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The material

Pdf and notebooks available here:
https://framagit.org/mfauvel/omp_machine_learning

Jupyter notebooks binder are available:
Citation:

doi:10.5281/zenodo.1920227
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Introduction



Introduction
What is machine learning?



Machine Learning ⊂ Artificial Intelligence

Artificial Intelligence

Machine Learning

Deep Learning

Taken from https://www.geospatialworld.net/blogs/difference-between-ai%EF%BB%BF-machine-learning-and-deep-learning/
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Objective

How to extract knowledge or insights from data ?

Learning problems are at the cross-section of several applied fields and science disciplines

Machine learning arose as a subfield of
▶ Artificial Intelligence,
▶ Computer Science.

Emphasis on large scale implementations and applications: algorithm centered
Statistical learning arose as a subfield of

▶ Statistics,
▶ Applied Maths,
▶ Signal Processing, …

Emphasizes models and their interpretability: model centered
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Definitions of Learning

Machine Learning in Computer Science
Tom Mitchell (The Discipline of Machine Learning, 2006)

A computer program CP is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves with experience E

Key points

Experience E: data and statistics
Performance measure P: optimization
tasks T: utility

▶ automatic translation
▶ playing Go
▶ ... doing what human does
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Experience E: the data!

Type of data: qualitatives / ordinales / quantitatives variables
Text: strings
Speech: time series
Images/videos: 2/3d dependences
Networks: graphs
Games: interaction sequences
...

Big data (volume, velocity, variety, veracity)
Data are available without having decided to collect them!

importance of preprocessings (cleaning up, normalization, coding,...)
importance of a good representation : from raw data to vectors
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Objective and performance measures P

Generalize
Perform well (minimize P) on new data (fresh data, i.e. unseen during learning)

+ Derive good (P/error rate) prediction functions

A fish A fish
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Introduction
Examples



Recognition of handwritten digits (US postal envelopes)

+ Predict the class (0,...,9) of each sample from an image of 16× 16 pixels, with a pixel intensity coded
from 0 to 255
Low error rate to avoid wrong allocations of mails!

Supervised classification
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Spams Recognition

+ Define a model to predict whether an email is spam or not
Low error rate to avoid deleting useful messages, or filling the mailbox with useless emails

supervised classification
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Recognition of Hekla Volcano landscape, Iceland

+ Predict the class of landscape ∈ { Lava 1970, Lava 1980 I, Lava 1980 II, Lava 1991 I, Lava 1991 II, Lava
moss cover, hyaloclastite formation, Tephra lava, Rhyolite, Scoria, Firn-glacier ice, Snow } from digital
remote sensing images

supervised or unsupervised classification
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Prediction of El Niño southern oscillation

+ Predict, 6 months in advance, the intensity of an El Niño Southern Oscillation (ENSO) event from
ocean-atmosphere datasets (sea level pressure, surface wind components, sea surface temperature,
surface air temperature, cloudiness...)

supervised regression

Florent Chatelain , Mathieu Fauvel : Introduction to Machine Learning 13/87



Recognition of fish sounds

Annotated  
dataset 
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Figure n°1: System architecture 
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AUTOMATIC FISH SOUNDS CLASSIFICATION

Marielle MALFANTE, Jérôme MARS, Mauro DALLA MURA, Cédric GERVAISE


GIPSA-Lab, Chorus, DGA, CNRS, UGA, Grenoble INP


SYSTEM ARCHITECTURE

The system we present is an automatic 
fish sound classifier. Its architecture 
follows a classic machine learning 
structure and is illustrated in Figure n°1:



Dataset constitution > Preprocessing 
> Features extraction > Learning > 
Testing


The data used in this work are in situ 
underwater recordings (sea grass area). 
Among the several days of recordings, 900 
samples were manually labelled into four 
classes, therefore constituting a dataset. 
The four classes are Impulsions, Roar, 
Drumbs and Quacks. Each dataset sample 
is a 0.5s long recording, filtered between 
f_min and f_max.


Each sample is preprocessed into two  signals: one in time, one in frequecy.
 Feature extraction is about extracting relevant information from the data. 

Ideal features should discriminate the data into their classes.

In this work, we distinguish time features (time preprocessed signal) from the 
frequency features (frequency preprocessed signal). We used 66 features 
coming from an extensive state of the art in various domains of acoustic 
classification: environmental sounds (natural, animals or human induced), 
speech and music. Those features are compared to MFCC (Mel Frequency 
Cepstral Coefficients) which are a reference state of features in the state of the 
art.

EX OF FEATURES: kurtosis, skewness, entropy, pic to pic distancces, etc.


By fedding the feature vectors to a learning algorithm, a model is 
produced. This is known as learning phase. In this work we used Random 
Forest algorithm. Learning is done on 80 samples per class (randomly 
chosen).


The model was tested on 40 per class (randomly 
chosen, not used for learning).


66 FEATURES
 MFCC
 NO FEATURES

ACCURACY
 94.0 ± 1.8 %
 76.7 ± 3.0 %
 74.9 ± 3.4 % 


DATASET CONSTITUTION


Figure n°3: Preprocessing each sample into two preprocessed signals 

�    PREPROCESSING


Figure n°4:  
Illustration of data separability for 
classes (Drum + Roar) and (Impulsion + 
quack) through feature F6: kurtosis over 
fft. 

Feature F6: mean and std 

Dr+Rr 

Imp+Q 

17 24 30 64 86 108 

X 

X 

MODEL
RANDOM

FOREST
Feature vectors 

�   FEATURES EXTRACTION


�   LEARNING


Figure n°5: Feature comparaison 

Figure n°5: Learning 

Supervised Classification Decision Trees and Random Forest Application

RESULTS ANALYSIS

True class
Q. Rr. Imp. Dr.

Q. 93.0 0.1 7.9 0.1
Predicted Rr. 0.0 97.1 0.1 6.2

Class Imp. 7.0 0.0 92.0 0.0
Dr. 0.0 2.7 0.0 93.7

Figure: Confusion matrix for the 66 features.

ERROR ANALYSIS
� Impulsions vs Quacks→ Analysis window: 0.5s
� Drums vs Roars→ Signals degeneration

MALFANTE & DALLA MURA Classification: theory & application to fish sounds February 5, 2016 – 40 / 42

Figure n°6: Confusion matrix for 66 features 

PROSPECTS


-  Dynamic 
classification


-  Learning features 
instead of selecting 
them (deep learning)


-  Other application


BACKGROUND


In the context of environmental 
monitoring, tools to study spatial and 
temporal evolution of animal 
populations still need to be 
developed. Using the acoustic 
solution, we present such a tool for 
fish populations. A fish sound classifier 
with 94% of accuracy is proposed. 
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Figure n°2: Data. Spectrogram: Gaussian window, 16384 points 
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+ Predict the class of underwater sounds (roar, quack, drums, impulsion) from times series recorded by
hydrophones (fs = 156kHz)

supervised or unsupervised classification
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Prediction of galaxy spectrum

+ Predict galaxy spectra from both hyperspectral MUSE datacubes and Hubble Space Telescope images
for better understanding of the early universe

supervised regression
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Recognition of climate-ocean events

+ Predict the classes of SAR images of the ocean (convective cells in I, sea ice in K, weather front in N,...)
to detect climate-ocean events from water surface roughness

supervised or unsupervised classification
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Introduction
Basics



Definitions

Variable terminology
Observed data referred to as input variables, predictors or features: X
Data to predict referred to as output variables, or responses: Y

Type of prediction problem: regression vs classification
Depending on the type of the output variables

When Y are quantitative data (e.g. ENSO intensity index values): regression
When Y are categorical data (e.g. handwritten digits Y ∈ {0, . . . , 9}): classification

Two very close problems
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Prediction problem

Assumptions
Input variables Xi are vectors in Rp:

Xi = (Xi,1, . . . , Xi,p)T ∈ X ⊂ Rp

Output variables Yi take values:
▶ In Y ⊂ R (regression)
▶ In a finite set Y (classification)

Y = f(X) + ϵ

Prediction rule

Function of prediction / rule of classification ≡ function f̂ : X → Y to get predictions of new elements Y
given X

Ŷ = f̂(X)

Florent Chatelain , Mathieu Fauvel : Introduction to Machine Learning 18/87



Supervised or unsupervised learning

Training set ≡ available sample T to learn the prediction rule f

For a sized n training set, different cases:

Supervised learning: T ≡ {(X1, Y1), . . . , (Xn, Yn)} are available
Unsupervised learning: T ≡ (X1, . . . , Xn) are available only
Semi-supervised: mixed scenario (often encountered in practice, but less information than in the
supervised case)
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Introduction
Toy Example



Binary classification
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Simple linear model for classification

We seek a prediction model based on the linear regression of the outputs Y ∈ {−1, 1} :

Y = β1X1 + β2X2 + ϵ,

where β = (β1, β2)
T is a 2D unknown parameter vector

Learning problem⇔ Estimation of β

Least Squares Estimator β̂ = (β̂1, β̂2)
T: minimize the training error rate (quadratic cost sense)

RSS(β) =
N∑
i=1

(Yi − β1Xi,1 − β2Xi,2)2

Classification rule based on least squares regression

f(X) =

1 if Ŷ = β̂1X1 + β̂2X2 ≥ 0,
−1 otherwise

Notebook
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Model complexity

Most of methods have a complexity related to their effective number of parameters

Linear classification: model order p
E.g. dth degree polynomial regression: p = d+ 1 parameters ak s.t.

Y = β0 + β1x+ β2x2 + . . .+ βdxd + ϵ,

= Xdβd + ϵ,

where

Xd =
[
1, x, x2, . . . , xd

]
,

βd = [β0, β1, β2, . . . , βd]
T .

Notebook
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Test error vs Train Error

Error rate vs polynomial order d
Notebook

Training error rate (i.e. error rate for train data used
for learning) minimized when d = 19
True error rate (i.e. error rate for test data not used
for learning) minimized when d = 5 ...

+ Training error always decrease with the model complexity. Can’t use alone to select the model!
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Model Selection

Fundamental trade-off
Too simple model (high bias)→ under-fitting
Too complex model (high variance)→ over-fitting
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Fundamental Bias-Variance trade-off

If the true model is
Y = f(X) + ϵ,

then for any prediction rule f̂(X), Mean Squared Error (MSE) expresses as

E
[(
Y− f̂(x)

)2]
= Var

[̂
f(x)
]
+ Bias

[̂
f(x)
]2

+ Var [ϵ]

Var [ϵ] is the irreducible part

as the flexibility of f̂↗, its variance↗ and the bias↘
+ overfitting/underfitting trade-off
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Model based approches for classification



Model based approches for classification
Bayes Classifier



Bayes rule for classification

Classification problem with K classes: Y ∈ Y = {1, . . . , K},

Probability of class Y = k given X = x
Bayes rule:

p(Y = k|X = x) = p(x|Y = k)p(Y = k)
p(x) =

p(x|Y = k)p(Y = k)∑K
j=1 p(x|Y = j)p(Y = j)

,

=
πk pk(x)∑K
j=1 πj pj(x)

pk(x) ≡ p(x|Y = k) is the density for X in class k
πk ≡ p(Y = k) is the weight, or prior probability of class k
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Bayes classifier

Definition
The Bayes classification rule f∗ is defined as

f∗(x) = argmax
k∈Y

p(Y = k|X = x).

Theorem
The Bayes classification rule f∗ is optimal in the misclassification rate sense where E[f] = p(f(X) ̸= Y):

for any rule f, E[f] ≥ E[f∗],

Remarks
f∗(X) ≡ maximum a posteriori (MAP) estimate
In real-word applications, the distribution of (X, Y) is unknown⇒ no analytical expression of f∗(X).
But useful reference on academic examples.
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Estimation of f∗(X)

Two kinds of approaches based on a model:

1. Discriminative approaches: direct learning of p(Y|X),
e.g. SVM, logistic regression

2. Generative models: learning of the joint distribution p(X, Y)

p(X, Y) = p(X|Y)︸ ︷︷ ︸
likelihood

Pr (Y)︸ ︷︷ ︸
prior

,

e.g. linear/quadratic discriminant analysis, Naïve Bayes
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Generative models: Estimation problem

Assumptions
classification problem with K classes: Y ∈ Y = {1, . . . , K},
input variables: X ∈ Rp

Bayes rule:

p(Y = k|X = x) = p(x|Y = k)p(Y = k)∑K
j=1 p(x|Y = j)p(Y = j)

.

In practice, the following quantities are unknown:

densities of each class pk(x) ≡ p(x|Y = k)
weights, or prior probabilities, of each class πk ≡ p(Y = k)

Estimation problem
These quantities must be learned on a training set:

learning problem ⇔ estimation problem in a parametric or not way
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Model based approches for classification
Linear/Quadratic Discriminant Analysis



Quadratic Discriminant Analysis (QDA)

Supervised classification assumptions
X ∈ Rp, Y ∈ Y = {1, . . . , K},
sized n training set (X1, Y1), . . . (Xn, Yn)

QDA Assumptions
The input variables X, given a class Y = k, are distributed according to a parametric and Gaussian
distribution:

X|Y = k ∼ N (µk,Σk) ⇔ pk(x) =
1

(2π)p/2|Σk|1/2
e−

1
2 (x−µk)

TΣ−1
k (x−µk)

The Gaussian parameters are, for each class k = 1, . . . , K

mean vectors µk ∈ Rp,
covariance matrices Σk ∈ Rp×p,

+ set of parameters θk ≡ {µk,Σk}, plus the weights πk, for k = 1, . . . , K.
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Example

Mixture of K = 3 Gaussians
Y ∈ {1, 2, 3}
X ∈ R2
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QDA parameter estimation

For the training set,

ℓ (θ1, . . . , θK, π1, . . . , πK−1) = log p ((x1, y1), . . . , (xn, yn)),

=
n∑
i=1

log p ((xi, yi)), ← i.i.d. training set,

=
n∑
i=1

log [p (xi|yi) p(yi)],

=
n∑
i=1

log [πyi pyi (xi; θyi)].

Rk: πK = 1−
∑K−1

j=1 πj is not a parameter
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QDA parameter estimation (Cont’d)

Notations
nk = #{yi = k} is the number of training samples in class k,∑

yi=k
is the sum over all the indices i of the training samples in class k

(Unbiased) Maximum likelihood estimators (MLE)

π̂k =
nk
n , ← sample proportion

µ̂k =

∑
yi=k

xi
nk

, ← sample mean

Σ̂k =
1

nk−1
∑

yi=k
(xi − µ̂k) (xi − µ̂k)

T , ← sample covariance

Rk: 1
nk−1 is a bias correction factor for the covariance MLE (otherwise

1
nk
)
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Discriminant functions

For model based approaches, Bayes classifier is defined as

f∗(x) = argmax
k∈Y

p(Y = k|X = x)

equivalent to consider a set of functions δk(x), for k ∈ Y , derived from a monotone transformation of
posterior probability p(Y = k|X = x)
decision boundary between classes k and l is then defined as the set {x ∈ X : δk(x) = δl(x)}

Definition
δk(x) are called the discriminant functions of each class k

+ x is predicted in the k0 class such that k0 = argmaxk∈Y δk(x)
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QDA decision rule

The classification rule becomes

f(x) = argmax
k∈Y

p(Y = k|X = x, θ̂, π̂),

= argmax
k∈Y

log p(Y = k|X = x, θ̂, π̂)︸ ︷︷ ︸
δk(x)

,

where
δk(x) = −

1
2 log

∣∣∣Σ̂k

∣∣∣− 1
2 (x− µ̂k)

TΣ̂−1
k (x− µ̂k) + log π̂k +��Cst,

is the discriminant function

Remarks

1. different rule than the Bayes classifier as θ replaced by θ̂ (and π replaced by π̂)
2. when n≫ p, θ̂ → θ (and π̂ → π): convergence to the optimal classifier... only if the Gaussian model is
correct!
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QDA decision boundary

The boundary between two classes k and l is described by the equation

δk(x) = δl(x)⇔ Ck,l + LTk,lx+ xTQTk,lx = 0, ← quadratic equation

where

Ck,l = −
1
2 log

|Σ̂k|
|Σ̂l|

+ log
π̂k
π̂l
− 1
2 µ̂

T
kΣ̂

−1
k µ̂k +

1
2 µ̂

T
l Σ̂

−1
l µ̂l, ← scalar

Lk,l = Σ̂−1
k µ̂k − Σ̂−1

l µ̂l, ← vector in Rp

Qk,l =
1
2

(
−Σ̂−1

k + Σ̂−1
l

)
, ← matrix in Rp×p

+ Quadratic discriminant analysis
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QDA example (Cont’d)

Mixture of K = 3 Gaussians
Classification rule: argmaxk=1,2,3 δk(x)
Quadratic boundaries {x; δk(x) = δl(x)}
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LDA principle

LDA Assumptions
Additional simplifying assumption w.r.t. QDA: all the class covariance matrices are identical
(“homoscedasticity”), i.e. Σk = Σ, for k = 1, . . . , K

(Unbiased) Maximum likelihood estimators (MLE)
π̂k and µ̂k are unchanged,
Σ̂ = 1

n−K
∑K

k=1
∑

yi=k
(xi − µ̂k) (xi − µ̂k)

T , ← pooled covariance

Rk: 1
n−K is a bias correction factor for the covariance MLE (otherwise

1
n )

LDA discriminant function

δk(x) = −
1
2 log

∣∣∣Σ̂∣∣∣− 1
2 (x− µ̂k)

TΣ̂−1(x− µ̂k) + log π̂k +��Cst,
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LDA decision boundary

The boundary between two classes k and l reduces to the equation

δk(x) = δl(x)⇔ Ck,l + LTk,lx = 0, ← linear equation

where

Ck,l = log
π̂k
π̂l
− 1
2 µ̂

T
kΣ̂

−1µ̂k +
1
2 µ̂

T
l Σ̂

−1µ̂l, ← scalar

Lk,l = Σ̂−1 (µ̂k − µ̂l) , ← vector in Rp

Qk,l = 0,

+ Linear discriminant analysis
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Linear Discriminant Analysis (LDA)

Mixture of K = 3 Gaussians
Classification rule: argmaxk=1,2,3 δk(x)
linear boundaries {x; δk(x) = δl(x)}
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Complexity of discriminant analysis methods

Effective number of parameters
LDA: (K− 1)× (p+ 1) = O(Kp)

QDA: (K− 1)×
(
p(p+3)

2 + 1
)
= O(Kp2)

Remarks
In high dimension, i.e. p ≈ n or p > n, LDA is more stable than QDA which is more prone to overfitting,
Both methods appear however to be robust on a large number of real-word datasets
LDA can be viewed in some cases as a least squares regression method
LDA performs a dimension reduction to a subspace of dimension ≤ K− 1 generated by the vectors
zk = Σ−1µ̂k ← dimension reduction from p to K− 1 !
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Conclusions on discriminant analysis

Generative models
learning/estimation of p(X, Y) = p(X|Y)p(Y),
derivation of p(Y|X) from Bayes rule,

Different assumptions on the class densities pk(x) = p(X = x|Y = k)

QDA/LDA: Gaussian parametric model
+ performs well on many real-word datasets
+ LDA is especially useful when n is small

Perspectives
Model free approaches: direct learning of the prediction rule f

Notebook
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Model free approaches for classification



Model free approaches for classification
K Nearest Neighbors (K-NN)



k Nearest-Neighbors (k-NN) for classification

Binary classification problem
For a binary classification problem Y ∈ {0, 1}, the classification rule can be derived, for X = x, as

f(x) =

1 if Ŷ(x) > 1
2 ,

0 otherwise

where Ŷ(x) = 1
k
∑

Xi∈Nk(x)
Yi is the average of the binary labels of the k nearest neighbors of the testing

point X = x.

Classification rule associated with k-NN
The binary classification problem can be directly extended for an arbitray number of class K:

f(x) ≡ majority vote among the k closest neighbors of the testing point x,
≡ assignement to the most common class among the k nearest neighbors

Florent Chatelain , Mathieu Fauvel : Introduction to Machine Learning 43/87



K Nearest-Neighbors

k-NN: complexity parameter k
The effective number of parameters expresses as Neff = n

k , where n is the size of the training sample

k = 15, Neff ≈ 13 k = 1, Neff ≈ 200

k = 1→ training error is always 0 !
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Model Selection
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Model free approaches for classification
Support Vector Machine (SVM)



Support Vector Machine (SVM)

Theory elaborated in the early 1990’s (Vapnik et al) based on the idea of ’maximum margin’

deterministic criterion learned on the training set← supervised classification
+ general, i.e. model free, linear classification rule
+ classification rule is linear in a transformed space of higher (possible infinite) dimension than the

original input feature/predictor space
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Linear discrimination and Separating hyperplane

Binary classification problem
X ∈ Rp

Y ∈ {−1, 1} ← 2 classes
Training set (xi, yi), for i = 1, . . . ,n

Defining a linear discriminant function h(x)⇔ defining a separating hyperplane H with equation

xTβ + β0 = 0,

β ∈ Rp is the normal vector (vector normal to the hyperplane H),
β0 ∈ R is the intercept/offset (regression or geometrical interpretation)

+ H is an affine subspace of dimension p− 1
+ h(x) ≡ xTβ + β0 is the associated (linear) discriminant function
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Separating hyperplane and prediction rule

For a given separating hyperplane H with equation

xTβ + β0 = 0,

the prediction rule can be expressed as

ŷ = +1, if h(x) = xTβ + β0 ≥ 0,
ŷ = −1, otherwise,

or in an equivalent way:

ŷ ≡ G(x) = sign
[
xTβ + β0

]

Rk: x is in class y ∈ {−1, 1}: prediction G(x) is correct iff y
(
xTβ + β0

)
≥ 0
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Separating Hyperplane: separable case

Linear separability assumption: ∃β ∈ Rp and β0 ∈ R s.t. the hyperplane xTβ + β0 = 0 perfectly separates
the two classes on the training set:

yk
(
xTkβ + β0

)
≥ 0, for k = 1, . . . ,n,

Separable case (p = 2 example)
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Pb: infinitely many possible perfect
separating hyperplanes xTβ + β0 = 0

+ Find the ’optimal’ separating
hyperplane
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Maximum margin separating hyperplane (separable case)

Maximum margin principle
We are interested in the ’optimal’ perfect separating hyperplane maximizing the distance M > 0, called the
margin, between the separating hyperplane and the training data, i.e. with the biggest gap
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Find β ∈ Rp and β0 ∈ R s.t. the margin

M = min
1≤k≤n

{d(xk,H)}

is maximized. Subject to

yk
(
xTkβ + β0

)
≥ 0, for k = 1, . . . ,n,
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Nonseparable case

in general, overlap of the 2 classes (unless n < p)
no hyperplane that perfectly separates the training data
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Maximum margin separating hyperplane (nonseparable case)

Solution for the nonseparable case
Considering a soft-margin that allows wrong classifications

introduction of slack variables ξi ≥ 0 s.t.

yi(xiTβ + β0) ≥ (1− ξi)

Support vectors include now the wrong classified points, and the points inside the margins (ξi > 0)
Primal problem: adding a constraint on the ξi’s

maxβ,β0,ξ M,
subject to yi(xiTβ + β0) ≥ 1− ξi,∑n

i=1 ξi ≤ C.

where C > 0 is the “cost” parameter
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Optimal separating hyperplane

Example (nonseparable case)
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ξ∗i ≡ Mξi ← distance between a
support vector and the margin
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Linear discrimination: SVM vs LDA

Linear discrimination
Linear Discriminant Analysis (LDA): Gaussian generative model
SVM: criterion optimization (maximizing the margin)
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Linear discrimination: SVM vs LDA (Cont’d)

Adding one atypical data
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LDA

SVM property
Nonsensitive to atypical points (outliers) far from the margin

+ sparse method (information ≡ support vectors)
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Nonlinear discrimination in the input space
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Transformed space F
Choice of a transformed space F (expansion space) where the linear separation assumption is more
relevant
Nonlinear expansion map ϕ : Rp → F , x 7→ ϕ(x)← enlarged features
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Nonlinear discrimination in the input space

Projection in the space of monomials of order 2.

ϕ : R2 → R3

x 7→ ϕ(x)
(x1, x2) 7→ (x21 , x22,

√
2x1x2)

In R3, the inner product can be expressed as

⟨ϕ(x), ϕ(x′)⟩R3 =
3∑
i=1

ϕ(x)iϕ(x′)i

= ϕ(x)1ϕ(x′)1 + ϕ(x)2ϕ(x′)2 + ϕ(x)3ϕ(x′)3
= x21x′

2
1 + x22x′

2
2 + 2x1x2x′1x′2

= (x1x′1 + x2x′2)2

= ⟨x, x′⟩2R2
= k(x, x′).
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Nonlinear discrimination in the input space

X ∈ R2, ϕ(x) = (x21 , x22,
√
2x1x2)T
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Linear separation in the feature space F ⇒ Nonlinear separation in the input space
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Kernel trick

The SVM solution depends only on the inner product between the input features ϕ(x) and the support
vectors ϕ(xmargin)

Kernel trick
Use of a kernel function k associated with an expansion/feature map ϕ:

k : Rp × Rp → R
(x, x′) 7→ k(x, x′) ≡ ⟨ϕ(x), ϕ(x′)⟩

Advantages
Computations are performed in the original input space: less expansive than in a high dimensional
transformed space F
Explicit representations of the feature map ϕ and enlarged feature space F are not necessary, the
only expression of k is required!

+ Possibility of complex transformations in possible infinite space F
+ Standard trick in machine learning not limited to SVM (kernel-PCA, gaussian process, kernel ridge

regression, spectral clustering . . .)
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Kernel function

Definition (Positive semi-definite kernel)
k : Rd × Rd → R is positive semi-definite is
∀(x, x′) ∈ Rd × Rd, k(xi, xj) = k(xj, xi).
∀n ∈ N, ∀ξ1 . . . ξn ∈ R, ∀x1 . . . xn ∈ Rd,

∑n
i,j ξiξjk(xi, xj) ≥ 0.

Theorem (Moore-Aronsjan (1950))

To every positive semi-definite kernel k, there exists a Hilbert space H and a feature map ϕ : Rd → H such
that for all xi, xj we have k(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩H.
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Operations on kernels

Let k1 and k2 be positive semi-definite, and λ1,2 > 0 then:

1. λ1k1 is a valid kernel
2. λ1k1 + λ2k2 is positive semi-definite.
3. k1k2 is positive semi-definite.
4. exp(k1) is positive semi-definite.
5. g(xi)g(xj) is positive semi-definite, with g : Rd → R.
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Choosing the Kernel function

Usual kernel functions
Linear kernel ( F ≡ Rp) : k(x, x′) = xTx′

Polynomial kernel (dimension of F increases with the order d)

k(x, x′) = (xTx′ + q)d =
d∑
l=1

(
d
l

)
qd−l(xTx′)l.

Gaussian radial function (F with infinite dimension)

k(x, x′) = exp
(
−γ||x− x′||2

)
Neural net kernel (F with infinite dimension)

k(x, x′) = tanh
(
κ1xTx′ + κ2

)
+ standard practice is to estimate optimal values of kernel parameters by cross validation
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Application: binary data (cf introduction course)

Linear kernel
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Application: binary data

Polynomial kernel (d = 4)
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Application: binary data

Gaussian radial kernel (γ = 1)
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Practical tips

SCALE YOUR DATA!!

With Gaussian kernel

k(x, x′) = exp
(
−γ||x− x′||2

)
= exp

(
−γ

p∑
i=1

(xi − x′i )2
)

Scaling:

x̃i =
xi − µi
σi

x̃i =
xi −mini

maxi−mini

Notebook
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Multiclass SVM

Y ∈ {1, . . . , K} ← K classes

Standard approach: direct generalization by using multiple binary SVMs

OVA: one-versus-all strategy
K classifiers between one class (+1 label) versus all the other classes (−1 label)

+ classifier with the highest confidence value (e.g. the maximum distance to the separator hyperplane)
assigns the class

OVO: one-versus-one strategy(K
2
)
= K(K− 1)/2 classifiers between every pair of classes

+ majority vote rule: the class with the most votes determines the instance classification

Which to choose? if K is not too large, choose OVO
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Model free approaches for classification
Random Forests



Introduction

Introduced in 2001 (Breiman)
Model free and non linear
Build a large collection of de-correlated trees and average them
Combination of weak learner
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Decision trees
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Taken from: Charlotte Pelletier. Cartographie de l’occupation des sols à partir de séries temporelles d’images satellitaires à hautes résolutions Identification et traitement des données mal

étiquetées . Interfaces continentales, environnement. Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier), 2017. Français.
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Random Forests

For each tree:
▶ Draw bootstrap sample Xb for training sample
▶ Learn tree, for each node

⋆ select m features from the initial p features
⋆ Find the best split (e.g. Gini index, entropy ...)
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Application: binary data
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Conclusions on ’Black Box’ approaches

k-NN
non-parametric method which does not rely on a fixed model
algorithm which is conceptually among the simplest of all machine learning algorithms
badly behaved procedure in high dimension: dimension reduction, e.g. PCA, is usually performed
prior to k-NN algorithm in order to avoid curse of dimensionality and to reduce computational
complexity of the classification rule

SVM
maximum margin learning criterion← model free
classification algorithm nonlinear in the original input space by performing an implicit linear
classification in a higher dimensional space
sparse solutions characterized by the support vectors
popular algorithms, with a large literature
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Conclusions on ’Black Box’ approaches (Cont’d)

Random Forests
involve decision tree to split the prediction space in simple regions
combine multiple decision trees to yield a single consensus prediction

+ method able to scale efficiently to high dimensional data

Deep Neural Nets
Neural Nets with multiple hidden layers between input and output ones
many variants of deep architectures (Recurrent, Convolutional,...) used in specific domains (speech,
vision, ...)

+ supported by empirical evidence
+ dramatic performance jump for several big data applications

Notebook
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Feature Extraction/Selection



Feature Extraction/Selection
Motivations



Illustration

Curse of dimensionality: it is not possible to get enough data to cover all the observation space.
High dimensional spaces are mostly empty !

Multivariate data live in a lower dimensional space, but which one ?
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Application

Feature extraction is important in machine learning because:
▶ It reduces the size of the data,
▶ It limits the redundancy,
▶ It permits visualization of the data,
▶ It mitigates the curse of dimensionality.

Extraction techniques:
▶ Physically based method,
▶ Statistical methods,
▶ Linear and non linear filters.
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Feature Extraction/Selection
Unsupervised feature extraction



Principal Components Analysis

Linear transformation used to reduce the dimensionality of the data.

zi = ⟨vi, x⟩

Find features z that account for most of the variability of the data:
▶ z1, z2, z3, . . . are mutually uncorrelated,
▶ var(zi) is as large as possible,
▶ var(z1) > var(z2) > var(z3) > . . .
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Maximization of the variance 1/2

Search v1 such as max var(z1):

var(z1) = var(⟨v1, x⟩)
= v⊤1 Σv1

Indetermined: if v̂1 maximizes the variance, αv̂1 too! Add a constraint: ⟨v1, v1⟩ = 1
Lagrangian:

L(v1, λ1) = v⊤1 Σv1 + λ1(1− v⊤1 v1)

Compute the derivative w.r.t v1:
∂L
∂v1

= 2Σv1 − 2λ1v1

v1 is an eigenvector of the covariance matrix of x:

Σv1 = λ1v1

v1 is the eigenvector corresponding to the largest eigenvalues !

var(z1) = v⊤1 Σv1 = λ1v⊤1 v1 = λ1
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Maximization of the variance 2/2

Search v2 such as max var(z2) and ⟨v2, v2⟩ = 1 and ⟨v1, v2⟩ = 0

Lagrangian:

L(v2, λ2, β1) = v⊤2 Σv2 + λ2(1− v⊤2 v2) + β1(0− v⊤2 v1)

Compute the derivative w.r.t v2:
∂L
∂v2

= 2Σv2 − 2λ2v2 − β1v1
Σv2 = λ2v2 + 2β1v1

At optimality, ⟨v1, v2⟩ = 0. Left-multiplying by v⊤1 the above equation:

v⊤1 Σv2 = 2β1
λ1v⊤1 v2 = 2β1

0 = 2β1

Hence, we have

Σv2 = λ2v2
v2 is the eigenvector corresponding the second largest eigenvalues
vk is the eigenvector corresponding the kth largest eigenvalues
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PCA in practice

1. Empirical estimation the mean value:

µ =
1
n

n∑
i=1

xi

2. Empirical estimation the covariance matrix:

Σ =
1

n− 1

n∑
i=1

(xi − µ)(xi − µ)⊤

3. Compute p first eigenvalues/eigenvectors… How to choose p ? Explained variance:∑d
i=1 λi∑p
i=1 λi

Note: Standardization/scaling matters!
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Feature Extraction/Selection
Supervised feature extraction



Fisher’s Discriminant Analysis

We observe some {xi, yi}ni=1
Use the label information to find the linear features that highlight differences among classes
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FDA: find a such as the ratio between the between projected variance and the sample projected
variance is maximal
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FDA Algorithm

Between-class covariance matrix:

B =
1
n

C∑
c=1

nc(µc − µ)(µc − µ)⊤

Class covariance matrix

Σc =
1

nc − 1

nc∑
i=1,i∈c

(xi − µc)(xi − µc)
⊤

Within-class covariance matrix

W =
C∑
c=1

Σc

The Fisher discriminant subspace is given by the eigenvectors of W(−1)B
Remark: there are at most C− 1 eigenvectors because Rank(B) ≤ C− 1. They should be selected
similarly to PCA.
There is an equivalence between FDA and LDA
Notebook

Florent Chatelain , Mathieu Fauvel : Introduction to Machine Learning 81/87



Model Selection and Model Assessment



Model Selection and Model Assessment
Introduction



Train and Prediction Errors

Loss-function L(y, ŷ) = 0 if y = ŷ else 1
Train error: average loss over the training sample

Errtrain =
1
n

n∑
i=1

L(yi, ŷi)

Prediction error: average loss over an independent test sample→ Generalization error
General picture:

Errtest ≈ Errtrain + O

O would be the average optimism.
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Model Selection vs Model Assessment

Model selection
Estimate the best set of hyperparameters
Estimate the performance of differents models

Model Assessment
Estimate the generalization error on unseen/test sample

←− Total Number of Dataset −→
Train Train Train Train Train Validation
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Model Selection and Model Assessment
Cross-validation



Principle

Method to estimate prediction error using the training sample
Based on splitting the data in K-folds :

Model 1 Train Train Train Train Validation
Model 2 Train Train Train Validation Train
Model 3 Train Train Validation Train Train
Model 4 Train Validation Train Train Train
Model 5 Validation Train Train Train Train

Expected prediction error:

CV(̂f, θ) =
K∑
k=1

Errk(̂f, θ)
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Pratical advices

K ? Usually K=5 or 10 is a good trade-off (K=n is called leave-one-out)

Bias Variance

K low High Low
K high Low High

K = n Low Very High

Be careful to the learning curve
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Model should be trained completely for each fold (i.e., data normalization, optimization, etc …)
Notebook
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Conclusions



Classifier comparison

Notebook
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Conclusions

There is no universal best classifier
Needs to be chosen appropriately
Pay attention to

▶ Scale your data,
▶ Try several algorithms, and optimize their hyperparameters
▶ Extract/Select/Build relevant features

In many situations, simple is actually good!
Sklearn is a good try !

https://scikit-learn.org/stable/index.html
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Thank you for your attention
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