

Machine Learning to better understand and optimize cheese production

Manon Perrignon, Mathieu Emily, Romain Jeantet, Thomas Croguennec

▶ To cite this version:

Manon Perrignon, Mathieu Emily, Romain Jeantet, Thomas Croguennec. Machine Learning to better understand and optimize cheese production. IDF Cheese Science & Technology Symposium, FIL idf, Jun 2024, Bergen, Norway. hal-04607922

HAL Id: hal-04607922 https://hal.inrae.fr/hal-04607922v1

Submitted on 11 Jun2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

IDF Cheese Science & Technology Symposium

Machine Learning to better understand and optimize cheese production

Manon Perrignon¹, Mathieu Emily², Romain Jeantet¹ and Thomas Croguennec¹

 ¹ L'Institut Agro, INRAE, STLO (Science et Technologie du Lait et de l'œuf), Rennes, France
² L'Institut Agro, Université de Rennes, CNRS, IRMAR (Institut de Recherche Mathématique de Rennes)-UMR 6625, Rennes, France

IDF Cheese Science & Technology Symposium

How to improve dry matter by adopting a holistic view of the process and associated data ?

<u>CONTEXT</u>		METHOD]	RESULTS		CONCLUSION	
	<u> </u>				Cuince TD (2)	021) International Daim (las	urnal 131 , 105005

Dry matter optimization (target value) at present:

Guinee TP (2021) International Dairy Journal **121**: 105095 Kern C et al. (2019) Food Research International **121**: 471–478

→ Modification of standardisation parameters (casein micelle content,...)

→ Modification of process parameters (stirring time/speed,...)

- → Modification of standardisation parameters (casein micelle content,...)
- → Modification of process parameters (stirring time/speed,...)

No consideration of all process and manufacturing parameters

<u>CONTEXT</u>	METHOD	RESULTS	CONCLUSION

Methodology for modelling dry matter:

- Complex process
- No global equation
- Huge amount of data

Need an appropriate and data-driven method

How to implement a Machine Learning approach to optimize dry matter?

Data obtained from one cheese company over a one year period:

Classical pre-processing of data = obtain the database suitable for analysis

In collaboration with industrial experts

- → Remove **redundant variables**
- → Remove **outliers**
- → Remove **missing data**

Data obtained from one cheese company over a one year period:

Classical pre-processing of data = obtain the database suitable for analysis

In collaboration with industrial experts

- → Remove **redundant variables**
- \rightarrow Remove **outliers**
- → Remove **missing data**

After pre-processing:

Nb. individuals (production vat) : ~ 3000 Nb. variables : ~ 100

	CONTEXT]	<u>METHOD</u>]	RESULTS	CONCLUSION	
Selectior	n of Machin	e Learning r	nethods:				Breiman L (2001) Friedman JH (1999) Boser et al. (1992)

RANDOM FOREST (2001)

>>>> Uses a set of decision trees built on random sub-samples of the training data

GRADIENT BOOSTING (1999)

Builds decision trees sequentially, with each new tree correcting the errors of the previous ones

	CONTEXT		<u>METHOD</u>]	RESULTS	CONCLUSION	
Selection	n of Machin	e Learning r	nethods:			I	Breiman L (2001) Friedman JH (1999) Boser et al. (1992)

RANDOM FOREST (2001)

Uses a set of decision trees built on random sub-samples of the training data

GRADIENT BOOSTING (1999)

Builds decision trees sequentially, with each new tree correcting the errors of the previous ones

SUPPORT VECTOR MACHINE (SVM) (1992)

Find the optimal hyperplane that separates or fits the data

Comparison of Machine Learning methods:

Using R

→ Resampling techniques (cross-validation, bootstrap, out-of-bag) can be used to optimize hyperparameters

Interpretation of Machine Learning models:

Breiman L (2001) Machine Learning Lundberg SM et al. (2018) Computer Science, Mathematics

Importance of variables in model:

Using R

Principle: Calculate the importance of variables in the model for predicting dry matter

Rank variables according to their importance in predicting the variability of the target

CONCLUSION

Interpretation of Machine Learning models:

Breiman L (2001) Machine Learning Lundberg SM et al. (2018) Computer Science, Mathematics

Importance of variables in model: Using R

<u>Principle:</u> Calculate the importance of variables in the model for predicting dry matter

Rank variables according to their importance in predicting the variability of the target

Shapley value:

Using Python

Principle: modify one variable at a time, keeping all others constant, to assess its impact on dry matter

Assess the single effect of a variable

CONCLUSION

Interpretation of Machine Learning models:

Breiman L (2001) Machine Learning Lundberg SM et al. (2018) Computer Science, Mathematics

Importance of variables in model: Using R

<u>Principle:</u> Calculate the importance of variables in the model for predicting dry matter

Rank variables according to their importance in predicting the variability of the target

Shapley value:

Using Python

Principle: modify one variable at a time, keeping all others constant, to assess its impact on dry matter

Comparison of methods:

- > 3 machine learning methods and 1 classical statistical method
- > For each method: model training, hyperparameter optimization, model evaluation

Comparison of methods:

- > 3 machine learning methods and 1 classical statistical method
- > For each method: model training, hyperparameter optimization, model evaluation

Results of the four methods:

Method	RMSE
Random Forest	0.27
Gradient Boosting	0.35
Linear Regression	0.37
SVM	0.37

Comparison of methods:

- > 3 machine learning methods and 1 classical statistical method
- > For each method: model training, hyperparameter optimization, model evaluation

Results of the four methods:

Method	RMSE
Random Forest	0.27
Gradient Boosting	0.35
Linear Regression	0.37
SVM	0.37

Selection of Random Forest to model dry matter

% of variability explained

66.6

Additional data could enhance this measurement and the accuracy of the model

	CONTEXT		METHOD		<u>RESULTS</u>		CONCLUSION
--	---------	--	--------	--	----------------	--	------------

Importance of variables on dry matter with Random Forest:

Manon Perrignon

CONTEXT

Importance of variables on dry matter:

Brine:

Cheese position in the brine pool

Informative variable

Manon Perrignon

Variables

CONTEXT

Importance of variables on dry matter:

Brine:

Cheese position in the brine pool

Informative variable

Potential challenge for industrial process:

- Checking information with experts
- Measuring new data

		CONTEXT	Г		METHOD			<u>RESULTS</u>	C	ONCLUSION
Imp	oortan	ice of va	riables	Dairy ingre	dient:					
	Mi	ilk Fat						Quantity of dain standardization	ry ingredient ind	corporated for
	E	Brine						Actionable varia	able	
Variables	Coagula	ant enzyme								
	Dairy I	Ingredient								
		Fank								
(0	1	0 Im	20 portance (IncNodePu) rity)	30)			

	CONTEX	Т	METHOD]	<u>RESULTS</u>	CONCLUSION			
Im	portance of va	riables on dry	matter:		Dairy ingre	dient:			
	Milk Fat				standardization				
	Brine				SHAPLEY VALUE:				
Variables	Coagulant enzyme			Dairy	y Ingredient -0.4 -0 SHAP	0.2 0.0 0.2 0.4 value (impact on model output)	So Feature value		
	Dairy Ingredient				→ Higher amount of dairy ingredient leads to lower dry matter				
	Tank				• Understand	llenge for industrial process: the impact of this ingredient to			
	0	10 Importance (IncNodeP	20 'urity)	30	better adap	t standardisation			

CONCLUSION AND PERSPECTIVES

CONTEXT

CONCLUSION

- Machine Learning establish **complex relationships** between process parameters and dry matter
- Essential collaboration with experts to understand output of the model and overall data
- Need for a large database to implement machine learning methods

CONTEXT

CONCLUSION

- Machine Learning establish complex relationships between process parameters and dry matter
- Essential collaboration with experts to understand output of the model and overall data
- Need for a large database to implement machine learning methods

PERSPECTIVES

- Cheese production defined by several performance indicators
- Machine learning methods learn from data: industrial trials can provide new information
- Known equation could be integrated into modelling: hybrid model

IDF Cheese Science & Technology Symposium

Thanks for your attention !

<u>Contact :</u> manon.perrignon@agrocampus-ouest.fr

