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m Pdf and notebooks available here:
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INTRODUCTION



INTRODUCTION

WHAT IS MACHINE LEARNING?



MACHINE LEARNING C ARTIFICIAL INTELLIGENCE

Artificial Intelligence

Machine Learning

Deep Learning

Taken from https://www.geospatialworld.net/blogs/difference-between-ai%EF%BB%BF-machine-learning-and-deep-learning/
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OBJECTIVE

How to extract knowledge or insights from data ?

Learning problems are at the cross-section of several applied fields and science disciplines

®m Machine learning arose as a subfield of

> Artificial Intelligence,
» Computer Science.

Emphasis on large scale implementations and applications: algorithm centered

m Statistical learning arose as a subfield of

» Statistics,
> Applied Maths,
> Signal Processing, ...

Emphasizes models and their interpretability: model centered
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DEFINITIONS OF LEARNING

Machine Learning in Computer Science

Tom Mitchell (The Discipline of Machine Learning, 2006)

A computer program CP is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves with experience E

Key points
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DEFINITIONS OF LEARNING

Machine Learning in Computer Science

Tom Mitchell (The Discipline of Machine Learning, 2006)

A computer program CP is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves with experience E

Key points

m Experience E: data and statistics
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DEFINITIONS OF LEARNING

Machine Learning in Computer Science
Tom Mitchell (The Discipline of Machine Learning, 2006)

A computer program CP is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves with experience E

Key points
m Experience E: data and statistics

m Performance measure P: optimization
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DEFINITIONS OF LEARNING

Machine Learning in Computer Science
Tom Mitchell (The Discipline of Machine Learning, 2006)

A computer program CP is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves with experience E

Key points
m Experience E: data and statistics

m Performance measure P: optimization
m tasks T: utility

» automatic translation
» playing Go
> ... doing what human does
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EXPERIENCE E: THE DATA!

Type of data: qualitatives / ordinales / quantitatives variables
m Text: strings
m Speech: time series
m Images/videos: 2/3d dependences
m Networks: graphs
m Games: interaction sequences

Big data (volume, velocity, variety, veracity)
Data are available without having decided to collect them!
m importance of preprocessings (cleaning up, normalization, coding,...)

m importance of a good representation : from raw data to vectors
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OBJECTIVE AND PERFORMANCE MEASURES P

Generalize
m Perform well (minimize P) on (fresh data, i.e. unseen during learning)

w= Derive good (P/error rate) prediction functions
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OBJECTIVE AND PERFORMANCE MEASURES P

Generalize
m Perform well (minimize P) on new data (fresh data, i.e. unseen during learning)

e Derive good (P/error rate) prediction functions

A fish A fish
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RECOGNITION OF HANDWRITTEN DIGITS (US POSTAL ENVELOPES)

= Yelwl=dy

w= Predict the class (0,...,9) of each sample from an image of 16 x 16 pixels, with a pixel intensity coded
from 0 to 255

m Low error rate to avoid wrong allocations of mails!
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SPAMS RECOGNITION

Spam No Spam

WINNING NOTIFICATION Dear George,

We are pleased to inform you of the result Could you please send me the report #1248 on
of the Lottery Winners International the project advancement?

programs held on the 30th january 2005. Thanks in advance.

[...] You have been approved for a lump sum

pay out of 175,000.00 euros. Regards,

CONGRATULATIONS!!! Cathia

1= Define a model to predict whether an email is spam or not
®m Low error rate to avoid deleting useful messages, or filling the mailbox with useless emails

supervised classification
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RECOGNITION OF HEKLA VOLCANO LANDSCAPE, ICELAND

e Predict the class of landscape € { Lava 1970, Lava 1980 I, Lava 1980 II, Lava 1991 |, ,
, , , , Scoria, Firn-glacier ice, Snow } from digital
remote sensing images

supervised or unsupervised classification
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PREDICTION OF EL NINO SOUTHERN OSCILLATION

0.4

ENSO index

0.3 - —

0.2 T
9 I
&= g -

0.2
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w= Predict, 6 months in advance, the intensity of an El Nifio Southern Oscillation (ENSO) event from
ocean-atmosphere datasets (sea level pressure, surface wind components, sea surface temperature,
surface air temperature, cloudiness...)

supervised regression
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RECOGNITION OF FISH SOUNDS

e Predict the class of underwater sounds (roar, quack, drums, impulsion) from times series recorded by
hydrophones (fs = 156kHz)

supervised or unsupervised classification
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PREDICTION OF GALAXY SPECTRUM

Champ UDF-10 (log-scale) Image MUSE locale Segmentation Map
1 » -
w3 @ N 14
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v Predict galaxy spectra from both hyperspectral MUSE datacubes and Hubble Space Telescope images
for better understanding of the early universe

supervised regression
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RECOGNITION OF CLIMATE-OCEAN EVENTS

e Predict the classes of SAR images of the ocean (convective cells in |, sea ice in K, weather front in N,...)
to detect climate-ocean events from water surface roughness

supervised or unsupervised classification
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DEFINITIONS

Variable terminology
m Observed data referred to as input variables, predictors or features: X
m Data to predict referred to as output variables, or responses: Y

Type of prediction problem: regression vs classification
Depending on the type of the output variables
m When Y are quantitative data (e.g. ENSO intensity index values): regression
m When Y are categorical data (e.g. handwritten digits Y € {0, ...,9}): classification

Two very close problems

Florent Chatelain , Mathieu Fauvel : Introduction to Machine Learning
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PREDICTION PROBLEM

Assumptions
® Input variables X; are vectors in R”:

X/' = (Xm,. o0 7X/'7D)T cX C RP

m Output variables Y; take values:

> InY C R (regression)
> In a finite set Y (classification)

B Y =f(X)+e

Prediction rule

Function of prediction / rule of classification = function f: X — Y to get predictions of new elements Y
given X

Y = f(X)

Florent Chatelain , Mathieu Fauvel : Introduction to Machine Learning 18/87



SUPERVISED OR UNSUPERVISED LEARNING

Training set = available sample 7T to learn the prediction rule f

For a sized n training set, different cases:

m Supervised learning: T = {(X1, Y1), ..., (Xn, Yn)} are available
m Unsupervised learning: T = (Xi,...,Xn) are available only

m Semi-supervised: mixed scenario (often encountered in practice, but less information than in the
supervised case)
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BINARY CLASSIFICATION

-3

-4
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SIMPLE LINEAR MODEL FOR CLASSIFICATION

We seek a prediction model based on the linear regression of the outputs Y € {-1,1} :
Y = X1+ BoXo + ¢,
where 8 = (81, 8;)" is a 2D unknown parameter vector

Learning problem < Estimation of 3
Least Squares Estimator B3 = (31, BZ)T: minimize the training error rate (quadratic cost sense)

N

RSS(B) = Z(YI — BiXi1 — BaXin)’
i

Classification rule based on least squares regression

1if Y = BiXs + BoXo > 0,
fiX) =

—1 otherwise

Florent Chatelain , Mathieu Fauvel : Introduction to Machine Learning 21/87



MODEL COMPLEXITY

Most of methods have a complexity related to their effective number of parameters

Linear classification: model order p

E.g. dth degree polynomial regression: p = d + 1 parameters ay, st.

Y=o+ BX+ B+ ...+ Bax +e,
=X4By + ¢,

where
2 d
Xy = [1, X7X,4..7X],

/Bd = [BO,ﬁ'\;ﬂZ,---yﬂd]T'

Florent Chatelain , Mathieu Fauvel : Introduction to Machine Learning 22/87



TEST ERROR VS TRAIN ERROR

m Training error rate (i.e. error rate for train data used

Error rate vs polynomial order d for learning) minimized when d = 19

Notebook m True error rate (i.e. error rate for test data not used
for learning) minimized when d =5 ...

v Training error always decrease with the model complexity. Can’t use alone to select the model!
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MODEL SELECTION

Fundamental trade-off
m Too simple model (high bias) —

m Too complex model (high variance) —

o High Bias Low Bias

5 Low Variance High Varian
a

=

+

=

'_g Test Samp

[al

Training Sample

Low High

Model Complexity
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FUNDAMENTAL BIAS-VARIANCE TRADE-OFF

If the true model is
Y=fX) +e,

then for any prediction rule?(X), Mean Squared Error (MSE) expresses as

E {(Yf/f(x))z} = Var [/f(X)] + Bias [/f(x)]z + Var [¢]

m Var [¢] is the irreducible part

m as the flexibility of?/‘, its variance  and the bias Y\
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BAYES CLASSIFIER



BAYES RULE FOR CLASSIFICATION

Classification problem with K classes: Y€ ¥ = {1,...,K},

Probability of class Y = k given X = x

Bayes rule:
X|Y=R)p(Y =R X|Y=R)p(Y=F
b(v = ki = x) = POV =RIPOY = k) __p(xY =k)p(Y=h)
p(x) S PXIY = j)p(Y =)
_ m«p)e(x)
ZK:W 7 pj(X)
m pr(x) = p(x|Y = k) is the density for X in class k
m 7, = p(Y = R) is the weight, or prior probability of class k

Florent Chatelain , Mathieu Fauvel : Introduction to Machine Learning
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BAYES CLASSIFIER

Definition
The Bayes classification rule f* is defined as

f (x) = argmaxp(Y = RIX = x).
key

Theorem
The Bayes classification rule f* is optimal in the misclassification rate sense where &[f] = p(f(X) # Y):
for any rule f, E[f] > E[f*],

Remarks
m f*(X) = maximum a posteriori (MAP) estimate
m In real-word applications, the distribution of (X, Y) is unknown = no analytical expression of f*(X).
But useful reference on academic examples.

Florent Chatelain , Mathieu Fauvel : Introduction to Machine Learning 27/87



ESTIMATION OF f*(X)

Two kinds of approaches based on a model:

1. Discriminative approaches: direct learning of p(Y|X),
e.g. SVM, logistic regression

2. Generative models: learning of the joint distribution p(X,Y)

p(X,Y) = p(X|Y) Pr(Y),

likelihood prior

e.g. linear/quadratic discriminant analysis, Naive Bayes

Florent Chatelain , Mathieu Fauvel : Introduction to Machine Learning
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GENERATIVE MODELS: ESTIMATION PROBLEM

Assumptions
m classification problem with K classes: Y€ Y = {1,...,K},
® input variables: X € R?

Bayes rule:

p(Y = kix = x) = P =RIPY=F)
Yo PXIY = ))p(Y =))

In practice, the following quantities are unknown:

m densities of each class pr(x) = p(x|Y = k)

m weights, or prior probabilities, of each class m, = p(Y = R)

Estimation problem

These quantities must be learned on a training set:

learning problem in a parametric or not way

Florent Chatelain , Mathieu Fauvel : Introduction to Machine Learning 29/87



MODEL BASED APPROCHES FOR CLASSIFICATION

LINEAR/QUADRATIC DISCRIMINANT ANALYSIS



QUADRATIC DISCRIMINANT ANALYSIS (QDA)

Supervised classification assumptions
EXER,YeYy={1,...,K},
m sized n training set (X1, Y1), ... (X, Yn)

QDA Assumptions

The input variables X, given a class Y = k, are distributed according to a parametric and Gaussian
distribution:

1 I x— ) (x—
XY=k ~ N(pr, Zr) < pr(x) = We 5 (=) £ (x—pg)

The Gaussian parameters are, for each class k =1,...,K

®m mean vectors u, € R?,
m covariance matrices ¥, € RP*P,

v set of parameters 0, = {uk, Xr}, plus the weights m,, fork =1,...,K.
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EXAMPLE

Mixture of K = 3 Gaussians
mYe{,23}
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EXAMPLE

Mixture of K = 3 Gaussians
mYe {23}
mXeR?

15 I I I I I I )
-4 -3 -2 -1 0 1 2 3
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QDA PARAMETER ESTIMATION

For the training set,
6(017 . '79K,7ﬁ7 e aﬂ-K*") = Ing ((X17y1)7 R (X”’y”))a

n
= Zlogp ((xi,v1)), <« ii.d. training set,

= Z log [p (xilyi) p(vi)l,
= Z log [, py, (Xi; 6,,)].

Rk: m¢ = 1— 317" m is not a parameter
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QDA PARAMETER ESTIMATION (CONT'D)

Notations
m n, = #{y; = Rk} is the number of training samples in class k,

] Zyl:k is the sum over all the indices i of the training samples in class k

(Unbiased) Maximum likelihood estimators (MLE)

= n .
T, = Wk’ <+ sample proportion
= Zy:kxf
| = 1’17’ + sample mean
k

m Y= 53, (% — i) (6 — i), « sample covariance

Rk: nk; is a bias correction factor for the covariance MLE (otherwise nik)
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DISCRIMINANT FUNCTIONS

For model based approaches, Bayes classifier is defined as

f(x) = argmaxp(Y = RIX = X)
key

m equivalent to consider a set of functions d(x), for k € Y, derived from a monotone transformation of
posterior probability p(Y = RIX = x)

m decision boundary between classes k and [ is then defined as the set {x € X : dr(x) = §(x)}

Definition
0r(x) are called the discriminant functions of each class k

w X is predicted in the Ry class such that ko = arg maxgey dr(X)
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QDA DECISION RULE

The classification rule becomes

- Y=FkIX=x0.7
fx) argggp( IX=x,0,7),

= arg maxlog p(Y = R|X = x,0,7),
key

3 (%)
where
1 o 1 o \TO— N .
81(x) = —3 log |T4| — 5 (x = 1) £ (x = i) + log 7 +-€5T,
is the discriminant function

Remarks

1. different rule than the Bayes classifier as 0 replaced by 9 (and replaced by 7)

2. when n>> p, 8 — 6 (and # — =): convergence to the optimal classifier.. only if the Gaussian model is
correct!
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QDA DECISION BOUNDARY

The boundary between two classes k and [ is described by the equation

Oe(x) = 8i(x) & Cri+ LL[X +x'QL x =0, <+ quadratic equation

where
1 |)/i’?| %k [IPUESIETN 1T a1~
m (= —zlog—=— +log =~ — -puX, Lk + s X, [, < scalar
2 = 7 Sk Bkt S 2

w Ly =%, k-2 i, < vector in R?

1 o o
m Q= 5 (7):,61 +X 1), + matrix in RP*P

s Quadratic discriminant analysis
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QDA EXAMPLE (CONT'D)

Mixture of K = 3 Gaussians
m Classification rule: arg maxe—; > 5 6r(X)
m Quadratic boundaries {x; 6r(x) = &(x)}
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LDA PRINCIPLE

LDA Assumptions

Additional simplifying assumption w.rt. QDA: all the class covariance matrices are identical
(“homoscedasticity”), i.e. ¥, = ¥, fork=1,...,K

(Unbiased) Maximum likelihood estimators (MLE)
m 7, and fi; are unchanged,
Y=Y, (6 — i) (6 — i), pooled covariance

Rk: — is a bias correction factor for the covariance MLE (otherwise 1)

LDA discriminant function

1 = 1 PN = =
Or(X) = —3 log ‘):’ — E(X — ) =7 (x — i) + log 7, +-65¥,
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LDA DECISION BOUNDARY

The boundary between two classes k and [ reduces to the equation

Sk(X) = 8(x) & Cry+ LLx =0, < linear equation

where
%\k 1ATA—1A 1ATA—WA
B Gy =log = — —[xX dr+ =X M, < scalar
’ yl 2 2
WL = . (fir — 1), < vector in R”
m Qi =0,

wz Linear discriminant analysis

Florent Chatelain , Mathieu Fauvel : Introduction to Machine Learning
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LINEAR DISCRIMINANT ANALYSIS (LDA)

Mixture of K = 3 Gaussians
m Classification rule: arg maxe—; > 5 6r(X)

m linear boundaries {x; dx(x) = 6/(x)}

. o
o 1

o 2 :

330 o 3 /
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COMPLEXITY OF DISCRIMINANT ANALYSIS METHODS

Effective number of parameters
m LDA: (K—1) x (p+1) = O(Kp)
m QDA: (K —1) x (@ +1) = 0(Kp?)

Remarks
In high dimension, i.e. p &~ n or p > n, LDA is more stable than QDA which is more prone to overfitting,
Both methods appear however to be robust on a large number of real-word datasets

LDA can be viewed in some cases as a least squares regression method

LDA performs a dimension reduction to a subspace of dimension < K — 1 generated by the vectors
Zx = ¥~ 'iy + dimension reduction frompto K—1 !
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CONCLUSIONS ON DISCRIMINANT ANALYSIS

Generative models
m learning/estimation of p(X,Y) = p(X|Y)p(Y),
m derivation of p(Y|X) from Bayes rule,

Different assumptions on the class densities pr(x) = p(X = x|Y = R)
m QDA/LDA: Gaussian parametric model
= performs well on many real-word datasets

v | DA is especially useful when n is small

Perspectives
Model free approaches: direct learning of the prediction rule f

Florent Chatelain , Mathieu Fauvel : Introduction to Machine Learning
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MODEL FREE APPROACHES FOR CLASSIFICATION
K NEAREST NEIGHBORS (K-NN)



kR NEAREST-NEIGHBORS (R-NN) FOR CLASSIFICATION

Binary classification problem
For a binary classification problem Y € {0, 1}, the classification rule can be derived, for X = x, as

Tif Y(x) > 1,

0 otherwise

fx) =

where Y(x) = 3 2 xen, Yi Is the average of the binary labels of the k nearest neighbors of the testing
point X = x.

Classification rule associated with R-NN
The hinary classification problem can be directly extended for an arbitray number of class K:

fx)

majority vote among the k closest neighbors of the testing point x,

= assignement to the most common class among the k nearest neighbors
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K NEAREST-NEIGHBORS

R-NN: complexity parameter k
The effective number of parameters expresses as Neg = 3, Where n is the size of the training sample

15-Nearest Neighbor Classifier 1-Nearest Neighbor Classifier

R =15, Nog ~ 13 k=1, Neg ~ 200

®m kR =1— training error is always 0 !
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MODEL SELECTION

k — Number of Nearest Neighbors
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MODEL FREE APPROACHES FOR CLASSIFICATION
SUPPORT VECTOR MACHINE (SVM)



SUPPORT VECTOR MACHINE (SVM)

Theory elaborated in the early 1990’s (Vapnik et al) based on the idea of ‘'maximum margin’

m deterministic criterion learned on the training set < supervised classification
v general, i.e. model free, linear classification rule

e classification rule is linear in a transformed space of higher (possible infinite) dimension than the
original input feature/predictor space
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LINEAR DISCRIMINATION AND SEPARATING HYPERPLANE

Binary classification problem
mXeERP
mYe {-1,1} < 2 classes
m Training set (x,y;), fori=1,...,n

Defining a linear discriminant function h(x) < defining a separating hyperplane H with equation

7

X'B+ B0 =0,
H: 2'B+5=0

m 3 € RP is the normal vector (vector normal to the hyperplane #),
m (o € Ris the intercept/offset (regression or geometrical interpretation)
== H is an affine subspace of dimension p — 1

= h(X) = X 3+ Bo is the associated (linear) discriminant function

Florent Chatelain , Mathieu Fauvel : Introduction to Machine Learning
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SEPARATING HYPERPLANE AND PREDICTION RULE

For a given separating hyperplane H with equation

4
X'B+ o =0,
H CIJT,@-‘rﬂ(] =0

the prediction rule can be expressed as

By=+1ifh(x)=x'B+05 >0,
m y = —1, otherwise,

or in an equivalent way:

~

y = G(x) = sign {XTﬁ + 60}

Rk: xis in class y € {—1,1}: prediction G(x) is correct iff y (x'8 + Bo) > 0
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SEPARATING HYPERPLANE: SEPARABLE CASE

Linear separability assumption: 38 € R? and B € R st. the hyperplane x'8 + 8, = 0 perfectly separates
the two classes on the training set:

Yre(Xlﬂ-l-Bo)ZO, for k=1,...,n,

Separable case (p = 2 example)

25

Al

15

i
o5l Pb: infinitely many possible perfect

oo separating hyperplanes x'8 + 8, = 0

05 = Find the ‘optimal’ separating
T hyperplane
15 F

2l
25 )

3 2 1 0 1 2 3
X
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MAXIMUM MARGIN SEPARATING HYPERPLANE (SEPARABLE CASE)

Maximum margin principle
We are interested in the 'optimal’ perfect separating hyperplane maximizing the distance M > 0, called the
margin, between the separating hyperplane and the training data, i.e. with the biggest gap

25 +

Find 8 € R? and By € R s.t. the margin
M= Jin_ {d(xr, 1)}
is maximized. Subject to

a4k

Vi (xiﬁ+ﬂo) >0, fork=1,...,n,

Florent Chatelain , Mathieu Fauvel : Introduction to Machine Learning 50/87



NONSEPARABLE CASE

m in general, overlap of the 2 classes (unless n < p)

m no hyperplane that perfectly separates the training data

05 - + X xx

25 | L | I

Florent Chatelain , Mathieu Fauvel : Introduction to Machine Learning

51/87



MAXIMUM MARGIN SEPARATING HYPERPLANE (NONSEPARABLE CASE)

Solution for the nonseparable case
Considering a soft-margin that allows wrong classifications
m introduction of slack variables & > 0 st.
yi(xi'B + Bo) > (1—¢&)
Support vectors include now the wrong classified points, and the points inside the margins (& > 0)

m Primal problem: adding a constraint on the &'s

maXB,30,§ M7
subject to  yi(x'B 4 Bo) > 1 &,
Z?:w &<C

where C > 0 is the “cost” parameter
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OPTIMAL SEPARATING HYPERPLANE

Example (nonseparable case)

25

0.5

-0.5

x X
Margin M =

XT84+, =0 x

1

-3 -2 -1 0 1
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LINEAR DISCRIMINATION: SVM vs LDA

Linear discrimination

m Linear Discriminant Analysis (LDA): Gaussian generative model

m SVM: criterion optimization (maximizing the margin)

15 + + Margin M = L
+ fial
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LINEAR DISCRIMINATION: SVM vs LDA (CONT'D)

Adding one atypical data

SVM property
m Nonsensitive to atypical points (outliers) far from the margin

= sparse method (information = support vectors)

Florent Chatelain , Mathieu Fauvel : Introduction to Machine Learning
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NONLINEAR DISCRIMINATION IN THE INPUT SPACE

15 «
XX
s
X
+, + X
05t X N X
x ¥
of + + %
& + 4 1 ++
+ X
05 +
X + X
1 X
X
15+ X
x X
2 .
25 2 15 1 05 0 05 1 15 2

Transformed space F
m Choice of a transformed space F (expansion space) where the linear separation assumption is more

relevant
m Nonlinear expansion map ¢ : R” — F, x — ¢(x) < enlarged features
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NONLINEAR DISCRIMINATION IN THE INPUT SPACE

m Projection in the space of monomials of order 2.
¢ R >R’
X = ¢(x)

(x1,%) = (X7, X3, V2X1%2)

® In R®, the inner product can be expressed as

(6(x), $(X s = Z¢ X)6(x');

XN )1 + G(x)20(X )2 + H(X)30(X )3

2,12
= X1X4 —|—X2X 2 + 2X1X2X 1X 2

= (X1X 1+ XoX 2)
= <Xa X/>]§2
= R(x,X).
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NONLINEAR DISCRIMINATION IN THE INPUT SPACE

B XER G(X) = (3, X3, V2x1x2)"

1.5 -
X
1k
s X
0.5 | : X
X
ol X
><N
X
0.5 -
X X
qF
15 -
x X
2 I I I I I I I I |
-25 2 1.5 1 0.5 0 0.5 1 1.5 2

Linear separation in the feature space F = Nonlinear separation in the input space
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KERNEL TRICK

The SVM solution depends only on the inner product between the input features ¢(x) and the support
vectors ¢(Xmargin)

Kernel trick
Use of a kernel function k associated with an expansion/feature map ¢:

k: RRxRPF — R
x,x) = RXX)={(p(x), (X))

Advantages

m Computations are performed in the original input space: less expansive than in a high dimensional
transformed space F

m Explicit representations of the feature map ¢ and enlarged feature space F are not necessary, the
only expression of k is required!

r= Possibility of complex transformations in possible infinite space F

e Standard trick in machine learning not limited to SVM (kernel-PCA, gaussian process, kernel ridge
regression, spectral clustering . ..)
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KERNEL FUNCTION

Definition (Positive semi-definite kernel)
k:RY x RY — R is positive semi-definite is
m Y(x,x') € RY x R R(x;, X;) = R(X;, X;).
BN EN,VE ... & €R VK. xn € RY, ST E8R(X, %) > O.

Theorem (Moore-Aronsjan (1950))

To every positive semi-definite kernel k, there exists a Hilbert space H and a feature map ¢ : RY — H such
that for all x;,x; we have R(xX;, X;) = (o(Xi), (X)) .
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OPERATIONS ON KERNELS

Let ki and k, be positive semi-definite, and A > 0 then:

1. MRy is a valid kernel
. MR1+ X2k, is positive semi-definite.
. Riky is positive semi-definite.

. exp(kq) is positive semi-definite.

a &~ w N

- g(x)g(x) is positive semi-definite, with g : R — R.
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CHOOSING THE KERNEL FUNCTION

Usual kernel functions
m Linear kernel ( F = R?) : R(x,x') = x'X/

m Polynomial kernel (dimension of F increases with the order d)

d
R, XY = (XK +q)° = 3 (‘lj)qdl(XTX/)l.

=1

m Gaussian radial function (F with infinite dimension)

RO, x') = exp (=lb = X1
m Neural net kernel (F with infinite dimension)

k(x,x') = tanh (mxTx’ + Kz)

r= standard practice is to estimate optimal values of kernel parameters by cross validation
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APPLICATION: BINARY DATA (CF INTRODUCTION COURSE)

Linear kernel

Lo

°s
Training Error: 0.270 o o
Test Error: 0.288
Bayes Error:  0.210 0
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. BINARY DATA

APPLICATION

Polynomial kernel (d = 4)

Training Error: 0.180
0.245
0.210

Test Error:
Bayes Error:

64/87

Introduction to Machine Learning
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APPLICATION: BINARY DATA

Gaussian radial kernel (y = 1)

SR ¥

|

. \
Training Error: 0.160 e .
Test Error: 0.218 TTTALL |
Bayes Error:  0.210 BN
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PRACTICAL TIPS

SCALE YOUR DATA!!

m With Gaussian kernel

ROox) = exp (—lx—XIF)

p
exp (-’Y Z(Xi - X/{)z)

m Scaling:

- Xi — L

% = i — i

oi
~ Xj — min;
Xi = ——
max; — min;

m Notebook
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MULTICLASS SVM

mYe{l...,K} + Kclasses

Standard approach: direct generalization by using multiple binary SVMs

OVA: one-versus-all strategy
m K classifiers between one class (+1 label) versus all the other classes (—1 label)

e classifier with the highest confidence value (e.g. the maximum distance to the separator hyperplane)
assigns the class

OVO: one-versus-one strategy
m (5) = K(K — 1)/2 classifiers between every pair of classes

1= majority vote rule: the class with the most votes determines the instance classification

Which to choose? if K is not too large, choose OVO
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MODEL FREE APPROACHES FOR CLASSIFICATION

RANDOM FORESTS



INTRODUCTION

m Introduced in 2001 (Breiman)
m Model free and non linear
m Build a large collection of de-correlated trees and average them

m Combination of weak learner
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DECISION TREES
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Taken from: Charlotte Pelletier. Cartographie de l'occupation des sols a partir de séries temporelles d'images satellitaires a hautes résolutions Identification et traitement des données mal
étiquetées . Interfaces continentales, environnement. Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier), 2017. Francais.
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RANDOM FORESTS

m For each tree:

» Draw bootstrap sample X? for training sample
> Learn tree, for each node

* select m features from the initial p features
+ Find the best split (e.g. Gini index, entropy ...)
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APPLICATION: BINARY DATA

Training Error’:'O.VOOO
Test Error: 0.238
Bayes Error:  0.210

Florent Chatelain , Mathieu Fauvel : Introduction to Machine Learning
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CONCLUSIONS ON 'BLACK BOX’ APPROACHES

k-NN
®m non-parametric method which does not rely on a fixed model
m algorithm which is conceptually among the simplest of all machine learning algorithms

m badly behaved procedure in high dimension: dimension reduction, e.g. PCA, is usually performed
prior to k-NN algorithm in order to avoid curse of dimensionality and to reduce computational
complexity of the classification rule

SVM
® maximum margin learning criterion <— model free

m classification algorithm nonlinear in the original input space by performing an implicit linear
classification in a higher dimensional space

m sparse solutions characterized by the support vectors

m popular algorithms, with a large literature
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CONCLUSIONS ON 'BLACK BOX’ APPROACHES (CONT'D)

Random Forests
m involve decision tree to split the prediction space in simple regions

m combine multiple decision trees to yield a single consensus prediction

1= method able to scale efficiently to high dimensional data

Deep Neural Nets
m Neural Nets with multiple hidden layers between input and output ones
m many variants of deep architectures (Recurrent, Convolutional,..) used in specific domains (speech,
vision, ...)
= supported by empirical evidence
v= dramatic performance jump for several big data applications
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FEATURE EXTRACTION /SELECTION



FEATURE EXTRACTION/SELECTION

MOTIVATIONS



ILLUSTRATION

m Curse of dimensionality: it is not possible to get enough data to cover all the observation space.
High dimensional spaces are mostly empty !
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ILLUSTRATION

m Curse of dimensionality: it is not possible to get enough data to cover all the observation space.
High dimensional spaces are mostly empty !

= Multivariate data live in a lower dimensional space, but which one ?
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APPLICATION

m Feature extraction is important in machine learning because:
» |t reduces the size of the data,
> |t limits the redundancy,
> |t permits visualization of the data,
> |t mitigates the curse of dimensionality.

m Extraction techniques:

> Physically based method,
> Statistical methods,
> Linear and non linear filters.

Florent Chatelain , Mathieu Fauvel : Introduction to Machine Learning 75/87



FEATURE EXTRACTION/SELECTION

UNSUPERVISED FEATURE EXTRACTION



PRINCIPAL COMPONENTS ANALYSIS

m Linear transformation used to reduce the dimensionality of the data.
zi = {v;,X)

m Find features z that account for most of the variability of the data:
> 71, 2y, Z3, ... are mutually uncorrelated,
> var(z;) is as large as possible,
> var(z;) > var(z;) > var(zz) > ...

15+ ® —

° [ ]
s &
0.5 e e —
0 | | | |
0 0.5 1 1.5 2 2.5
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PRINCIPAL COMPONENTS ANALYSIS

m Linear transformation used to reduce the dimensionality of the data.
zi = {v;,X)

m Find features z that account for most of the variability of the data:
> 71, 2y, Z3, ... are mutually uncorrelated,
> var(z;) is as large as possible,
> var(z;) > var(z;) > var(zz) > ...

2
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e ® ©
'o.. oQ ® 0. °
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MAXIMIZATION OF THE VARIANCE 1/2

m Search vy such as maxvar(z):

var(zi) = var({v1,x))

= v, Zv;
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MAXIMIZATION OF THE VARIANCE 1/2

m Search vy such as maxvar(z):

var(zi) = var({v1,x))

= v, Zv;

m Indetermined: if ¥; maximizes the variance, ol too! Add a constraint: (vi,vq) =1
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MAXIMIZATION OF THE VARIANCE 1/2

m Search vy such as maxvar(z):

var(zi) = var({v1,x))

= v, Zv;

m Indetermined: if ¥; maximizes the variance, ol too! Add a constraint: (vi,vq) =1
®m Lagrangian:

E(V1,)\1) = V1TzV1 =+ )\1(1 —VqTV1)
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MAXIMIZATION OF THE VARIANCE 1/2

m Search vy such as maxvar(z):
var(zi) = var({v1,x))
= v/ Iv
m Indetermined: if ¥; maximizes the variance, ol too! Add a constraint: (vi,vq) =1
®m Lagrangian:
LV, M) =V Zvq + M (1= vy v)
m Compute the derivative w.rt vq:

% =2¥Vi — 24
8V1
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MAXIMIZATION OF THE VARIANCE 1/2

m Search vy such as maxvar(z):

var(zi) = var({v1,x))

= v/ Iv

m Indetermined: if ¥; maximizes the variance, ol too! Add a constraint: (vi,vq) =1
®m Lagrangian:

E(V1,)\1) = V1TZV1 =+ )\1(1 —VqTV1)

m Compute the derivative w.rt vq:

% =2¥Vi — 24
8V1

m v, is an eigenvector of the covariance matrix of x:

Vi = Vg
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MAXIMIZATION OF THE VARIANCE 1/2

m Search vy such as maxvar(z):

var(zi) = var({v1,x))
= v/ Iv
m Indetermined: if ¥; maximizes the variance, ol too! Add a constraint: (vi,vq) =1
m Lagrangian:

E(V1,)\1) = V1TZV1 =+ )\1(1 —VqTV1)

m Compute the derivative w.rt vq:

% =2¥Vi — 24
8V1

v; is an eigenvector of the covariance matrix of x:

Vi = Vg

v, is the eigenvector corresponding to the largest eigenvalues !

var(zi) = v{ Zvi = \vy vi = A
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MAXIMIZATION OF THE VARIANCE 2/2

m Search v; such as maxvar(z;) and (v2,v2) = 1and (vi,v2) =0
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MAXIMIZATION OF THE VARIANCE 2/2

m Search v; such as maxvar(z;) and (v2,v2) = 1and (vi,v2) =0
m lLagrangian:

L(V2, 02, 51) = VAD XV (1 - V;Vz) + 6:1(0— V;Vw)
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MAXIMIZATION OF THE VARIANCE 2/2

m Search v; such as maxvar(z;) and (v2,v2) = 1and (vi,v2) =0
® Lagrangian:

L(V2, 02, 51) = VAD XV (1 - V;Vz) + 6:1(0— V;Vw)

m Compute the derivative w.rt v:

oL

— = 2XVv, —2)\Vvy — BV
v, 2 —2XV2 — By
v, = Vo + 261w
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MAXIMIZATION OF THE VARIANCE 2/2

m Search v; such as maxvar(z;) and (v2,v2) = 1and (vi,v2) =0
® Lagrangian:

L(V2, 02, 51) = VAD XV (1 - V;Vz) + 6:1(0— V;Vw)

m Compute the derivative w.rt vy:

g—é 2% vy — 2XV) — vy
v, = Vo + 261w
m At optimality, (v1,v;) = 0. Left-multiplying by v{ the above equation:
viZv, = 26
Vv, = 28
0 = 285
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MAXIMIZATION OF THE VARIANCE 2/2

m Search v; such as maxvar(z;) and (v2,v2) = 1and (vi,v2) =0
® Lagrangian:

L(V2, 02, 51) = VAD XV (1 - V;Vz) + 6:1(0— V;Vw)

m Compute the derivative w.rt vy:

g—é 2% vy — 2XV) — vy
v, = Vo + 261w
m At optimality, (v1,v;) = 0. Left-multiplying by v{ the above equation:
viZv, = 26
Vv, = 28
0 = 285
m Hence, we have
v, = v,
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MAXIMIZATION OF THE VARIANCE 2/2

m Search v; such as maxvar(z;) and (v2,v2) = 1and (vi,v2) =0
® Lagrangian:

L(V2, 02, 51) = VAD XV (1 - V;Vz) + 6:1(0— V;Vw)

m Compute the derivative w.rt vy:

g—é 2% vy — 2XV) — vy
v, = Vo + 261w
m At optimality, (v1,v;) = 0. Left-multiplying by v{ the above equation:
viZv, = 26
Vv, = 28
0 = 285
m Hence, we have
v, = v,

v, is the eigenvector corresponding the second largest eigenvalues
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MAXIMIZATION OF THE VARIANCE 2/2

m Search v; such as maxvar(z;) and (v2,v2) = 1and (vi,v2) =0
® Lagrangian:

L(V2, 02, 51) = VAD XV (1 - V;Vz) + 6:1(0— V;Vw)

m Compute the derivative w.rt vy:

g—\i 2% vy — 2XV) — vy
v, = Vo + 261w
m At optimality, (v1,v;) = 0. Left-multiplying by v{ the above equation:
viZv, = 26
Vv, = 28
0 = 285
m Hence, we have
v, = v,

v, is the eigenvector corresponding the second largest eigenvalues
v, is the eigenvector corresponding the k" largest eigenvalues
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PCA IN PRACTICE

1. Empirical estimation the mean value:

1 n
r= n in
=1
2. Empirical estimation the covariance matrix:

=L >t = =)

3. Compute p first eigenvalues/eigenvectors... How to choose p ? Explained variance:

d
2z i
Z?:1 A

Note: Standardization/scaling matters!

Florent Chatelain , Mathieu Fauvel : Introduction to Machine Learning
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FEATURE EXTRACTION/SELECTION

SUPERVISED FEATURE EXTRACTION



FISHER'S DISCRIMINANT ANALYSIS

m We observe some {x;, yi}_,
m Use the label information to find the linear features that highlight differences among classes

T T o T T
T :.. “..‘ h
)| R N |
ol F 4 4 °.o |

o® L
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m FDA: find a such as the ratio between the between projected variance and the sample projected
variance is maximal
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FISHER'S DISCRIMINANT ANALYSIS

m We observe some {x;, yi}_,

m Use the label information to find the linear features that highlight differences among classes
T

m FDA: find a such as the ratio between the between projected variance and the sample projected
variance is maximal
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FDA ALGORITHM

m Between-class covariance matrix:
1 C
B=_ > ne(ue— p)(pe — )"
c=1

Class covariance matrix

L > o — )

i=1,iec

ZC:

Ne

m Within-class covariance matrix

C
W= ch
c=1

The Fisher discriminant subspace is given by the eigenvectors of W(-"B

Remark: there are at most C — 1 eigenvectors because Rank(B) < C — 1. They should be selected
similarly to PCA.

There is an equivalence between FDA and LDA

Notebook
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MODEL SELECTION AND MODEL ASSESSMENT



MODEL SELECTION AND MODEL ASSESSMENT

INTRODUCTION



TRAIN AND PREDICTION ERRORS

m Loss-function L(y,§) =0 ify = § else 1
m Train error: average loss over the training sample

1 < .
Errtrain = E 21 L(yhyr')
=
m Prediction error: average loss over an independent test sample — Generalization error

m General picture:
Erftest = Erfyain + O

O would be the average optimism.
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MODEL SELECTION VS MODEL ASSESSMENT

Model selection
m Estimate the best set of hyperparameters

m Estimate the performance of differents models

Model Assessment

Estimate the generalization error on unseen/test sample

Florent Chatelain , Mathieu Fauvel : Introduction to Machine Learning
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MODEL SELECTION VS MODEL ASSESSMENT

Model selection
m Estimate the best set of hyperparameters

m Estimate the performance of differents models

Model Assessment

Estimate the generalization error on unseen/test sample

<— Total Number of Dataset —
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MODEL SELECTION AND MODEL ASSESSMENT

CROSS-VALIDATION



PRINCIPLE

m Method to estimate prediction error using the training sample
m Based on splitting the data in K-folds :
Model 1
Model 2
Model 3
Model 4
Model 5

m Expected prediction error:

v(f,60) = Z Erre(f, 0)

k=1
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PRATICAL ADVICES

m K ? Usually K=5 or 10 is a good trade-off (K=n is called leave-one-out)

Bias  Variance

Klow  High Low
Khigh  Low High

K=n Low  Very High

m Be careful to the learning curve

1

0.8 y
0.6 y

0.4 y

Error

02| .
0

|
0 100 200 300 400 500
Number of samples

m Model should be trained completely for each fold (i.e., data normalization, optimization, etc ...)
m Notebook
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CONCLUSIONS

m There is no universal best classifier

m Needs to be chosen appropriately
m Pay attention to
» Scale your data,

> Try several algorithms, and optimize their hyperparameters
» Extract/Select/Build relevant features

= In many situations, simple is actually good!

m Sklearn is a good try !
https://scikit-learn.org/stable/index.html
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THANK YOU FOR YOUR ATTENTION
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