

Machine Learning to better understand and optimize cheese production

Manon Perrignon, Mathieu Emily, Romain Jeantet, Thomas Croguennec

▶ To cite this version:

Manon Perrignon, Mathieu Emily, Romain Jeantet, Thomas Croguennec. Machine Learning to better understand and optimize cheese production. IDF Cheese Science & Technology Symposium, FIL idf, Jun 2024, Bergen, Norway. hal-04607922

HAL Id: hal-04607922

https://hal.inrae.fr/hal-04607922

Submitted on 11 Jun 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

IDF Cheese Science & Technology Symposium

Machine Learning to better understand and optimize cheese production

 ¹ L'Institut Agro, INRAE, STLO (Science et Technologie du Lait et de l'œuf), Rennes, France
 ² L'Institut Agro, Université de Rennes, CNRS, IRMAR (Institut de Recherche Mathématique de Rennes)-UMR 6625, Rennes, France

CONTEXT

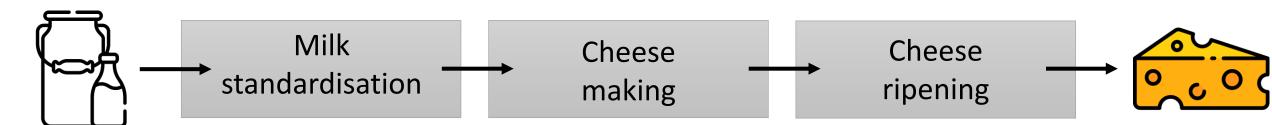
CONTEXTMETHODRESULTSCONCLUSION

Cheese production and monitoring:

Dry matter Yield Quality

...

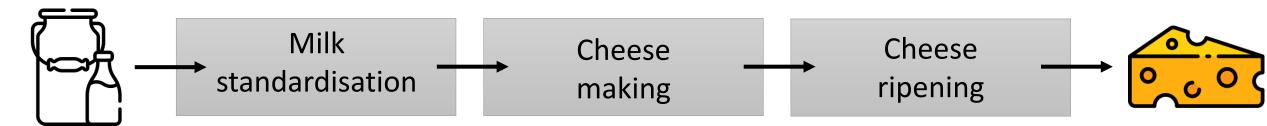
Cheese production and monitoring:



- Complex process
 - Many sources of variability (process, ingredient,..)
 - Many process parameters to monitor (manual, automatic)
- Large amount of data collected during daily cheese process

Dry matter Yield Quality
 CONTEXT
 METHOD
 RESULTS
 CONCLUSION

Cheese production and monitoring:



- Complex process
 - Many sources of variability (process, ingredient,..)
 - Many process parameters to monitor (manual, automatic)
- Large amount of data collected during daily cheese process

Dry matter Yield Quality

•••

How to improve dry matter by adopting a holistic view of the process and associated data?

Dry matter optimization (target value) at present:

CONTEXT

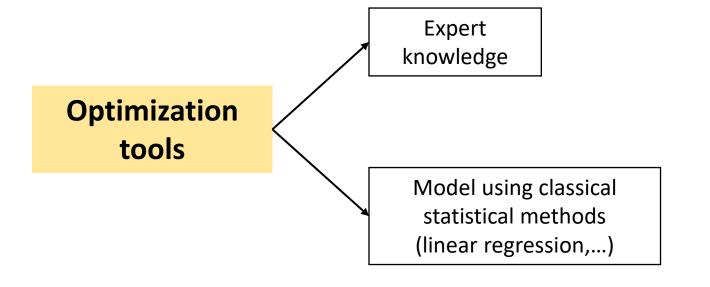
Guinee TP (2021) International Dairy Journal **121**: 105095 **Kern C et al.** (2019) Food Research International **121**: 471–478

- → Modification of standardisation parameters (casein micelle content,...)
- → Modification of process parameters (stirring time/speed,...)

Dry matter optimization (target value) at present:

Guinee TP (2021) International Dairy Journal **121**: 105095 **Kern C et al.** (2019) Food Research International **121**: 471–478

- → Modification of standardisation parameters (casein micelle content,...)
- → Modification of process parameters (stirring time/speed,...)



No consideration of all process and manufacturing parameters

Methodology for modelling dry matter:

- Complex process
- ➤ No global equation
- > Huge amount of data

Need an appropriate and data-driven method

Methodology for modelling dry matter:

Dagan DT, Wilkins EJ (2023) Journal of Outdoor Recreation and Tourism 100668
Wang Z et al. (2022) Computers & Chemical Engineering 165: 107945

- Complex process
- ➤ No global equation
- > Huge amount of data

Need an appropriate and data-driven method

(Generalized) Linear Regression

- → Known function
- → Additivity of effects
- → Easy interpretation

Methodology for modelling dry matter:

Dagan DT, Wilkins EJ (2023) Journal of Outdoor Recreation and Tourism 100668
Wang Z et al. (2022) Computers & Chemical Engineering 165: 107945

- Complex process
- ➤ No global equation
- Huge amount of data

Need an appropriate and data-driven method

(Generalized) Linear Regression

- → Known function
- → Additivity of effects
- → Easy interpretation

Machine Learning

- → Ability to detect complex relationships
- → High prediction power

→ Black box: difficult interpretation

 CONTEXT
 METHOD
 RESULTS
 CONCLUSION

Methodology for modelling dry matter:

Dagan DT, Wilkins EJ (2023) Journal of Outdoor Recreation and Tourism 100668
Wang Z et al. (2022) Computers & Chemical Engineering 165: 107945

- Complex process
- ➤ No global equation
- Huge amount of data

Need an appropriate and data-driven method

(Generalized) Linear Regression

- → Known function
- → Additivity of effects
- → Easy interpretation

Machine Learning

- → Ability to detect complex relationships
- → High prediction power

→ Black box: difficult interpretation

How to implement a Machine Learning approach to optimize dry matter?

METHOD

Data obtained from one cheese company over a one year period:

Classical pre-processing of data = obtain the database suitable for analysis

In collaboration with industrial experts

- → Remove **redundant variables**
- → Remove **outliers**
- → Remove missing data

Data obtained from one cheese company over a one year period:

Classical pre-processing of data = obtain the database suitable for analysis

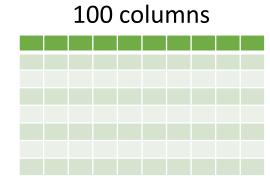
In collaboration with industrial experts

- → Remove **redundant variables**
- → Remove **outliers**
- → Remove missing data

After pre-processing:

Nb. individuals (production vat): ~ 3000

Nb. variables : ~ 100



Selection of Machine Learning methods:

Breiman L (2001) Friedman JH (1999) Boser et al. (1992)

RANDOM FOREST (2001)

Uses a set of decision trees built on random sub-samples of the training data

GRADIENT BOOSTING (1999)

Builds decision trees sequentially, with each new tree correcting the errors of the previous ones

Selection of Machine Learning methods:

Breiman L (2001) Friedman JH (1999) Boser et al. (1992)

RANDOM FOREST (2001)

Uses a set of decision trees built on random sub-samples of the training data

GRADIENT BOOSTING (1999)

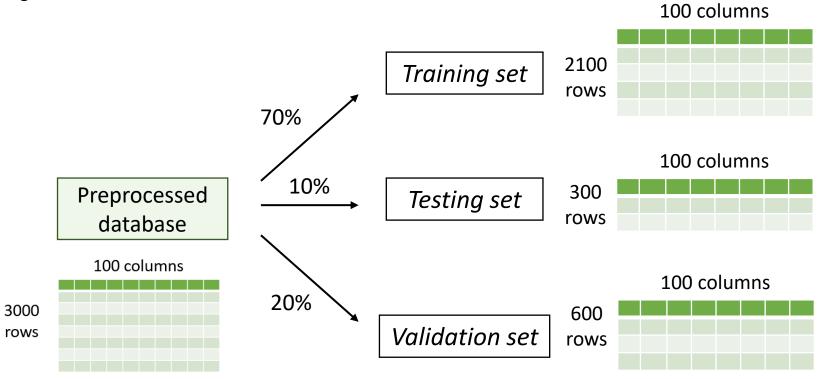
Builds decision trees sequentially, with each new tree correcting the errors of the previous ones

SUPPORT VECTOR MACHINE (SVM) (1992)

Find the optimal hyperplane that separates or fits the data

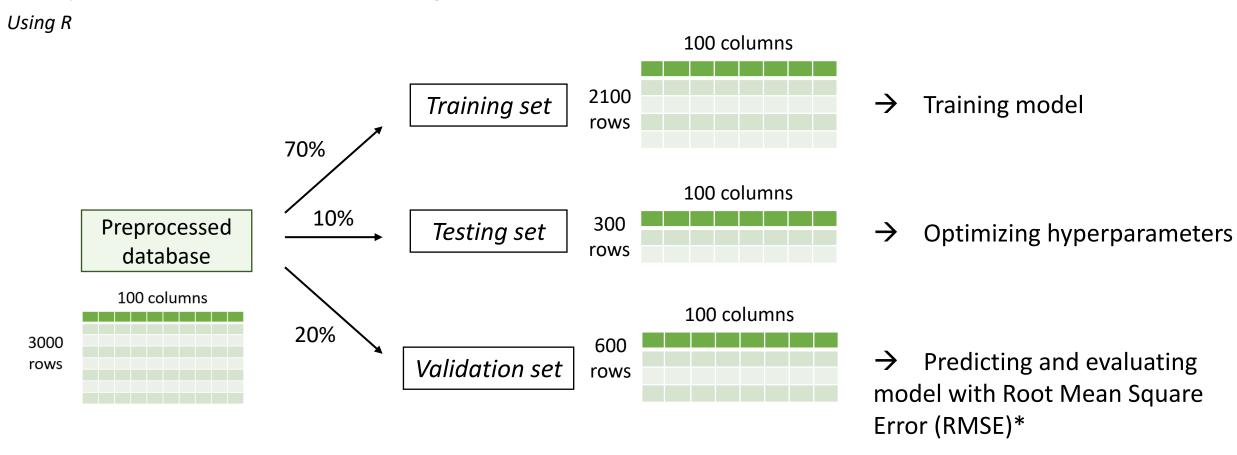
Comparison of Machine Learning methods:

Using R



Comparison of Machine Learning methods:

*RMSE (Root mean square error) = Standard deviation of the residuals (prediction error)



→ Resampling techniques (cross-validation, bootstrap, out-of-bag) can be used to optimize hyperparameters

CONTEXT METHOD RESULTS CONCLUSION

Interpretation of Machine Learning models:

Breiman L (2001) Machine Learning Lundberg SM et al. (2018) Computer Science, Mathematics

Importance of variables in model:

Using R

<u>Principle:</u> Calculate the importance of variables in the model for predicting dry matter

Rank variables according to their importance in predicting the variability of the target

Interpretation of Machine Learning models:

Breiman L (2001) Machine Learning Lundberg SM et al. (2018) Computer Science, Mathematics

Importance of variables in model:

Using R

<u>Principle:</u> Calculate the importance of variables in the model for predicting dry matter

Rank variables according to their importance in predicting the variability of the target

Shapley value:

Using Python

Principle: modify one variable at a time, keeping all others constant, to assess its impact on dry matter

Assess the single effect of a variable

Interpretation of Machine Learning models:

Breiman L (2001) Machine Learning Lundberg SM et al. (2018) Computer Science, Mathematics

Importance of variables in model:

Using R

<u>Principle:</u> Calculate the importance of variables in the model for predicting dry matter

Rank variables according to their importance in predicting the variability of the target

Shapley value:

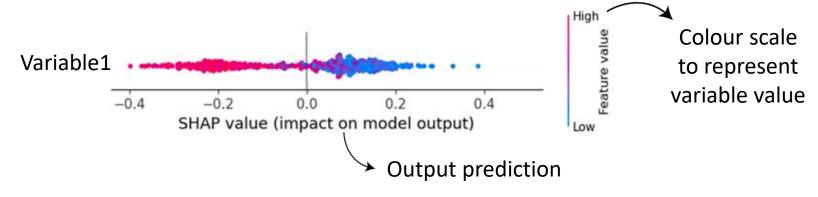
Using Python

Principle: modify one variable at a time, keeping all others constant, to assess its impact on dry matter

Assess the single effect of a variable

Results example:

One point = one prediction



RESULTS

Comparison of methods:

- > 3 machine learning methods and 1 classical statistical method
- > For each method: model training, hyperparameter optimization, model evaluation

Comparison of methods:

- > 3 machine learning methods and 1 classical statistical method
- For each method: model training, hyperparameter optimization, model evaluation

Results of the four methods:

Method	RMSE
Random Forest	0.27
Gradient Boosting	0.35
Linear Regression	0.37
SVM	0.37

CONTEXT METHOD RESULTS CONCLUSION

Comparison of methods:

- > 3 machine learning methods and 1 classical statistical method
- For each method: model training, hyperparameter optimization, model evaluation

Results of the four methods:

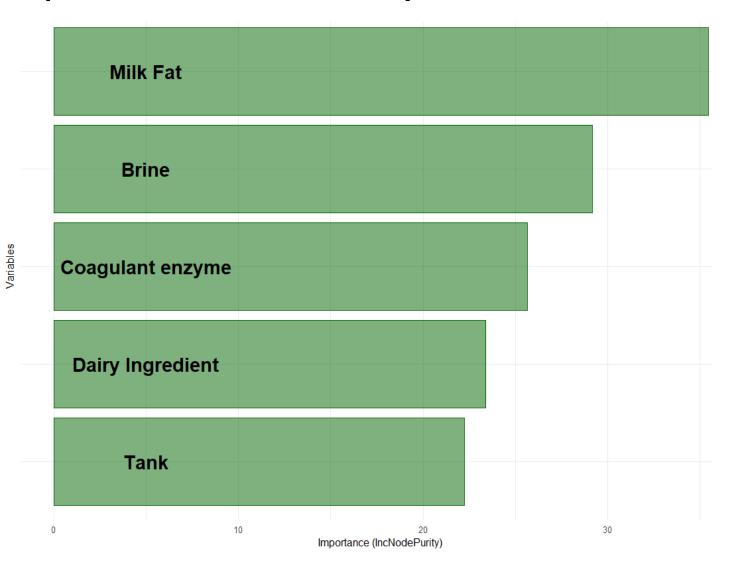
Method	RMSE
Random Forest	0.27
Gradient Boosting	0.35
Linear Regression	0.37
SVM	0.37

Selection of Random Forest to model dry matter

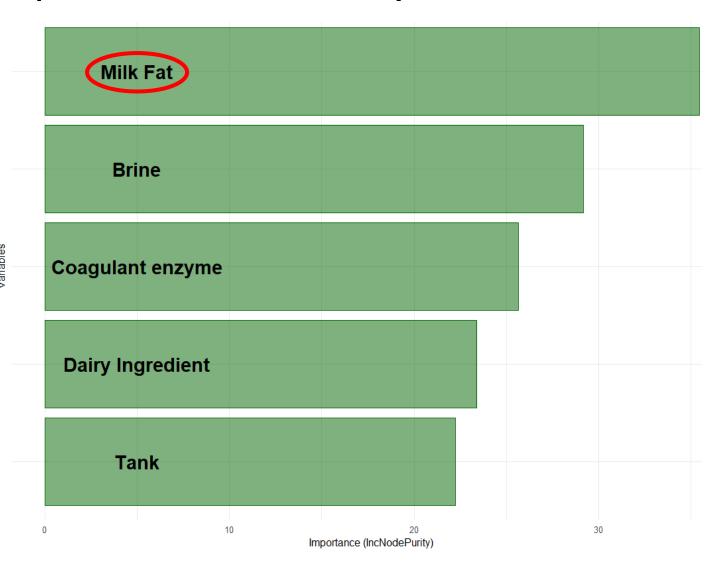
% of variability explained 66.6

Additional data could enhance this measurement and the accuracy of the model

Importance of variables on dry matter with Random Forest:



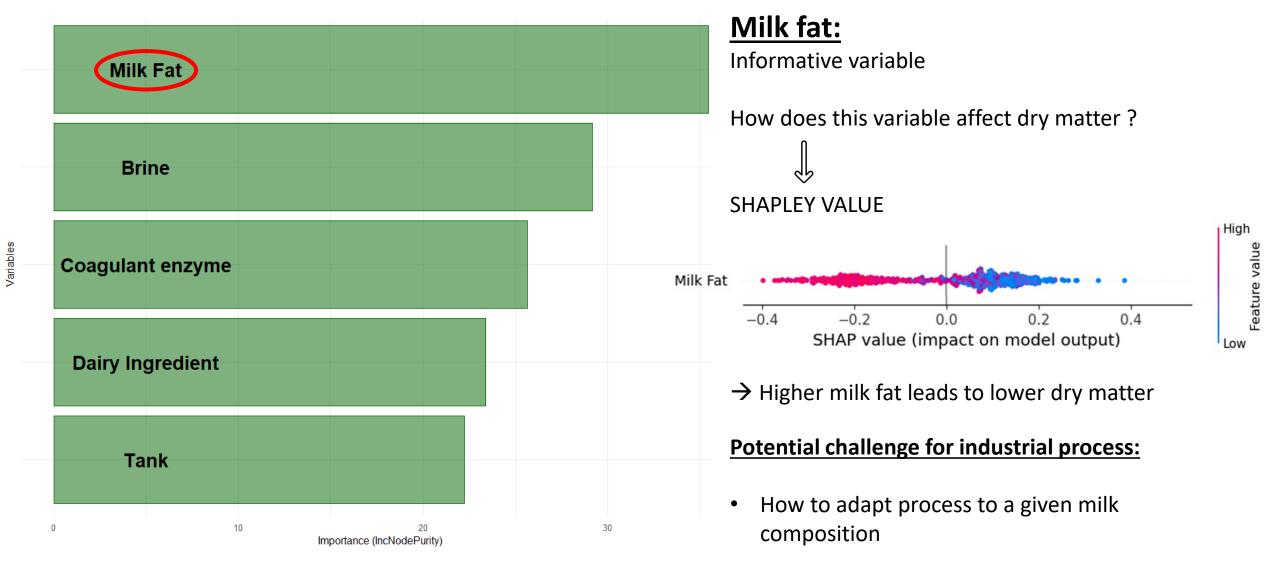
Importance of variables on dry matter with Random Forest:



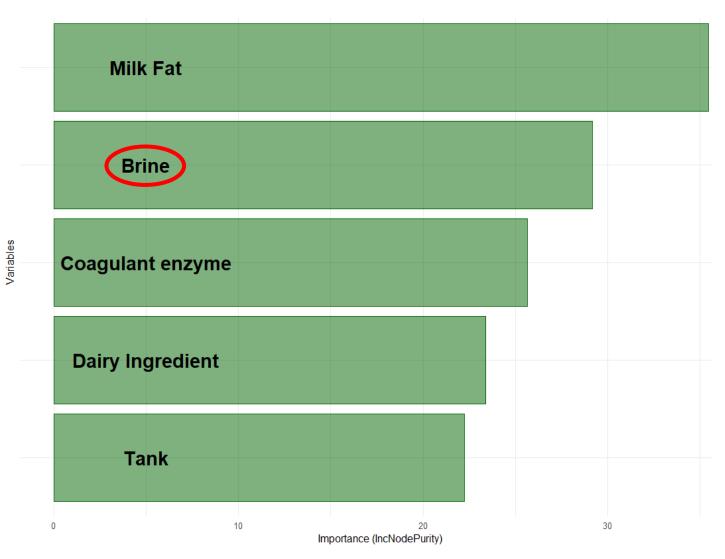
Milk fat:

Informative variable

Importance of variables on dry matter with Random Forest:



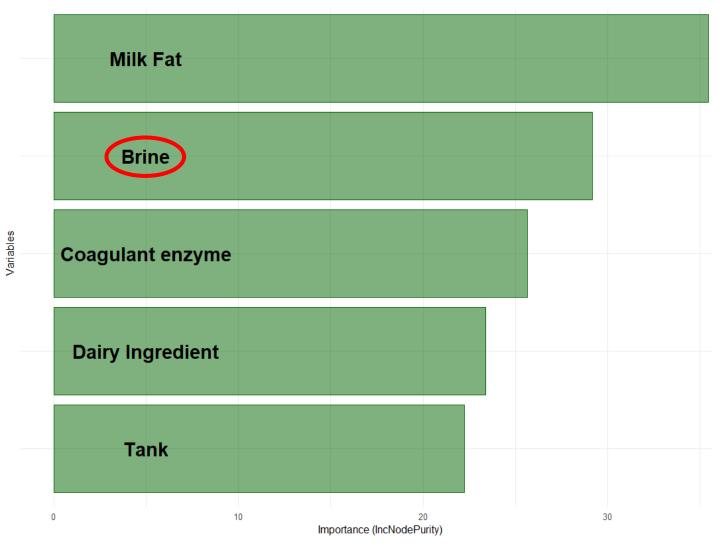
CONTEXT



Brine:

Cheese position in the brine pool

Informative variable



Brine:

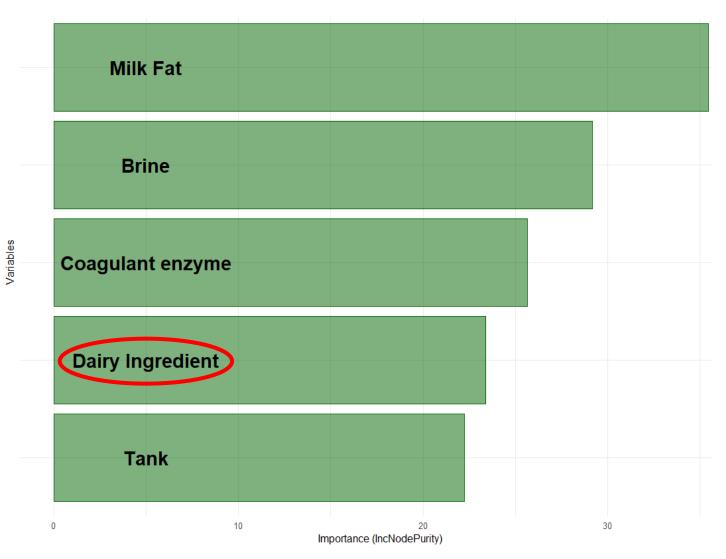
Cheese position in the brine pool

Informative variable

Potential challenge for industrial process:

- Checking information with experts
- Measuring new data

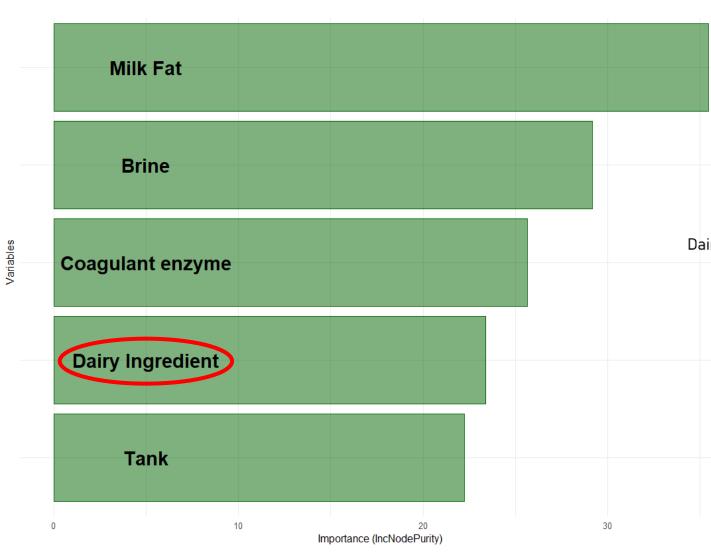
CONTEXT



Dairy ingredient:

Quantity of dairy ingredient incorporated for standardization

Actionable variable

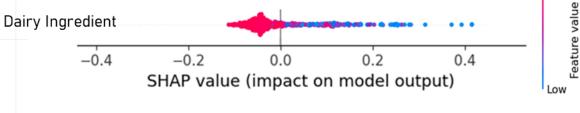


Dairy ingredient:

Quantity of dairy ingredient incorporated for standardization

Actionable variable

SHAPLEY VALUE:



→ Higher amount of dairy ingredient leads to lower dry matter

Potential challenge for industrial process:

 Understand the impact of this ingredient to better adapt standardisation High

CONCLUSION AND PERSPECTIVES

CONCLUSION

- Machine Learning establish complex relationships between process parameters and dry matter
- Essential collaboration with experts to understand output of the model and overall data
- Need for a large database to implement machine learning methods

CONCLUSION

- Machine Learning establish complex relationships between process parameters and dry matter
- Essential collaboration with experts to understand output of the model and overall data
- Need for a large database to implement machine learning methods

PERSPECTIVES

- Cheese production defined by several performance indicators
- Machine learning methods learn from data: industrial trials can provide new information
- Known equation could be integrated into modelling: hybrid model

IDF Cheese Science & Technology Symposium

Thanks for your attention!

<u>Contact</u>: manon.perrignon@agrocampus-ouest.fr

