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1. New iota2 release 
The last version of iota2 (https://framagit.org/iota2-project/iota2) released on [2022-06-06 
Mon] includes many new features. A complete list of changes is available here. Among them, let 
cite a few that may be of interest for users: 

• External features with padding: External features come now with a padding option. Each 
chunk can have an overlap with all his adjacent chunks and therefore it possible to perform 
basic spatial processing with external features without discontinuity issues. Check this for a 
toy example. 

issue: https://framagit.org/iota2-project/iota2/-/issues/466 
doc: https://docs.iota2.net/develop/external_features.html 

• External features with parameters: The function provided by the user can now have their 
parameters set directly in the configuration file. It is no longer necessary to hard-coded them 
in the python file. 

issue: https://framagit.org/iota2-project/iota2/-/issues/393
doc: https://docs.iota2.net/develop/external_features.html#examples 

• Documentation: The documentation is now hosted at https://docs.iota2.net/master/. A open 
access labwork is also available https://docs.iota2.net/training/labworks.html for advanced 
users that have already done the tutorial from the documentation. 
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• Deep Learning workflow: iota2 is now able to perform classification with (deep) neural 
networks. It is possible to use either one of the pre-defined network architectures provided 
in iota2 or to define its own architecture. The workflow is based on the library Pytorch. 

issue: https://framagit.org/iota2-project/iota2/-/issues/194
doc: https://docs.iota2.net/develop/deep_learning.html 

The last change was a hard one, since including all the machinery for batches training as well as 
various neural architectures in the workflow has introduced some major internal changes in iota2. A 
lot of work were done to ensure iota2 is able to scale well accordingly the size of the data to be 
classified when deep learning is used. In the following, we will provide an example of classification 
of large scale Sentinel 2 time series using deep learning. 

2. Classification using deep learning 
In this post we discuss about deep learning in iota2. We describe the data set used for the 
experiment, the different pre-processing done to prepare the different training/validation files, the 
deep neural network used and how it is learned with iota2. Then classification results (classification 
accuracy as well as classification maps) will be presented to enlight the capacity of iota2 to easily 
perform large scale analysis, run various experiments and compare their outputs. 

2.1. Material 

2.1.1. Satellite image time series 
For the experiments, we use all the Level-2A acquisitions available from Theia Data Center 
(https://www.theia-land.fr/en/products/) for one year (2018) over 4 Sentinel 2 tiles ([“31TCJ”, 
“31TCK”, “31TDJ”, “31TDK”]). See figure 2.1.1. The raw files size amount to 777 Gigabytes. 
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2.1.2. Preparation of the ground truth data 
For the ground truth, we have extracted the data for the considered tiles from the database used to 
construct the OSO product (https://www.theia-land.fr/en/ceslist/land-cover-sec/). The database was 
constructed by merging several open source databases, such as Corine Land Cover. The whole 
process is described in &rs9010095. The 23-categories nomenclature is detailed here: 
https://www.theia-land.fr/en/product/land-cover-map/. An overview is given figure 2.1.2. 
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 Figure 2.1.1: Sentinel 2 tiles used in the experiments (background map © OpenStreetMap 
contributors).

https://www.theia-land.fr/en/product/land-cover-map/
file:///C:/Progra~2/EasyPHP5.3.0/www/ccsd_pdf_converter/pdf_queue/job_20240531122413_post.odt/&rs9010095
https://www.theia-land.fr/en/ceslist/land-cover-sec/


 

2.1.2.1. Sub data set 
This step is not mandatory and is used here only for illustrative purpose. 

In order to runs several classification and to assess quantitatively and qualitatively the capacity of 
deep learning model, 4 sub-data set were build using a leave-one-tile-out procedure: training 
samples for 3 tiles will be used to train the model and samples for the remaining tile will be left out 
for testing. The process will be repeated for each subset of 3 tiles from a set of 4 tiles (i.e. 4 times !). 
We will see later how iota2 allows to perform several classifications tasks from different ground 
truth data easily. 

For now, once you have a vector file containing your tiles and the (big) database, running this kind 
of code 

https://gitlab.cesbio.omp.eu/fauvelm/multitempblogspot/-/blob/main/scripts/prepare_vector_data.py 

should do the job (at least for us it does!): construct 4 couples of training/testing vector files. You 
can adapt it to your own configuration. An example of one sub data set is given figure 2.1.3. 
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 Figure 2.1.2: Zoom of the ground truth over the city of Toulouse. Each colored polygons  
correspond to a labelized area (background map © OpenStreetMap contributors).

https://gitlab.cesbio.omp.eu/fauvelm/multitempblogspot/-/blob/main/scripts/prepare_vector_data.py


 

2.1.2.2. Clean the ground truth vector file 
The final step in the ground truth data preparation is to clean the ground truth file: when 
manipulating vector files it is common to have multi-polygons, empty or duplicate geometries. Such 
problematic features should be handle before running iota2. Fortunately, iota2 is packed with the 
necessaray tool (check_database.py, available from the iota2 conda environment) to prevent 
all these annoying things that happen when you process large vector files. The code snippet in 2.1.1 
shows how to run the tool on the ground truth file. 

Listing 2.1.1: Shell scripts to clean the 4 sub data-set.
for i in 0 1 2 3
do
    check_database.py \

-in.vector ../data/gt_${i}.shp \
-out.vector ../data/gt_${i}_clean.shp \
-dataField code -epsg 2154 \
-doCorrections True

done

2.2. Configuration of iota2 
This part is mainly based on the documentation (https://docs.iota2.net/develop/deep_learning.html) 
as well as a tutorial we gave (https://docs.iota2.net/training/labworks.html). We encourage the 
interested reader to carefully reads these links for a deeper (!) understanding. 

2.2.1. Config and ressources files 
As usual with iota2, the first step is to set-up the configuration file. This file hosts most of the 
information required to run the computation (where are the data, the reference file, the output folder 
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 Figure 2.1.3: Sub data set: polygons from the brown area are used to train the model and polygons 
from the gray area are used to test the model. There are 4 different configurations, one for each tile  
left-out. (background map © OpenStreetMap contributors).

https://docs.iota2.net/training/labworks.html
https://docs.iota2.net/develop/deep_learning.html


etc …). The following link is a good start to understand the configuration file: 
https://docs.iota2.net/develop/i2_classification_tutorial.html#understand-the-configuration-file. We 
try to make the following understandable without the need to fully read it. 

To compute the classification accuracy obtained on the area covered by ground truth used for 
training, we indicate to iota2 to split polygons from the ground truth file into two files, one for 
training and one for testing with a ratio of 75%: 
split_ground_truth : True
ratio : 0.75

It means that 75% of the available polygons for each class is used for training while the remaining 
is used for testing. Note that we do not talk about pixels here. By splitting at the polygons level, we 
ensure that pixels from a polygon are used either for training or testing. This is a way to reduce the 
spatial auto-correlation effect between pixels when assessing the classification accuracy. 

We need now to set-up how training pixels are selected from the polygons. Iota2 relies on OTB 
sampling tools (https://www.orfeo-
toolbox.org/CookBook/Applications/app_SampleSelection.html). For this experiment, we asked for 
a maximum number of pixels of 100000 with a periodic sampler. 
arg_train :
{
    sample_selection :
  {

"sampler" : "periodic"
"strategy": "constant"
"strategy.constant.nb" : 100000

  }

}

We are working of 4 different tiles, each of them having its own temporal sampling. Furthermore, 
we need to deals with clouds issues &HAGOLLE20101747. Iota2 uses temporal gap-filling as 
discussed in &rs70912356. In this work, we use a temporal step-size of 10 days, i.e., we have 37 
dates. Iota2 also computes per default three indices (NDVI, NDWI and Brightness). Hence, for a 
each pixel we have a set of 481 features (37\(\times\)13). 

For the deep neural network, we use the default implementation in iota2. However, it is possible to 
define its own architecture (https://docs.iota2.net/develop/deep_learning.html?highlight=deep
%20learning#desc-dl-module). In our case, the network is composed of four layers (see Table 2.2.1) 
with a relu function between each of them (https://framagit.org/iota2-
project/iota2/-/blob/develop/iota2/learning/pytorch/torch_nn_bank.py#L276). 

Table 2.2.1: Network architecture.

Input size Output size

First Layer 481 240

Second Layer 240 69

Third Layer 69 69

Last Layer 69 23
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ADAM solver was used for the optimization, with a learningrate of \(10^{-5}\) and a batch size 
of 4096. 200 epochs were performed and a validation sample set, extracted from the training pixels 
is used to monitor the optimization. The best model in terms of Fscore is selected. Off course all 
these options are configurable with iota2. A full configuration file is given in Listing 2.2.1. 

Listing 2.2.1: Example of configuration file. Paths need to be adapted to your set-up.
chain :
{
  output_path : "/datalocal1/share/fauvelm/blog_post_iota2_output/outputs_3"
  remove_output_path : True
  check_inputs : True
  list_tile : "T31TCJ T31TDJ T31TCK T31TDK"
  data_field : "code"
  s2_path : "/datalocal1/share/PARCELLE/S2/"
  ground_truth : "/home/fauvelm/BlogPostIota2/data/gt_3_clean.shp"
  
  spatial_resolution : 10
  color_table : "/home/fauvelm/BlogPostIota2/data/colorFile.txt"
  nomenclature_path : "/home/fauvelm/BlogPostIota2/data/nomenclature.txt"
  first_step : 'init'
  last_step : 'validation'
  proj : "EPSG:2154"
  split_ground_truth : True
  ratio : 0.75
}

arg_train :
{   
  runs : 1
  random_seed : 0
  sample_selection :
  {

"sampler" : "periodic"
"strategy": "constant"
"strategy.constant.nb" : 100000

  }
  deep_learning_parameters :
  {

dl_name : "MLPClassifier"
epochs : 200
model_selection_criterion : "fscore"
num_workers : 12
hyperparameters_solver : {

"batch_size" : [4096],
      "learning_rate" : [0.00001]

}
    }
}

arg_classification :
{

enable_probability_map : True
}

python_data_managing :
{

number_of_chunks : 50
}
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sentinel_2 :
{

temporal_resolution : 10
}

task_retry_limits : 
{

 allowed_retry : 0
 maximum_ram : 180.0
 maximum_cpu : 40

}

The configuration file is now ready and the chain can be launched, as described in the 
documentation. Classification accuracy will be outputted in the directory final as well as the final 
classification map and related iota2 outputs. 

2.2.2. Iteration over the different sub ground truth files 
However, in this post we want to go a bit further to enlighten how easy it is to run several 
simulations with iota2. As discussed in 2.1.2.1, we have generated a set of pair of spatially disjoint 
ground truth vector files for training and for testing. Also, remind that iota2 starts by splitting the 
provided training ground truth file into two spatially disjoints files, one used to train the model and 
the other used to test the model. In such particular configuration, we have now two test files: 

1. One extracted from the same area than the training samples, 

2. One extracted from a different area than the training samples. 

With this files, we can do a spatial cross validation estimation of the classification accuracy, as 
discussed in &PAR00022233. To perform such analysis, we first stop the chain after the prediction 
of the classification map (setting the parameter as last_step : 'mosaic') and we manually 
add another step to estimate the confusion matrix from both sets. We rely on the OTB tools: 
https://www.orfeo-toolbox.org/CookBook/Applications/app_ComputeConfusionMatrix.html?
highlight=confusion%20matrix. The last ingredient is to be able to loop over the different tiles 
configurations, i.e., to iterate over the cross-validation folds. This is where iota2 is really powerful: 
we just need to change few parameters in the configuration file to run all the different experiments. 
In this case, we have to change the ground truth filenames and the output directory. To make it 
simple, we indexed our simulations from 0 to 3 and use sed shell tool to modify the configuration 
file in the big loop: 
sed -i "s/outputs_\([0-9]\)/outputs_${REGION}/" 
/home/fauvelm/BlogPostIota2/configs/config_base.cfg
sed -i "s/gt_\([0-9]\)_clean/gt_${REGION}_clean/" 
/home/fauvelm/BlogPostIota2/configs/config_base.cfg

The global script is given in Listing 2.2.2. 

Listing 2.2.2: Script to perform spatial cross validation. Paths need to be adapted to different  
configuration. Merging validation samples from the train set is required because iota2 extract  
samples on a tile basis for the validation samples (behavior subject to modification in future  
release).
#/user/bin/bash

# Set ulmit
ulimit -u 6000
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# Set conda env
source ~/.source_conda
conda activate iota2-env

# Loop over region
for REGION in 0 1 2 3
do
    echo Processing Region ${REGION}
    # (Delate and) Create output repertory
    OUTDIR=/datalocal1/share/fauvelm/blog_post_iota2_output/outputs_${REGION}/
    if [ -d "${OUTDIR}" ]; then rm -Rf ${OUTDIR}; fi
    mkdir ${OUTDIR}

    # Update config file
    sed -i "s/outputs_\([0-9]\)/outputs_${REGION}/" 
/home/fauvelm/BlogPostIota2/configs/config_base.cfg
    sed -i "s/gt_\([0-9]\)_clean/gt_${REGION}_clean/" 
/home/fauvelm/BlogPostIota2/configs/config_base.cfg

    # Run iota2
    Iota2.py \

-config /home/fauvelm/BlogPostIota2/configs/config_base.cfg \
-config_ressources /home/fauvelm/BlogPostIota2/configs/ressources.cfg \
-scheduler_type localCluster \
-nb_parallel_tasks 2

    # Compute Confusion Matrix for test samples
    otbcli_ComputeConfusionMatrix \

-in ${OUTDIR}final/Classif_Seed_0.tif \
-out ${OUTDIR}confu_test.txt \
-format confusionmatrix \
-ref vector -ref.vector.in /home/fauvelm/BlogPostIota2/data/tgt_0.shp \
-ref.vector.field code \
-ram 16384

    # Merge validation samples
    ogrmerge.py -f SQLITE -o ${OUTDIR}merged_val.sqlite \

${OUTDIR}dataAppVal/*_val.sqlite

    # Compute Confusion Matrix for train samples
    otbcli_ComputeConfusionMatrix \

-in ${OUTDIR}final/Classif_Seed_0.tif \
-out ${OUTDIR}confu_train.txt \
-format confusionmatrix \
-ref vector -ref.vector.in ${OUTDIR}merged_val.sqlite \
-ref.vector.field code \
-ram 16384

done

python compute_accuracy.py

Then we can compute classification metrics, such as the overall accuracy, the Kappa coefficient and 
the average Fscore. For this post, we have written a short python script to perform such operations: 
https://gitlab.cesbio.omp.eu/fauvelm/multitempblogspot/-/blob/main/scripts/compute_accuracy.py. 

We can just run it, using nohup for instance, take a coffee, a slice of cheesecake and wait for the 
results :) 
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2.3. Results 
Results provided by iota2 will be discussed in this section. The idea is not to perform a full analysis, 
but to glance through the possibility offer by iota2. The simulations were run on computer with 48 
Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz, 188 Gb of RAM and a NVIDIA GV100GL [Tesla 
V100 PCIe 32GB]. 

2.4. Numerical results 
First we can check the actual number of training samples used to train the model. Iota2 provides the 
total number of training samples used 
(https://docs.iota2.net/develop/iota2_samples_management.html?highlight=class_statistics
%20csv#tracing-back-the-actual-number-of-samples). Table 2.4.1 provides the number of training 
samples extracted to learn the MLP. Yes, you read it well 1.8 millions of samples for only 4 tiles. 
During training, 80% of the samples were used to optimized the model and 20% were used to 
validate and monitor the model after each epoch. Four metrics were computed automatically by 
iota2 to monitor the optimization: the cross-entropy (same loss that is used to optimize the 
network), the overall accuracy, the Kappa coefficient and the F-score. Figures 2.4.1 and 2.4.2 
display the evolution of the different metrics along the epochs. The model used for the classification 
is the one with the highest F-score. 

Table 2.4.1: Number of training samples used.

Class Name Label Total

Continuous urban fabric 1 67899

Discontinuous urban fabric 2 100000

Industrial and commercial 
units

3 100000

Road surfaces 4 47664

Rapeseed 5 100000

Straw cereals 6 100000

Protein crops 7 100000

Soy 8 100000

Sunflower 9 100000

Corn 10 100000

Rice 11 0

Tubers / roots 12 53094
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Class Name Label Total

Grasslands 13 100000

Orchards 14 100000

Vineyards 15 100000

Broad-leaved forest 16 100000

Coniferous forest 17 100000

Natural grasslands 18 100000

Woody moorlands 19 100000

Natural mineral surfaces 20 11675

Beaches, dunes and sand 
plains

21 0

Glaciers and perpetual snows 22 0

Water Bodies 23 100000

Others 255 0

Total 1780332
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 Figure 2.4.1: Loss function on the training and validation set.



 

For this set-up, the overall accuracy, the Kappa coefficient and the average F1 score are 0.85, 0.83 
and 0.73, respectively. Which is in line with others results over the same area &rs9010095. 

Classification metrics provide quantitative assessment of the classification map. But it is still useful 
to do a qualitative analysis of the maps, especially at large scale where phenology, topography and 
others factors can influence drastically the reflectance signal. Off course, Iota2 allows to output the 
classification maps ! We choose three different sites, display on figures 2.4.3, 2.4.4 and 2.4.5. The 
full classification map is available here. 
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 Figure 2.4.2: Classification metrics computed in the validation set.

 Figure 2.4.3: Classification maps for an area located between two tiles.

https://mycore.core-cloud.net/index.php/s/P1tA4Cf6x8V1hsl
file:///C:/Progra~2/EasyPHP5.3.0/www/ccsd_pdf_converter/pdf_queue/job_20240531122413_post.odt/&rs9010095
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2.4.1. Results for the different sub ground truth files 
The figure 2.4.6 shows the Fscore for the 4 models (coming from the 4 different runs), and the 2 test 
sets. We can easily see that depending on the tile left out, the difference of classification accuracy in 
terms of Fscore between test samples extracted from the same or disjoint area can be significant. 
Discussing the reasons why the performance are decreasing and what metrics should we use to 
asses the map accuracy are out of the scope of this post. It is indeed an controversy topics in remote 
sensing &WADOUX2021109692. We just want to emphasize that iota2 simplifies and automatizes 
a lot the process of validation, especially at large scale. Using this spatial cross validation with 4 
folds, the mean estimated Fscore is 0.59 with a standard deviation of 0.08, which is indeed much 
lower than the 0.73 estimated in the previous part. 
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 Figure 2.4.4: Classification maps for an area over the city of Toulouse.

 Figure 2.4.5: Classification maps for a crop land area.

file:///C:/Progra~2/EasyPHP5.3.0/www/ccsd_pdf_converter/pdf_queue/job_20240531122413_post.odt/&WADOUX2021109692
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 Figure 2.4.6: Fscore computed on samples from the same area than the training samples (train)  
and from a different area (test).
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A finer analysis could be done, indeed. But I let this as an homework for interested reader: all the 
materials for the simulation are available here 

https://gitlab.cesbio.omp.eu/fauvelm/multitempblogspot 

and the Level-2A MAJA processed Sentinel-2 data are downloadable from Theia Data Center (try 
this out: https://github.com/olivierhagolle/Sentinel-download), while the ground truth data can be 
downloaded here. 

3. Conclusions 
To conclude, in this post we have presented briefly the latest release of iota2. Then, we focused on 
the deep learning classification workflow to classify 4 tiles of one year of Sentinel-2 time series. 
Even if it was only four tiles, it amount to process around 800 Gb of data, and with our data set, 
about \(4\times10^{7}\) pixels to be classified. We have skipped a lot of parts of the 
worklow, that iota2 takes care (projection, upsampling, gapfilling, streaming, multiple run, 
mosaicing to mention few). The resulting simulation allows to assess qualitatively and 
quantitatively the classification maps, in a reproducible way: you got the version of iota2 and the 
config file, you can reproduce your results. 

From a machine learning point of view, for this simulation, we have processed a lot of data easily 
(check publications with 2 millions of training pixels, we don’t find that much with open source 
tools). Iota2 allows to concentrate on the definition of the learning task. We make it simple here, an 
moderate size MLP. But much more can be done, regarding the architecture of the neural network, 
the training data preparation or post-processing. If you are interested, you can try: again everything 
is open source. We will be very happy to welcome and help you: https://framagit.org/iota2-
project/iota2/-/issues. 

Finally, with a few boilerplate code, we were able to perform spatial cross validation smoothly. 

In a close future, we plan to release a new version that will also handle regression: currently only 
categorial data is supported in learning. 
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