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Abstract—The development of the Internet of Things is essen-
tial in agriculture to meet the challenges of the agro-ecological
transition. In fact, by installing communicating sensors directly
in the fields, the health of ecosystems can be accurately monitored
(e.g. soil conditions, crop growth, loss of biodiversity), the
processes optimally controlled (e.g. irrigation systems), and the
crop production better managed (e.g. optimal decision making).
However, forwarding the measurements from a massive number
of IoT-based sensors distributed in the fields to the internet
can be a challenging task, all the more in case of energy, cost,
latency, data rate or connectivity constraints. The conventional
technologies, as the connection to a cellular network, a gateway
or a nano-satellite at low earth orbit, may in fact not met
these constraints. This paper investigates a new paradigm based
on a data collector embedded on an Unmanned Aerial Vehicle
(UAV). This approach has numerous advantages (e.g. no need
of infrastructures, no subscription fees, operate in white areas,
reduce the transmitter power of the communicating sensors).
However, as the operating time of an UAV is limited, the length of
the flight trajectories to visit all the sensors and collect the data
must be minimized. To address this issue, the communication
ranges of the sensors are first modeled as hemispheres. The
Close Enough Traveling Salesman Problem (CE-TSP) is then
investigated at different flying heights. To solve this problem, an
algorithm based on three successive parts, a graph reduction,
a partheno-genetic algorithm and heuristic rules, is developed.
This algorithm is tested on data sets involving a massive number
of communicating sensors with various communication ranges,
as well as on a real agricultural case study. The results highlight
the performances of the method proposed and open the way to
future perspectives for data collection of IoT-based sensors by
means of UAVs.

Index Terms—Internet of Things (IoT), Unmanned Aerial
Vehicle (UAV), Close Enough Traveling Salesman Problem (CE-
TSP), data collection, partheno-genetic algorithm, agroecology.

I. INTRODUCTION

With the increase of temperatures, the alteration of seasona-
lities and more frequent and intense extreme weather events,
climate change has become a reality, impacting significantly
the ecosystems, the crop growth and the agricultural pro-
duction [1]–[3]. To better understand the phenomena, the
development of smart environment monitoring systems based
on the Internet of Things (IoT) is currently booming, whether
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FIG. 1: Forward the data from a sensor node to the internet

it be to monitor the state of the soils, assess the impact
of agricultural practices or initiate sustainable actions [4],
[5]. By combining the data collected from various sensors
distributed in the fields with other sources of information
(e.g. weather forecast, agronomic models), the agricultural
production intends to adapt to the climate variability, for
example by optimizing the irrigation processes or developing
new agricultural practices, more efficient, more sustainable and
more climate resilient [6], [7]. However, forwarding the data
from a massive number of IoT-based sensors to the internet can
be a challenging task, all the more in case of energy, cost, la-
tency, data rate and connectivity constraints. The conventional
technologies to achieve this data transmission do not in fact
always meet these constraints. For example, the connection
to a cellular network, mainly based on NB-IoT and LTE-M
technologies [8], [9], requires to have a cellular base station at
proximity (a few kilometers in rural environment), the power
consumption for the communications is also relatively high
with a limited data rate, and fees must be paid to use the
service, see Fig. 2a. The use and/or implementation of a
gateway positioned at proximity, based on Low Power Wide
Area Networks (LPWAN), as LoRa or SigFox, enables to reach
long distances (several kilometers) at low power, but with a
very limited data rate, see [10] and Fig. 2b. Such gateways
can moreover be complex to configure and some security
concerns have to be carefully addressed [11]. Alternatively,
the communications with nano-satellites at Low Earth Orbit



(LEO) began being proposed to connect IoT-based sensors to
the internet everywhere on the earth, see [12] and Fig. 2c.
The data transmissions are enabled in a time window of only
a few minutes per hour: the nano-satellite stores the data until
it passes over a ground station and downloads the data to a
web server. Unfortunately, at the time being, only messages
of a few bytes per day can be transmitted and fees must also
be paid to use the service.

In addition to these conventional approaches, a new one
is currently emerging, based on the use of an Unmanned
Aerial Vehicle (UAV) with an embedded data collector or a
gateway onboard, see [13], [14] and Fig. 2d. This approach
is particularly interesting as no infrastructures are required,
no subscription fees have to be paid, and areas without con-
nectivity possibilities can be instrumented (i.e. white areas).
Moreover, as the UAV can come close to each sensor node,
the transmission power required to transfer the data can be
minimized to prolong the lifetime of the system. However,
with this approach, the UAV has to visit successively all the
sensor nodes to collect their data. As its operating time is
limited, the minimization of the length of its flight trajectory
has to be carefully investigated.

To address this issue, this paper considers a real-world
scenario with a panel of real agricultural sensor nodes having
limited communication ranges, see Fig. 2a, and with a data
collector embedded on our experimental UAV having a limited
flight duration, see Fig. 2b. The communication range of such
sensors can be modeled by an hemisphere (see Fig. 3), whose
center is the sensor and the radius varies with respect to
different parameters as its transmit power, its buried depth,
or the soil moisture, see our previous work [15]. The UAV
has to enter within the hemispheres to collect the data of
the sensors, without the need to pass through the centers.
Obviously, the height of the UAV with respect to the ground
is an important parameter to be considered as it will impact
the final trajectory length. In addition, as it is depicted in
Fig. 4, the communication ranges can intersect. However,
as the data collector can communicate with several sensor
nodes simultaneously, the passage of the UAV through the
intersection areas can be investigated to reduce the total flight
trajectory length.

Clearly, the trajectory planning problem of the UAV, having
to pass successively through a large number of hemispheres

(a) (b)

FIG. 2: a) Buried sensor node in a pasture with a limited commu-
nication range (from 20 to 250 m). b) Experimental UAV with one
hour of autonomy (Tundra, Hexadrone, payload 4 kg, span 1.83 m)

FIG. 3: Communication range of a sensor node (shape of an hemi-
sphere). If the UAV flies at a constant height (e.g. 15, 25 or 35 m),
the target area is a circle (in red) with a variable radius.

FIG. 4: Case study with 70 sensors. Some communication ranges
intersect: the UAV can pass through the intersections to reduce the
length of its flight trajectory to visit all the nodes.

to collect the data, can be considered as a Close Enough
Traveling Salesman Problem (CE-TSP) in three dimensions,
the cost function being the minimization of the total flight
trajectory length. The target areas of the CE-TSP being con-
tinuous areas (hemispheres) and the number of sensor nodes
being potentially important, solving this problem with an exact
method is particularly complex, all the more without involving
prohibitive calculation costs.

To address that problem, this paper is organized as follows.
The section 2 presents a state of the art on the resolution of the
CE-TSP. The section 3 presents the metaheuristic algorithm
developed to solve this problem based on three successive
parts, namely a graph reduction, a partheno-genetic algorithm
and heuristic rules. The section 4 tests the algorithm on several
data sets and a real agricultural case study, and analyzes
the obtained results. Finally, conclusion and future research
directions are presented in section 5.

II. RELATED WORK

The CE-TSP, a variant of the well-known Traveling Sales-
man Problem (TSP), was initially addressed to find the short-
est route for a truck having to remotely read electricity or
water meters at customer’s residences equipped with Radio
Frequency Identification (RFID) tags, see [16]. In such a
problem, the communication range of the customer nodes
are represented by circles with an identical radius R. As
the circles highly intersect, clustering-based and convex hull-
based algorithms were investigated to regroup the targets, i.e.
determine the position of supernodes for the truck to cover
several customer nodes simultaneously. In the clustering-based
algorithm, the working space is first tiled with hexagons with
edge length R, which are next replaced by circles of radius R.
The circles containing some customer nodes are kept, some are
removed in case of redundancy and others merged to define



at the end a limited number of supernodes. Alternatively,
the hull-based algorithm is based on an iterative process: the
convex hull containing all the customer nodes is first built.
A supernode is next defined at the boundary of the hull. The
convex hull is then updated by removing the customer nodes
belonging to the previously defined supernode. At the end
of the iterations, a finite number of disjoint supernodes are
obtained. A TSP solver is then applied to optimally rely the
centers of the supernodes.

Instead to find the optimal position of supernodes, another
approach consists to consider the intersections of the commu-
nication ranges. For example, [17] considered some circles
with the same radius, and called the intersections Steiner
Zones of degree k (i.e. SZ(k) means an intersection area
formed with k circles). Once the SZ are defined, a point in
each one is designated, and the TSP is solved on these points
(e.g. using solvers as Concorde or Lin-Kernighan). Complex
heuristics are finally proposed to adapt the chosen points in
the SZ in order to reduce the final trajectory length.

A different way to consider the CE-TSP is to define a finite
number of points on the circumferences and inside the circles
(hitting points), leading to discretize the problem, before
applying a TSP algorithm, see [18], [19]. A compromise has
however to be found between the number of discretization
points and the calculation costs. Alternatively, [20] investi-
gated the exact resolution of the CE-TSP through the definition
of mathematical models and linear constraints transmitted to
the CPLEX solver. [21] added a new constraint by considering
that each customer node is available only during a limited
time window per day. Numerous metaheuristics were proposed
to solve the CE-TSP, for example by [22] with a branch-
and-bound algorithm, [23] with a genetic algorithm based on
crossover operations, and [24] proposed a method to estimate
the length of a tour from the knowledge of 14 variables (e.g.
number of nodes, number of Steiner zones, minimum distance
to the average node).

In view of these works, it appears that the two main
approaches which have been investigated to solve the CE-
TSP are the development of complex metaheuristics and the
research for an exact solution through the use of a TSP solver
(e.g. CPLEX, Concorde). However, real applications of the
CE-TSP have been rarely addressed in the literature, all the
more in three dimensions. The need to find quickly a feasible
solution is also essential, for example in case of sudden
changes in the communication ranges of the communicating
sensors (e.g. impact of the soil moisture). To that end, we
propose a method based on three successive parts, namely a
graph reduction, a partheno-genetic algorithm and heuristic
rules. This method is able to find rapidly a sub-optimal
solution to the CE-TSP, that is required for the application
of data collection of IoT-based sensors by means of UAV.

III. METHOD PROPOSED

A. Step 1: graph reduction

As previously presented in Fig. 4, the communication ranges
of the sensors (i.e hemispheres) can intersect. As the UAV is

able to communicate with several nodes simultaneously, it is
possible to reduce the size of the problem by positioning the
UAV in the intersection areas. To that end, the first step of
our algorithm proposes to remove the hemispheres involving
overlapping areas and replacing them by a new target area.

Let consider a problem with n hemispheres. At a prede-
termined flying height, the intersection areas are defined as
circles, see the red circles in Fig. 4. To reduce the graph, we
propose to consider successively the N combinations of two
circles (N = n(n−1)/2) in the data set. In a combination, the
two circles are noted C1 and C2, their centers p1(x1, y1) and
p2(x2, y2), and their radius r1 and r2. The equations of C1

and C2 are (1) and (2). d12 is the Euclidian distance between
p1 and p2, see (3).

(x− x1)
2 + (y − y1)

2 = r21 (1)

(x− x2)
2 + (y − y2)

2 = r22 (2)

d12 =
√

(x1 − x2)2 + (y1 − y2)2 (3)

Several situations occur with respect to d12, see Fig. 5. If
d12 < |r2 − r1| or d12 = |r2 − r1|, one circle is completely
contained within the other. In our algorithm, the smallest circle
will be kept and the largest removed. If |r2−r1| < d12 < r1+
r2, one circle is partially contained within the other. The two
circles will be replaced by a new circle CI of center pI(xI , yI)
and radius rI , created within the common area, see Fig. 6:
the linear equation passing through p1 and p2 is calculated,
and the intersection points (a, b, c, d) of this line with C1 and
C2 are determined. b and c are respectively the points the
closest to p1 and p2, enabling to define the coordinates of
the center pI((xb + xc)/2, (yb + yc)/2) and the radius rI =√

(xb − xc)2 + (yb − yc)2/2 of the circle CI . If d12 = r1 +
r2, the circles are tangent externally. The two circles will be
replaced by the intersection point. If d12 > r1+r2, the circles
do not overlap, they are both kept. The loop is repeated on
the data set until no more intersection exists in the data set,
i.e. the remaining circles are disjoint.

FIG. 5: Different possible configurations of two distinct circles

FIG. 6: A new target circle is built within the overlapping area



B. Step 2: partheno-genetic algorithm
At the end of the step 1, a set of Nb disjoint circles is

obtained, numbered from 1 to Nb. The aim of the step 2 is to
determine the optimal order that will minimize the Euclidian
distance of the route passing through the centers of the circles.
To that end, we propose a partheno-genetic algorithm based
on four mutations (i.e. reverse, swap, right shift, left shift).
The principle of the algorithm is depicted in Fig. 7.

FIG. 7: Principle of the Partheno-Genetic Algorithm (PGA)

FIG. 8: Mutation operators

In this algorithm, there are no crossover operators in
comparison to the Standard-Genetic Algorithm (SGA). The
algorithm starts with the creation of an initial population
composed of Nc possible routes randomly defined (Nc must
be a multiple of 5). This population is next divided in Nc/5
groups of 5 routes: in each group, the Euclidian distance
is calculated for each route, and the route which has the
minimal distance is kept and called the survivor. The other
routes of the group are removed and replaced by copies of the
survivor with mutations: on a random interval, the circle orders
are either reversed, swapped, right-shifted or left-shifted, see
Fig. 8. Finally, all the routes are randomly remixed to form a
new population. This process is repeated until a predetermined
number of iterations Ni is reached or the length of the best
route is no more changing during several iterations.

The advantage of this algorithm is to be simple and easy
to program. The only parameters are Nc and Ni, respectively
the size of the initial population and the number of iterations
before stopping the algorithm. The choice of these parameters
should be a compromise between the calculation cost and the
possibility to find a good solution.

C. Step 3: heuristic rules
At the end of step 2, the trajectory connects the centers of

the circles in a sub-optimal manner. However, in the CE-TSP,

the trajectory can pass within the target areas without the need
to pass through the center. We take this possibility into account
by developing some heuristic rules, see Fig. 9.

FIG. 9: Step 3: Heuristic rules for route reduction

In the route previously defined at step 2, let consider three
successive circles CA, CB and CC , and name their centers A,
B and C, see Fig. 9. Four cases occur. a) if A, B and C are
aligned (i.e. det(A⃗B, B⃗C) = 0), B remains unchanged. b) if
the height hBB′ of the triangle ABC from the vertex B is
lower than the radius rB of the circle CB , B is replaced by
B′. hBB′ is given by (4) where p is the half perimeter of the
triangle ABC (p = (a+ b+ c)/2).

hBB′ =
2

b

√
p(p− a)(p− b)(p− c) (4)

c) if hBB′ = rB , this is a particularly case: B is replaced by
B′ which belongs also to CB . d) if hBB′ > rB , the bisecting
line (BS) of the triangle ABC is considered: B is replaced
in B′ which is the intersection point of CB and (BS), and
belongs to the triangle ABC. The coordinates of the point
S, the intersection point of the bisecting lines of the triangle
ABC, are as follows:

S

(
axA + bxB + cxC

a+ b+ c
,
ayA + byB + cyC

a+ b+ c

)
(5)

These heuristic rules are applied on groups of three suc-
cessive circles of the route determined in step 2. They are
repeated until the trajectory obtained do not change.

IV. RESULTS

A. Case studies with a massive number of intersections
The method proposed is firstly experimented on a data set

of 100 circles involving numerous intersections. The result
obtained is given in Fig. 10. The step of graph reduction
enables to pass from 100 circles to 24 circles. The route length
after the genetic algorithm is 394.99 m, which is reduced to
360.93 m after the application of the heuristic rules. This final
solution is obtained in 0.9 s, highlighting the low calculation
cost of the method proposed.

The method is experimented on a second data set of 200
circles with a massive number of intersections. The result
obtained is given in Fig. 11. The step of graph reduction
enables to pass from 200 circles to 48 circles. The route length
after the genetic algorithm is 525.53 m, which is reduced to
441.83 m after application of the heuristic rules. This final
solution is obtained in 3.5s. These two first results clearly
highlight the capacity of the method proposed to obtain rapidly
a sub-optimal solution, while managing a high number of
intersection areas.



FIG. 10: Data set: TSPLIB, team1 100 (100 circles). The route length
after the genetic algorithm (145 iterations) is 394.99 m. After the
heuristics, the route length is 360.93 m.

FIG. 11: Data set: TSPLIB, team2 200 (200 circles). The route length
after the genetic algorithm (998 iterations) is 525.53 m. After the
heuristics, the route length is 441.83 m.

B. Agricultural case study

A more realistic case study is then considered with 70 sensor
nodes positioned in our experimental farm. They transmit the
soil moisture and temperature measurements in LoRa at 868-
MHz with three different communication ranges (40 m, 80
m and 120 m), see Fig. 12 and the 3D representation in
Fig. 4. The positions of the sensor nodes are in WGS84
coordinates. These coordinates are converted into metrics one
before applying the algorithm. The waypoints of the final
trajectory will be finally converted into WGS84 and entered
into the mission planner of the UAV.

In a first case, we consider that the UAV will fly at the
constant height of 25 m. The intersection of the plan at this
altitude and the hemispheres leads to circles of radius of
respectively 31.22 m, 75.99 m, and 117.37 m. The results
are presented in Fig. 13, 14 and 15. The final route length is
5.878 km. At low speed (v = 5m/s), that means that the UAV
will fly about 20 minutes to achieve this trajectory, that is far
below its maximal autonomy (one hour).

FIG. 12: 70 sensor nodes positioned in our experimental farm: Google
Earth, Digital Globe, 46◦20’22.35”N, 3◦25’44.28”E, 280 m

FIG. 13: The route length after the genetic algorithm is 7.128 km
(519 iterations). After the heuristics, the route length is 5.878 km.

FIG. 14: Result when the UAV’s height is 25 m

FIG. 15: The waypoints of the trajectory are reported in the mission
planner of the UAV (Mission planner, ArduPilot).



Two other flying heights were tested, see Fig. 16 and
Fig. 17. At 15 m, the circles are larger than at 25 m, the
route length is reduced to 5.624 km. At 35 m, the circles are
smaller, the route length is longer (6.254 km). At the speed
v = 5m/s, the length difference represents 2 minutes more
for the UAV, i.e. about 10%, that is not negligeable. In return,
there are more risks of collision of the UAV with obstacles at
low height (e.g. trees) than at high height.

FIG. 16: UAV’s height at 15 m. Tour length: 5.624 km

FIG. 17: UAV’s height at 35 m. Tour length: 6.254 km

V. CONCLUSION AND FUTURE WORK

This paper presents an efficient metaheuristic algorithm
enabling to rapidly determine a sub-optimal trajectory for an
UAV having to pass successively through target areas in the
form of hemisphere, the target application being the optimal
data collection of agricultural communicating sensors. The
importance to take into account the height of the UAV in the
algorithm is highlighted as it impacts clearly the final tour
length. A flight at low altitude leads to a reduced tour length,
but the presence of potential obstacles have to be carefully
taken into account. To that end, the future research directions
intend to add in the algorithm the knowledge of both the
3D obstacles and the ground topology from the digital terrain
model, in order to improve further the UAV’s route including
flying height variations.
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