OUTDIR}final/Classif_Seed_0.tif \
-out ${OUTDIR}confu_test.txt \
-format confusionmatrix \
-ref vector -ref.vector.in /home/fauvelm/BlogPostIota2/data/tgt_0.shp \
-ref.vector.field code \
-ram 16384

 # Merge validation samples
 ogrmerge.py -f SQLITE -o ${OUTDIR}merged_val.sqlite \

${OUTDIR}dataAppVal/*_val.sqlite

 # Compute Confusion Matrix for train samples
 otbcli_ComputeConfusionMatrix \

-in ${OUTDIR}final/Classif_Seed_0.tif \
-out ${OUTDIR}confu_train.txt \
-format confusionmatrix \
-ref vector -ref.vector.in ${OUTDIR}merged_val.sqlite \
-ref.vector.field code \
-ram 16384

done

python compute_accuracy.py

Then we can compute classification metrics, such as the overall accuracy, the Kappa coefficient and
the average Fscore. For this post, we have written a short python script to perform such operations:
https://gitlab.cesbio.omp.eu/fauvelm/multitempblogspot/-/blob/main/scripts/compute_accuracy.py.

We can just run it, using nohup for instance, take a coffee, a slice of cheesecake and wait for the
results :)

9

https://gitlab.cesbio.omp.eu/fauvelm/multitempblogspot/-/blob/main/scripts/compute_accuracy.py

2.3. Results
Results provided by iota2 will be discussed in this section. The idea is not to perform a full analysis,
but to glance through the possibility offer by iota2. The simulations were run on computer with 48
Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz, 188 Gb of RAM and a NVIDIA GV100GL [Tesla
V100 PCIe 32GB].

2.4. Numerical results
First we can check the actual number of training samples used to train the model. Iota2 provides the
total number of training samples used
(https://docs.iota2.net/develop/iota2_samples_management.html?highlight=class_statistics
%20csv#tracing-back-the-actual-number-of-samples). Table 2.4.1 provides the number of training
samples extracted to learn the MLP. Yes, you read it well 1.8 millions of samples for only 4 tiles.
During training, 80% of the samples were used to optimized the model and 20% were used to
validate and monitor the model after each epoch. Four metrics were computed automatically by
iota2 to monitor the optimization: the cross-entropy (same loss that is used to optimize the
network), the overall accuracy, the Kappa coefficient and the F-score. Figures 2.4.1 and 2.4.2
display the evolution of the different metrics along the epochs. The model used for the classification
is the one with the highest F-score.

Table 2.4.1: Number of training samples used.

Class Name Label Total

Continuous urban fabric 1 67899

Discontinuous urban fabric 2 100000

Industrial and commercial
units

3 100000

Road surfaces 4 47664

Rapeseed 5 100000

Straw cereals 6 100000

Protein crops 7 100000

Soy 8 100000

Sunflower 9 100000

Corn 10 100000

Rice 11 0

Tubers / roots 12 53094

10

https://docs.iota2.net/develop/iota2_samples_management.html?highlight=class_statistics%20csv#tracing-back-the-actual-number-of-samples
https://docs.iota2.net/develop/iota2_samples_management.html?highlight=class_statistics%20csv#tracing-back-the-actual-number-of-samples

Class Name Label Total

Grasslands 13 100000

Orchards 14 100000

Vineyards 15 100000

Broad-leaved forest 16 100000

Coniferous forest 17 100000

Natural grasslands 18 100000

Woody moorlands 19 100000

Natural mineral surfaces 20 11675

Beaches, dunes and sand
plains

21 0

Glaciers and perpetual snows 22 0

Water Bodies 23 100000

Others 255 0

Total 1780332

11

 Figure 2.4.1: Loss function on the training and validation set.

For this set-up, the overall accuracy, the Kappa coefficient and the average F1 score are 0.85, 0.83
and 0.73, respectively. Which is in line with others results over the same area &rs9010095.

Classification metrics provide quantitative assessment of the classification map. But it is still useful
to do a qualitative analysis of the maps, especially at large scale where phenology, topography and
others factors can influence drastically the reflectance signal. Off course, Iota2 allows to output the
classification maps ! We choose three different sites, display on figures 2.4.3, 2.4.4 and 2.4.5. The
full classification map is available here.

12

 Figure 2.4.2: Classification metrics computed in the validation set.

 Figure 2.4.3: Classification maps for an area located between two tiles.

https://mycore.core-cloud.net/index.php/s/P1tA4Cf6x8V1hsl
file:///C:/Progra~2/EasyPHP5.3.0/www/ccsd_pdf_converter/pdf_queue/job_20240531122413_post.odt/&rs9010095

13

2.4.1. Results for the different sub ground truth files
The figure 2.4.6 shows the Fscore for the 4 models (coming from the 4 different runs), and the 2 test
sets. We can easily see that depending on the tile left out, the difference of classification accuracy in
terms of Fscore between test samples extracted from the same or disjoint area can be significant.
Discussing the reasons why the performance are decreasing and what metrics should we use to
asses the map accuracy are out of the scope of this post. It is indeed an controversy topics in remote
sensing &WADOUX2021109692. We just want to emphasize that iota2 simplifies and automatizes
a lot the process of validation, especially at large scale. Using this spatial cross validation with 4
folds, the mean estimated Fscore is 0.59 with a standard deviation of 0.08, which is indeed much
lower than the 0.73 estimated in the previous part.

14

 Figure 2.4.4: Classification maps for an area over the city of Toulouse.

 Figure 2.4.5: Classification maps for a crop land area.

file:///C:/Progra~2/EasyPHP5.3.0/www/ccsd_pdf_converter/pdf_queue/job_20240531122413_post.odt/&WADOUX2021109692

15

 Figure 2.4.6: Fscore computed on samples from the same area than the training samples (train)
and from a different area (test).

16

F
i
g
u
r
e

2
.
4
.
7
:

C
l
a
s
s

17

F
i
g
u
r
e

2
.
4
.
8
:

C
l
a
s
s

18

19

20

F
i
g
u
r
e

2
.
4
.
9
:

C
l
a
s
s

A finer analysis could be done, indeed. But I let this as an homework for interested reader: all the
materials for the simulation are available here

https://gitlab.cesbio.omp.eu/fauvelm/multitempblogspot

and the Level-2A MAJA processed Sentinel-2 data are downloadable from Theia Data Center (try
this out: https://github.com/olivierhagolle/Sentinel-download), while the ground truth data can be
downloaded here.

3. Conclusions
To conclude, in this post we have presented briefly the latest release of iota2. Then, we focused on
the deep learning classification workflow to classify 4 tiles of one year of Sentinel-2 time series.
Even if it was only four tiles, it amount to process around 800 Gb of data, and with our data set,
about \(4\times10^{7}\) pixels to be classified. We have skipped a lot of parts of the
worklow, that iota2 takes care (projection, upsampling, gapfilling, streaming, multiple run,
mosaicing to mention few). The resulting simulation allows to assess qualitatively and
quantitatively the classification maps, in a reproducible way: you got the version of iota2 and the
config file, you can reproduce your results.

From a machine learning point of view, for this simulation, we have processed a lot of data easily
(check publications with 2 millions of training pixels, we don’t find that much with open source
tools). Iota2 allows to concentrate on the definition of the learning task. We make it simple here, an
moderate size MLP. But much more can be done, regarding the architecture of the neural network,
the training data preparation or post-processing. If you are interested, you can try: again everything
is open source. We will be very happy to welcome and help you: https://framagit.org/iota2-
project/iota2/-/issues.

Finally, with a few boilerplate code, we were able to perform spatial cross validation smoothly.

In a close future, we plan to release a new version that will also handle regression: currently only
categorial data is supported in learning.

4. Acknowledgement
Iota2 is developed by Arthur Vincent, CS Group, from the beginning, recently joined by Benjamin
Tardy, CS Group. Hugo Trentesaux spend 10 months (October 2021 - July 2022) in the team.

Currently, the development are funded by several projects: CNES-PARCELLE, ANR-MAESTRIA
and ANR-3IA-ANITI with the support of CESBIO-lab and Theia Data Center. Iota2 has a steering
committee which is described here.

We thanks the Theia Data Center for making the Sentinel-2 time series available and ready to use.

5. References
refs.bib

21

file:///C:/Progra~2/EasyPHP5.3.0/www/ccsd_pdf_converter/pdf_queue/job_20240531122413_post.odt/refs.bib
https://framagit.org/iota2-project/iota2/-/wikis/Project-Steering-Committee
https://www.theia-land.fr/
https://www.cesbio.cnrs.fr/
https://www.csgroup.eu/en/
https://www.csgroup.eu/en/
https://framagit.org/iota2-project/iota2/-/issues
https://framagit.org/iota2-project/iota2/-/issues
https://mycore.core-cloud.net/index.php/s/XhaKnB6wZqSzW6A
https://github.com/olivierhagolle/Sentinel-download
https://gitlab.cesbio.omp.eu/fauvelm/multitempblogspot

	1. New iota2 release
	2. Classification using deep learning
	2.1. Material
	2.1.1. Satellite image time series
	2.1.2. Preparation of the ground truth data
	2.1.2.1. Sub data set
	2.1.2.2. Clean the ground truth vector file

	2.2. Configuration of iota2
	2.2.1. Config and ressources files
	2.2.2. Iteration over the different sub ground truth files

	2.3. Results
	2.4. Numerical results
	2.4.1. Results for the different sub ground truth files

	3. Conclusions
	4. Acknowledgement
	5. References

