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Abstract. The evaluation of streamflow predictions forms an
essential part of most hydrological modelling studies pub-
lished in the literature. The evaluation process typically in-
volves the computation of some evaluation metrics, but it
can also involve the preliminary processing of the predic-
tions as well as the subsequent processing of the computed
metrics. In order for published hydrological studies to be re-
producible, these steps need to be carefully documented by
the authors. The availability of a single tool performing all
of these tasks would simplify not only the documentation by
the authors but also the reproducibility by the readers. How-
ever, this requires such a tool to be polyglot (i.e. usable in a
variety of programming languages) and openly accessible so
that it can be used by everyone in the hydrological commu-
nity. To this end, we developed a new tool named evalhyd
that offers metrics and functionalities for the evaluation of
deterministic and probabilistic streamflow predictions. It is
open source, and it can be used in Python, in R, in C++, or
as a command line tool. This article describes the tool and
illustrates its functionalities using Global Flood Awareness
System (GloFAS) reforecasts over France as an example data
set.

1 Introduction

Whether it is referred to as validation, evaluation, or verifi-
cation (Beven and Young, 2013, Sect. 5), the action of com-
paring streamflow model outputs against streamflow obser-
vations is routinely performed by hydrological modellers.
This comparison is typically carried out to estimate model
parameters or to assess model performance. To these ends,

one or more measures of the goodness of fit between stream-
flow time series is used, sometimes referred to as objective
functions, performance metrics, or verification scores, de-
pending on the context. While there are a variety of metrics
to perform such a task (Crochemore et al., 2015; Anctil and
Ramos, 2017; Huang and Zhao, 2022), those that are cho-
sen are often the same, for instance the Nash—Sutcliffe effi-
ciency (NSE; Nash and Sutcliffe, 1970) or the Kling—Gupta
efficiency (KGE; Gupta et al., 2009) for the deterministic
evaluation of streamflow predictions and the Brier score (BS;
Brier, 1950) or the continuous rank probability score (CRPS;
Hersbach, 2000) for the probabilistic evaluation of stream-
flow predictions. Note that we use the term predictions as
an umbrella term to include both simulations and forecasts
(see definitions in Beven and Young, 2013, Sect. 3). More-
over, before computing the metrics, streamflow time series
are often subject to some preliminary processing (e.g. han-
dling of missing data, data transformation, or selection of
events), and after being computed, the metrics can also be
subject to some subsequent processing (e.g. sensitivity anal-
ysis or uncertainty estimation).

The computation of the metrics described in the literature
is sometimes performed directly as part of the workflow of
analysing the predictions, which is error-prone and hardly
traceable unless carefully explained in the publication. In
other cases, specific tools dedicated to the computation of the
metrics are used, but they can be private or under commercial
licensing, which limits their accessibility; they are not always
open source, which limits their transparency; or they rely on
a specific programming language (e.g. Python, R, Matlab, or
Julia), which limits their universality. The existence of differ-
ent tools is unavoidable when they are language specific. This
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may lead to discrepancies in the computation of the metrics
or discrepancies in the preliminary and subsequent process-
ing steps inherent to the evaluation workflow. Together, these
discrepancies are likely impeding the reproducibility of pub-
lished results in hydrological sciences (Hutton et al., 2016;
Stagge et al., 2019).

Unlike meteorological predictions, which are typically is-
sued on a spatial grid, hydrological predictions are often
issued at discrete locations along the river network, typi-
cally but not exclusively where hydrometric stations are lo-
cated. In addition, hydrological predictions often focus on
specific extreme events (i.e. floods or droughts). In hydrol-
ogy, evaluation tools thus have to be adapted to these situa-
tions. A variety of evaluation tools with varying degrees of
adequacy for the specificities of hydrological predictions ex-
ist. Inventories of tools specific to hydrology can be found
in Slater et al. (2019) and at https://cran.r-project.org/view=
Hydrology (last access: 23 June 2023) for R or at https:
//github.com/raoulcollenteur/Python-Hydrology-Tools (last
access: 23 June 2023) for Python. The Ensemble Verifi-
cation System (EVS; Brown et al., 2010) is certainly the
most advanced example of an evaluation tool dedicated
to discrete hydrometeorological ensemble predictions. But
one major drawback of EVS is that it requires the in-
puts to be provided as data files of a certain non-standard
format. This requires reformatting model outputs, which
can be truly limiting and inefficient when dealing with
large sets of model outputs (e.g. large model ensembles
or large samples of catchments). In addition, the use of
a non-standard file format limits its integration into repro-
ducible analysis workflows (Knoben et al., 2022). Other
evaluation tools have been developed, mostly from the
meteorological community, e.g. verification (https:
/[cran.r-project.org/web/packages/verification, last access:
10 May 2023) or scoringRules (https://cran.r-project.
org/web/packages/scoringRules, last access: 10 May 2023)
in R and ensverif (https://pypi.org/project/ensverif, last
access: 10 May 2023) or properscoring (https:/pypi.
org/project/properscoring, last access: 10 May 2023) in
Python. However, these are not specific to hydrology, they
lack preliminary and subsequent processing aspects, or they
feature a limited diversity of metrics.

In this context, an evaluation tool that is tailored to hy-
drology (both in terms of the richness in the metrics it gives
access to and the relevance of the functionalities it features)
and that can be used in a variety of programming languages
has the potential to offer a community-wide solution to im-
prove the reproducibility of published hydrological studies.
Indeed, the packaging of all these aspects into a single tool
lessens the need to provide detailed explanations in scientific
publications while guaranteeing the ability of readers and re-
viewers alike to perform the same processing and computa-
tions and to apply the same hypotheses. This article presents
evalhyd, an evaluation tool specifically designed to meet
such needs in hydrological evaluation. In particular, it is
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freely accessible (no commercial licensing), it is transpar-
ent (open source), it is efficient (with a compiled core), and
it is universal (with Python, R, C++, and command line in-
terfaces). In addition, it features advanced methods to evalu-
ate hydrological predictions, such as data stratification, boot-
strapping, and multivariate scoring, which contribute to ad-
vancing and harmonising best practices in hydrological eval-
uation.

This article first describes the objectives of the tool before
turning to its design principles, its main functionalities, and
its available evaluation metrics. Then, a case study using the
tool is provided as an illustration of its capabilities. Finally,
the limitations and the perspectives for further developments
of the tool are discussed.

2 Objectives of the tool

The purpose of evalhyd is to provide a utility to evalu-
ate streamflow predictions. It aims to feature the most com-
monly used metrics for deterministic and probabilistic eval-
uation (see e.g. Huang and Zhao, 2022), as well as all the
necessary functionalities required to preliminarily process
the data analysed and subsequently process the metrics com-
puted. Typically, these features are rarely documented in the
literature, and this can limit the reproducibility of research
findings (Hutton et al., 2016).

In line with the third principle for open hydrology advo-
cated for by Hall et al. (2022), the tool must be open access.
The tool must also be polyglot, which means that it must be
usable in a variety of open-source programming languages in
order to be usable by as many users as possible. In practice,
this means that a separate package must be available for each
programming language, thus forming a software stack.

3 Design principles
3.1 A compiled core with thin bindings

The software stack, named evalhyd, features a core li-
brary written in C++, named evalhyd-cpp, which imple-
ments all the available functionalities and evaluation met-
rics. The implementation of the core is written in a compiled
language to be computationally efficient. This is important
since large-sample studies (see e.g. Gupta et al., 2014) and
large hydrometeorological ensembles (see e.g. Schaake et al.,
2007) have become very common in hydrological model
evaluation studies. In fact, evalhyd has already been ap-
plied to large-sample studies with multi-model approaches
(Thébault, 2023).

In addition, the stack features bindings, which are distinct
packages the only purposes of which are to allow the core to
interface with high-level programming languages. These are
named evalhyd-python for Python and evalhyd-r
for R. They are intended to be as thin as wrappers can be
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to avoid duplicated efforts across bindings. The core library
is also directly usable in C++ as a header-only library. A
command line interface, named evalhyd-c11i, also exists
for those not using any of the programming languages men-
tioned. The only drawback to the latter is that it is only able
to work via intermediate data files, which presents the same
limitations as EVS of relying on a specific data file format.
In contrast, the Python and R bindings work directly with
the native data structures of those languages, thus completely
eliminating the need to decide on a specific file format and
allowing for any model output to be processed without re-
quiring them to be reformatted.

Note that both the core library and the bindings use
the libraries from the xtensor software stack underneath
(https://github.com/xtensor-stack, last access: 12 May 2023),
and in particular, they leverage the bindings available for
multiple programming languages (i.e. xtensor-python
and xtensor-r). As such, there is scope for the de-
velopment of a binding for Julia in the future (i.e. using
xtensor—julia).

For the remainder of this article, we will refer to the soft-
ware stack as evalhyd for convenience, since all the func-
tionalities and evaluation metrics are available in all pack-
ages.

3.2 A two-entry-point interface

Across the software stack, the interfaces are intentionally
kept as similar as possible despite the syntactic differences
across programming languages (as illustrated in Figs. 1 and
Al). Thus, users of different evalhyd packages can eas-
ily help each other, and this also minimises inconveniences
when users transition from one language to another.

Each package has two entry points to its interface, named
evald and evalp, which are two functions for the eval-
uation of deterministic predictions (see trivial examples in
Fig. 1) and probabilistic predictions (see trivial examples in
Fig. Al), respectively. Note that the names and the order of
the parameters of these two entry points are strictly identical
across the software stack.

3.3 A multi-dimensional paradigm

Both the evald and evalp entry points take multi-
dimensional data sets as inputs to accommodate the specific
needs identified for deterministic and probabilistic predic-
tions, as detailed below.

For probabilistic evaluation, streamflow predictions Qprd
are at minimum two-dimensional (Qpq € RY*T; with di-
mensions M for the ensemble members and 7 for the time
steps), corresponding to an ensemble forecast for a given
site and a given lead time. However, there are also metrics
that need computing on multiple sites or on multiple lead
times at once. This is why the predictions are expected to

be four-dimensional (Qprg € RS*L*M*T with dimensions
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S for the sites, L for the lead times, and M and T as pre-
viously) and why the observations Qups are expected to be
two-dimensional (Qops € R5*7T). Note that the input ranks
are kept fixed even if the problem does not require all dimen-
sions. For example, even if the problem only features one
site and one lead time, the predictions must be made four-
dimensional.

For deterministic evaluation, streamflow predictions Qpq
are at minimum one-dimensional (Qp4 € R, correspond-
ing to a simulation for a given site. However, it seems op-
portune to accommodate multiple simulation time series, as
is the case in Monte Carlo simulations, deterministic fore-
casts for multiple lead times, or multi-model approaches, for
example. This is why the predictions are expected to be two-
dimensional (Qprq € RX*T with dimension X for the series,
which could be lead times in a forecasting context or samples
in a Monte Carlo simulation context, and 7 as previously),
for example, and the observations Qqps are expected to be
two-dimensional (Qups € R'*T; with dimension T as previ-
ously). Note that for convenience, the Python and R bindings
allow for one-dimensional inputs, which can be useful when
used in a model parameter estimation context (i.e. Qprd € RT
and Qops € RT).

4 Key functionalities
4.1 Memoisation

Certain evaluation metrics require the same intermediate
computations. For example, the Nash—Sutcliffe efficiency
(Nash and Sutcliffe, 1970) and the Kling—Gupta efficiency
(Gupta et al., 2009) both require computation of the observed
variance, so it is more computationally efficient to compute
this variance once and reuse it if both metrics are requested
by the user.

In computer science, this refers to the concept of memoisa-
tion (or memo functions) first introduced by Michie (1968) in
the context of machine learning. The evalhyd tool applies
this concept by isolating the recurrent intermediate compu-
tations across the evaluation metrics and by storing these for
potential later reuse if multiple metrics are requested at once.
This is why the user is advised to request all desired metrics
in a single call to evalhyd rather than in separate calls.

4.2 Handling of missing data

Streamflow observations are seldom complete, and miss-
ing data are very common. Various data filling methods ex-
ist to overcome this problem (see e.g. Gao et al., 2018,
for a review), but this is typically done by the stream-
flow data providers themselves where possible, so it is not
deemed a task that an evaluation tool should perform. There-
fore, if streamflow observations remain lacunar, evalhyd
disregards the time steps where observations are missing
(i.e. where they are set as “not a number”).

Geosci. Model Dev., 17, 4561-4578, 2024
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(a) C++ interface

#include <xtensor/xtensor.hpp>
#include <evalhyd/evald.hpp>

xt::xtensor<double, 2> obs =
{{4.7, 4.3, 5.5, 2.7, 4.1}};

xt:: xtensor<double, 2> prd =
{{5.3, 4.2, 5.7, 2.3, 3.1},
{4.3, 4.2, 4.7, 4.3, 3.3},
{5.3, 5.2, 5.7, 2.3, 3.9}};

© W N e LA W =

10 auto res = evalhyd::evald(obs, prd, {"NSE"});

(c) Rinterface

1 library(evalhyd)

2

3 obs &« rbind(c(4.7, 4.3, 5.5, 2.7, 4.1))
+ prd « rbind(c(5.3, 4.2, 5.7, 2.3, 3.1),
s c(4.3, 4.2, 4.7, 4.3, 3.3),
6 c(5.3, 5.2, 5.7, 2.3, 3.9))

7 res ¢« evalhyd::evald(obs, prd, c("NSE"))

T. Hallouin et al.: EvalHyd v0.1.2

(b) Python interface

import numpy
import evalhyd

O T

obs = numpy.array([[4.7, 4.3, 5.5, 2.7, 4.1]1)

prd = numpy.array([[5.3, 4.2, 5.7, 2.3, 3.1],
4.3, 4.2, 4.7, 4.3, 3.31,
[5.3, 5.2, 5.7, 2.3, 3.911)

®

res = evalhyd.evald(obs, prd, ["NSE"])

(d) Command line interface

1 cat "./obs.csv"
4.7,4.3,5.5,2.7,4.

(Y

~

cat "./prd.csv"

5.3,4.2,5.7,2.3,3.1
4.3,4.2,4.7,4.3,3.3
5.3,5.2,5.7,2.3,3.9

7

3 res=$(evalhyd evald "./obs.csv" "./prd.csv" "NSE")

Figure 1. Comparison of the interfaces for the deterministic entry point evald across the evalhyd software stack through a simple
example evaluating deterministic predictions (prd) of shape [series : 3, time : 5] against observations (obs) of shape [series : 1, time : 5]
using the Nash—Sutcliffe efficiency (NSE): (a) C++ interface fed with xtensor data structures, (b) Python interface fed with numpy data
structures, (¢) R interface fed with R data structures, and (d) command line interface fed with data in CSV files.

issued on valid for
Dates 2017-01-01  2017-01-02  2017-01-03  2017-01-04 2017-01-05 2017-01-06  2017-01-07
Predictions  1-day lead time 312 335 358
2-day lead time NaN 364
3-day lead time (: NaN 361
Observations 351 367 377 378 330

Figure 2. Illustration of the need to insert not a number values (symbolised by hollow rounded rectangles containing NaN) before and/or
after the prediction series to align the prediction validity dates (i.e. issue date + lead time) with the observation dates when several lead times
are considered at once. This example features a small fictitious situation where daily forecasts are issued on 4 consecutive days (1, 2, 3, and
4 January 2017) for three lead times (1, 2, and 3 d). Each filled rounded rectangle contains a fictitious streamflow value (predicted on the first

three rows, observed on the last row).

In addition, for the case of probabilistic evaluation, some
streamflow prediction values may also need to be flagged as
not a number. This is illustrated in Fig. 2 for a fictitious data
set featuring daily predictions for three lead times. By de-
sign, evalhyd expects only one observation time series for
a given site. Therefore, when several lead times are consid-
ered at once, a temporal shift in the predictions must be ap-
plied, and observed dates for which a forecast is not made
(i.e. where date # forecast issue date + lead time) must be
identified as not a number. That is because the earliest ob-
servations are not needed for the longer lead times, and the
latest observations are not needed for the shorter lead times.

Geosci. Model Dev., 17, 4561-4578, 2024

4.3 Masking

Depending on the context of the evaluation, it may be desir-
able to consider only sub-periods of the streamflow records:
for example, to focus on specific flood or drought events or
more generally to consider only high or low flows. In the
literature, this is sometimes referred to as conditional veri-
fication and is often used to stratify the evaluation into dif-
ferent meteorological and/or hydrological conditions to diag-
nose specific physical processes that prevail under particular
conditions (Casati et al., 2008, 2022) and to avoid averaging
out different forecast behaviours (Bellier et al., 2017). The

https://doi.org/10.5194/gmd-17-4561-2024
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Figure 3. Illustration of the temporal-masking functionality. The first two rows correspond to the prediction and observation time series
provided by the user (each filled rounded rectangle contains a fictitious streamflow value). The third row corresponds to the temporal mask
provided by the user as a Boolean sequence: it features the same length as the time series, and it contains True at the indices to consider
in the evaluation (i.e. second, third, fifth, and seventh) and False at the indices to ignore in the evaluation (i.e. first, fourth, and sixth). The
result of the masking is displayed in the last two rows, where only the second, third, fifth, and seventh predicted and observed streamflow

values have been retained for the evaluation.

evalhyd tool offers two avenues to perform such subsets:
temporal masking and conditional masking.

Temporal masking corresponds to directly providing a
mask (i.e. a sequence of Boolean values of the same length as
the streamflow time series) the values of which are set to true
for those time steps that should be considered in the evalu-
ation and to false otherwise (see Fig. 3 for a trivial example
illustrating the masking mechanism). This mask is typically
expected to be generated by the user in the high-level pro-
gramming language of their choice.

Conditional masking is a convenient alternative to gener-
ating the temporal mask for the user through the specifica-
tion of (a) condition(s). The condition(s) can be based on
streamflow values (either streamflow observations or mean
or median streamflow predictions) or on time indices. Table 1
provides examples of the syntax used to specify such con-
ditions alongside the plain meanings. Setting conditions on
streamflow values is helpful to focus the evaluation on partic-
ular flow ranges (e.g. low flows or high flows) by specifying
streamflow thresholds, whereas setting conditions on time in-
dices is helpful to focus on specific flow events (e.g. notable
floods or droughts) by selecting relevant time steps. Note
that the conditional-masking functionality must be employed
with care as it can lead to some synthetic bias in the evalua-
tion, as explained in the Limitations section of this article.

Note that the concept of memoisation is also applied by
evalhyd if several masks are provided. Since metrics typi-
cally compute some form of error between pairs of observa-
tion and prediction time steps before applying some form of
temporal reduction (e.g. sum or average), it is computation-
ally more efficient to store the error computed for individual
pairs before reducing them according to the various masks
(i.e. subset periods) provided or generated.

https://doi.org/10.5194/gmd-17-4561-2024

4.4 Data transformation

It is common practice in hydrology to apply transform func-
tions to streamflow data prior to the computation of the eval-
uation metrics. This is typically done because hydrological
models tend to produce larger errors in flows of higher mag-
nitude, which results in putting more emphasis on high-flow
periods when computing the metric. To reduce the emphasis
on high flows or to change the emphasis altogether, various
transform functions can be applied (see e.g. Krause et al.,
2005; Oudin et al., 2006; Pushpalatha et al., 2012; Pechli-
vanidis et al., 2014; Garcia et al., 2017; Santos et al., 2018).

The evalhyd tool offers several data transformation
functions to apply to both the streamflow observations and
predictions prior to the computation of the evaluation met-
rics. These include the natural logarithm function, the recip-
rocal function, the square root function, and the power func-
tion. For those functions not defined for zero (i.e. the recip-
rocal function, the natural logarithm, or the power function
with a negative exponent), a small value is added to both the
streamflow observations and predictions as recommended by
Pushpalatha et al. (2012): by default 1/100 of the mean of the
streamflow observations is used, but it can be customised by
the user.

This functionality is the only one that is applicable only to
deterministic predictions, i.e. via the evald entry point, be-
cause it is currently only common practice in a deterministic
context. Later versions of the tool could remedy this depend-
ing on user feedback.

4.5 Bootstrapping

It is crucial to assess the sampling uncertainty in the evalu-
ation metrics, that is to say their variability from one study

Geosci. Model Dev., 17, 4561-4578, 2024
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Table 1. Example of masking conditions possible in evalhyd.

T. Hallouin et al.: EvalHyd v0.1.2

Condition Plain meaning

On streamflow values

g_obs{>median}
g_prd_median{<=250}
g _prd_mean{<gtl0.8}

Consider periods where streamflow observations are greater than their median
Consider periods where median streamflow predictions? are lower than or equal to 2500
Consider periods where mean streamflow predictions? are lower than their 80th percentile

On time indices

t{20:53}
t{12,13,14}

Consider the period from 21st® time step to 53rd® time stepd
Consider the period including 11th®, 12th®, and 13th® time steps

2 conditions on streamflow predictions are only available for probabilistic evaluation

b

streamflow unit in this condition is assumed to be the same as in the input data

¢ indexing starts at zero (i.e. the first time step is at index 0) d the last index is not included

period (i.e. one sample) to another. Clark et al. (2021) recom-
mend using a non-overlapping block bootstrapping method,
where blocks are taken as distinct hydrological years to pre-
serve seasonal patterns and intra-annual auto-correlation.

The evalhyd tool implements such a bootstrapping
functionality to provide an estimation of the sampling un-
certainty in the evaluation metrics it computes. The num-
ber of samples considered (i.e. the number of sub-periods
drawn from the whole period available in the data) and the
number of blocks (i.e. complete years) in each sample are
specified by the user. Then, the tool randomly samples years
within the whole study period with replacement accordingly
(see Fig. 4 for a trivial example illustrating the bootstrapping
mechanism). Once again, the concept of memoisation is ex-
ploited to avoid performing the same computations several
times from one sample to another. As many evaluation metric
values are computed as there are samples. These values can
be either returned directly or returned as summary statistics
(either mean and standard deviation or distribution of quan-
tiles). To generate the same samples from one evaluation to
the next, the seed of the pseudo-random-number generator
can be fixed by the user.

5 Evaluation metrics

The tool features a variety of metrics for the evaluation of de-
terministic and probabilistic streamflow predictions. The col-
lection of deterministic metrics is presented in Table 2, while
the collection of probabilistic metrics is presented in Table 3.
The deterministic metrics are accessible via the evald en-
try point, and the probabilistic metrics are accessible via the
evalp entry point.

Skill scores are sometimes used to compare the score of
the predictions with the score of a reference, e.g. the Kling—
Gupta efficiency skill score (KGESS) from KGE (Knoben
et al., 2019) or the continuous rank probability skill score
(CRPSS) from CRPS (see e.g. Yuan and Wood, 2012). They
are formulated as the difference between the prediction score

Geosci. Model Dev., 17, 4561-4578, 2024

and the reference score divided by the difference between
the perfect score and the reference score (see e.g. Wilks,
2011, Eq. 8.4). However, the reference is not always clearly
defined. Therefore, evalhyd only provides the scores for
which this is the case: the Nash—Sutcliffe efficiency (NSE)
where the reference is taken as the mean of the observations
(i.e. the sample climatology), the relative operating curve
skill score (ROCSS) where the reference is taken as random
forecasts, and the Brier skill score (BSS) where the reference
is taken as the sample climatology (i.e. constant forecasts
of the sample climatological relative frequency that analyt-
ically correspond to the uncertainty term of the Brier score;
see Wilks, 2011, Eq. 8.43). For all other metrics, the refer-
ence needs to be chosen by the user before evalhyd can be
used to separately compute the prediction score and the refer-
ence score. Then, they can be combined following the ratio-
based formulation mentioned above to obtain the skill score.
The illustrative example in the following section provides
a demonstration of this, where the CRPSS is computed us-
ing two references provided by the user (the persistence and
the climatology). To perform bootstrapping on such custom-
made skill scores, the samples must be the same for the pre-
diction score and the reference score; otherwise, they will not
be compared for the same periods. To do so, the seed used by
the bootstrapping functionality can be fixed to the same given
value for the computation of both scores.

6 Illustrative example

In order to illustrate the capabilities of evalhyd, open-
access data sets were chosen from the literature and evalu-
ated. The prediction data chosen are the ones produced by
Zsoter et al. (2020) and correspond to river discharge refore-
casts from the Global Flood Awareness System (GloFAS) for
the period of 1999-2018. The observation data chosen are the
ones produced by Harrigan et al. (2021) and correspond to
river discharge reanalysis data from the GloFAS hydrological
modelling chain forced with ERAS5 meteorological reanaly-

https://doi.org/10.5194/gmd-17-4561-2024
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Figure 4. Illustration of the bootstrapping functionality. The first two rows correspond to the prediction and observation time series provided
by the user (each time step is symbolised by a vertical coloured stick) covering a period of 9 years that is sliced into non-overlapping blocks
of 1 year each. The bootstrapping functionality is then applied with two parameters: a number of samples equal to four and a length of 10
years for each sample. It produces four synthetic samples made of 10 randomly drawn (with replacement) year blocks that are concatenated
to form four pairs of 10-year-long time series of predictions and observations.

Table 2. Collection of deterministic metrics available via the evald entry point in evalhyd.

Identifier Range? Unit® Details Related references

MAE [0, +00) Sameas g Mean absolute error Willmott and Matsuura (2005), Mo-
riasi et al. (2007)

MARE [0, +00) Sameas g Mean absolute relative error? -

MSE [0, +00) Sameasg Mean square error Moriasi et al. (2007)

RMSE [0, +00) Sameasqg Root mean square error Barnston (1992), Willmott and
Matsuura (2005), Moriasi et al.
(2007)

NSE (=00, 1]  Unitless Nash-Sutcliffe efficiency Nash and Sutcliffe (1970)

KGE (—oo, 1]  Unitless Kling—Gupta efficiency Gupta et al. (2009)

KGE_D - Unitless Decomposition of the Kling—Gupta efficiency Gupta et al. (2009)

KGEPRIME (=00, 1] Unitless Modified Kling—Gupta efficiency Kling et al. (2012)

KGEPRIME_D - Unitless Decomposition of the modified Kling—Gupta efficiency  Kling et al. (2012)

CONT_TBL [0, +00)  Unitless Contingency table -

@ optimal value in bold where applicable
corresponds to MAE divided by the observed mean
¢ g means streamflow

b
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Table 3. Collection of probabilistic metrics available via the evalp entry point in evalhyd.

Identifier Range™* Unit Details Related references
BS [0, +00)  Unitless Brier score Brier (1950), Wilks (2011)
BSS (—o00, 1]  Unitless Brier skill score Hamill and Juras (2006), Wilks (2011)
BS_CRD [0, +00)  Unitless Calibration—-refinement decomposition ~ Wilks (2011)
of the Brier score (i.e. reliability, reso-
lution, and uncertainty)
BS_LBD [0, +00)  Unitless Likelihood—-base rate decomposition of ~ Wilks (2011)
the Brier score (i.e. type-2 bias, dis-
crimination, and sharpness)
REL_DIAG n/a Unitless Reliability diagram (i.e. forecast proba- ~ Weisheimer and Palmer (2014)
bilities, observed frequencies, and sam-
pling frequencies)
CRPS_FROM_BS [0, +00) Sameasqg Continuous ranked probability score —
derived from Brier scores
CONT_TBL [0, 4+00)  Unitless Contingency table -
POD [0, 1] Unitless Probability of detection -
POFD [0, 1] Unitless Probability of false detection -
FAR [0, 1] Unitless False alarm rate -
CsI [0, 1] Unitless Critical success index -
ROCSS (=00, 1]  Unitless Relative operating characteristic skill -
score
CRPS_FROM_ECDF [0, +00) Sameasqg Continuous ranked probability score  Hersbach (2000)
derived from empirical cumulative den-
sity function
Qs [0, +00) Sameas g Quantile scores Gneiting and Raftery (2007)
CRPS_FROM_0QS [0, +00) Sameasqg Continuous ranked probability score Gneiting and Ranjan (2011)
derived from quantile scores
RANK_HIST n/a Unitless Rank histogram Talagrand et al. (1997)
DS [0, 4+00)  Unitless Delta score Candille and Talagrand (2005), Anctil
and Ramos (2017)
AS [0, 1] Unitless Alpha score Renard et al. (2010)
CR [0, 1] Unitless Coverage ratio -
AW [0, +00) Sameasqg Average width -
AWN [0, +00) Average width normalised Bourgin et al. (2015)
WS [0, +00) Sameasqg Winkler score Winkler and Murphy (1979), Gneiting
and Raftery (2007)
ES [0, +00) Sameasqg Energy score Gneiting et al. (2008)

* optimal value in bold where applicable; n/a means not applicable

sis data for the period of 1979-2022. In addition, the study by
Harrigan et al. (2023) is used as it provides evaluation results
for this data set for the period of 1999-2018 using the CRPSS
computed against two different benchmarks (persistence and

Geosci. Model Dev., 17, 4561-4578, 2024

climatology). The persistence benchmark is “defined as the
single GloFAS-ERAS daily river discharge of the day preced-
ing the reforecast start date” (Harrigan et al., 2023), while the
climatology benchmark is “based on a 40-year climatological
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T. Hallouin et al.: EvalHyd v0.1.2

4569

(a) 15d (b) 20d

51°N 51°N
(] (]
o9 oo
48°N 48°N ®
. . o_®

1 H
45°N 45°N
42°N 42°N

5°W 2°W 1°E 4°E 7°E 10°E 5°W 2°W 1°E 4°E 7°E 10°E

(c) 25d (d) 30d

51°N 51°N
( 1Y L]

48°N ‘ 48°N

,.V
45°N 45°N
42°N 42°N

5°wW 2°W 1°E 4°E 7°E 10°E 5°wW 2°W 1°E 4°E 7°E 10°E
Sl S —
T T T
-1 0 1
CRPSS [-]

Figure 5. Continuous rank probability skill score (CRPSS) for the GloFAS reforecasts (v2.2) against the climatology benchmark. The CRPSS
is computed with evalhyd for all 23 GloFAS stations located in France and for four lead times (i.e. a — 15d, b -20d, ¢ —25d, and d —
30d), mirroring a zoomed-in version of Fig. 7 in Harrigan et al. (2023).

sample (1979-2018) of moving 31 d windows of GloFAS-
ERAS river discharge reanalysis values, centred on the date
being evaluated” (Harrigan et al., 2023). In this example, the
focus is put on the 23 GloFAS stations located in France.

The first objective of this example is to show that the re-
sults published by Harrigan et al. (2023) can be reproduced
using evalhyd. The second objective is to show the many
possibilities offered by the functionalities and the metrics of
evalhyd, which could be used to further analyse the refore-
casts, for instance.

6.1 Reproducing published results

Figure 5 (Fig. A2) provides the GloFAS reforecasts perfor-
mance against the climatology benchmark (against the per-
sistence benchmark) using the CRPSS. It focuses on 4 of the
17 lead times available, thus mirroring Fig. 6 (Fig. 7) in Har-
rigan et al. (2023). In order to be more precise and exhaustive
in the comparison between their published performance and
the performance obtained with evalhyd, Fig. 6 (Fig. A3)

https://doi.org/10.5194/gmd-17-4561-2024

provides a complete comparison of the performance against
the climatology benchmark (against the persistence bench-
mark) for each station and for each lead time. The data points
all lying on the 1 : 1 line demonstrates that the performance
is identical and, therefore, that the published results have in-
deed been successfully reproduced using evalhyd.

6.2 Showcasing some useful functionalities

The evaluation tool evalhyd features many more metrics
and functionalities than those used to reproduce the pub-
lished results above. This section makes use of the same Glo-
FAS reforecasts as an example data set to showcase some ad-
ditional functionalities available to further explore the perfor-
mance of streamflow (re)forecasts, e.g. estimate metric un-
certainty or focus on certain flow ranges.

Geosci. Model Dev., 17, 4561-4578, 2024



4570

CRPSS reproduced using evalhyd

G0518

G0554

G0565

G0664

T. Hallouin et al.: EvalHyd v0.1.2

G1584

G1585

™\
AN
AN
AN

AN

AN

G1586

G1587

G1588

G1589

G1590

G1591

>
™

AN
S

AN

AN

G1592

G1593

G1594

G1595

G1596

G1597

.
™

N\
N

i

N

G1598

G1599

G1600

G1601

G3694

G3695

AN
AN
™

AN

AN
N

G3699 G3716 G3851

.
AN
.

12345678910 12 14 16 18 20 25 30
lead time [days]

CRPSS as reported by Harrigan et al. (2023)

Figure 6. Comparison between the CRPSS reported in the supplement of Harrigan et al. (x axis; 2023) and the CRPSS computed using
evalhyd (y axis) against the climatology benchmark. Each panel represents one of the 23 GloFAS stations located in France, in each panel
the diagonal represents the 1:1 line, and each data point represents one of the 17 lead times in the GloFAS reforecasts (v2.2).

6.2.1 Uncertainty analysis using the bootstrapping
functionality

In order to estimate the sampling uncertainty in the met-
ric values, the evalhyd bootstrapping functionality can be
used (see Sect. 4.5 for details). Figure 7 showcases the results
obtained using this bootstrapping functionality with 1000
samples of 10 years each, summarised using a distribution
of quantiles and displayed as boxplots. The evaluation met-
ric used is the Brier skill score (BSS) versus the climatology
benchmark to assess the performance of the reforecasts in
predicting the exceedance of a threshold set as the 20th ob-
served percentile, and the 12 d lead time is also considered.

These results obtained with evalhyd can be used to ex-
plore the variability in performance across the GIoFAS sta-
tions, for example, by comparing the median performance
(varying from 0.323 to 0.903 here). In addition, the varying
widths of the boxes across the GloFAS stations (from 0.030
to 0.139 here) can be used as a measure of the uncertainty as-
sociated with the predictive performance of the flood events
from one station to another.

Geosci. Model Dev., 17, 4561-4578, 2024

6.2.2 Data stratification using the masking
functionality

The predictive performance of streamflow forecasts may vary
depending on the flow range considered (e.g. flood forecast-
ing vs. drought forecasting). Bellier et al. (2017) suggest
a forecast-based sample stratification for continuous scalar
variables in order to consider the merits of streamflow fore-
casts for different ranges of flows. Such analyses can be eas-
ily performed using the conditional-masking functionality of
evalhyd.

Figure 8 provides an example of stratifying the rank his-
togram into three components, one for low-flow periods (us-
ing the masking condition of periods where the predicted me-
dian is below the 30th predicted percentile), one for average-
flow periods (using the masking condition of periods where
the predicted median is between the 30th and the 70th pre-
dicted percentiles), and one for high-flow periods (using the
masking condition of periods where the predicted median is
above the 70th predicted percentile).

https://doi.org/10.5194/gmd-17-4561-2024
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Figure 7. Brier skill scores (BSS) on the exceedance of a 20th per-
centile threshold (x axis) for the GloFAS reforecasts (v2.2) against
the climatology benchmark for all 23 GloFAS stations located in
France (y axis) for a 12d lead time. Each boxplot represents the
sampling distribution obtained using the bootstrapping functional-
ity of evalhyd (with 1000 samples of 10 years each), where the
box is formed of the inter-quartile range (i.e. 25th-75th percentiles)
and is split using the median (i.e. 50th percentile), and the whiskers
stretch from the Sth to the 95th percentiles.

These results obtained with evalhyd can be used to ex-
plore the dispersion of the GloFAS reforecasts. For example,
for a given station (G0664, Le Bevinco at Olmeta-di-Tuda)
and a given lead time (6d), the U-shape of the histograms
for the low-flow and average-flow conditions suggests an
under-dispersion of the reforecasts, while the upslope shape
of high-flow conditions suggests a small negative bias.

6.2.3 Multivariate analysis using the multi-dimensional
paradigm

Gneiting et al. (2008) proposed the energy score (ES) as a
multivariate generalisation of the CRPS. This metric makes
it possible to aggregate the performance of several study
sites in order, for example, to explore regional trends in fore-
casting performance. The inclusion of multi-variate metrics
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would not have been possible without the multi-dimensional
paradigm chosen for evalhyd.

Figure 9 provides a multi-site equivalent of Fig. 5 by ag-
gregating the GloFAS stations into six main hydrographic
basins in France. The performance is measured against the
climatology benchmark using the energy skill score (ESS).
Given the varying number of stations in each basin, the ESS
is preferred over the energy score (ES) to allow for a com-
parison across basins.

These results obtained with evalhyd can be used to ex-
plore regional trends. For example, the performance for the
four lead times considered suggests that the reforecasts for
the Meuse, Seine, and Loire river basins are the most skilful
regardless of the lead time considered, while the reforecasts
for the Garonne and Corse river basins are the least skilful.

7 Limitations of the tool

Some limitations in the current version of evalhyd ex-
ist. In a hydrometeorological context, streamflow forecasts
are often produced as deterministic forecasts or as ensemble
forecasts to estimate the predictive probability distributions.
However, they can also be issued as continuous predictive
probability distributions. The evalhyd tool only offers a
solution for the first two situations, and the third situation is
not currently supported.

As part of the design process, there was a focus on com-
putational efficiency. This lead to the decision to rely on a
compiled language and to resort to memoisation. Arguably,
the former complicates the development effort compared to
interpreted languages. In addition, the latter complicates the
algorithms because the metric computations need to be de-
composed and because the temporal reduction needs to be
delayed for the masking functionality. Together, these design
decisions hamper contributions from the hydrological com-
munity, e.g. the inclusion of additional metrics. We believe
that this is an unavoidable compromise for the sake of effi-
ciency. Nevertheless, beyond efficiency considerations, rely-
ing on a compiled language also offers easier and cleaner op-
tions for exposing the metrics and the functionalities to sev-
eral interpreted languages instead of calling one interpreted
language from another, for instance.

Furthermore, another design decision was to focus on the
numerical aspect of streamflow evaluation, leaving aside its
visualisation aspect (e.g. plotting rank histograms and reli-
ability diagrams), unlike existing tools such as EVS, which
offers a graphical user interface (Brown et al., 2010). Be-
yond a healthy separation of concerns, this is also partly in-
fluenced by the fact that the compiled core is intended to fea-
ture all of the functionalities presented here and that visu-
alisation capabilities are more accessible in interpreted lan-
guages. Nonetheless, the data necessary to plot such figures
can be provided as numerical values to limit the effort on
the user’s side. This is already the case in evalhyd with

Geosci. Model Dev., 17, 4561-4578, 2024
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Figure 8. Rank histograms for the GloFAS reforecasts (v2.2) for GloFAS station G0664 (Le Bevinco at Olmeta-di-Tuda) and for the 6d
lead time, stratified using the conditional-masking functionality of evalhyd: (a) for predicted low-flow conditions (i.e. for periods where
the predicted median is below the 30th predicted percentile), (b) for predicted average-flow conditions (i.e. for periods where the predicted
median is above or equal to the 30th predicted percentile and below or equal to the 70th predicted percentile), and (c) for predicted high-flow
conditions (i.e. for periods where the predicted median is above the 70th predicted percentile).

the rank histogram (using the metric RANK_HIST) and the
reliability diagram (using the metric REL_DIAG).

Finally, the conditional-masking functionality currently
available in evalhyd only makes it possible to perform uni-
lateral conditional evaluation, that is to say that conditions
can be applied only to the observations or to the predictions
but not to both at the same time (i.e. bilateral conditional
evaluation). Unilateral conditioning may lead to synthetic
bias in the evaluation. For instance, if the condition is ap-
plied to predicted values exceeding a given flood threshold,
both “hits” and “false alarms” (in a contingency table sense)
will be considered, whereas bilateral conditioning makes it
possible to only consider the hits (Casati, 2023). In addition,
the conditional-masking functionality is only applicable to
the variable being evaluated (i.e. streamflow) and not to an
independent variable. For instance, one may want to evalu-
ate streamflow predictions only for days with exceptionally
intense rainfall, which is not possible with the conditional-
masking functionality as it currently stands. This may lead
to further synthetic bias when considering conditions for ex-
treme predicted values, which are bound to include both ex-
treme observed values and also more average ones, artifi-
cially accentuating the over-predictive character of the fore-
casts (Casati, 2023). Nonetheless, these two limitations in the
conditional-masking functionality can actually be avoided by
favouring the temporal-masking functionality, where the user
is free to create their own masks using conditions of their
choice.

Geosci. Model Dev., 17, 4561-4578, 2024

8 Conclusions and perspectives

In this article, a new evaluation tool for streamflow predic-
tions named evalhyd is presented. The current version
of this tool gives hydrologists access to a large variety of
the evaluation metrics that are commonly used to analyse
streamflow predictions. It also offers convenient and hydro-
logically relevant functionalities such as data stratification
and metric uncertainty estimation. The tool is readily avail-
able to a diversity of users as it is distributed as a header-
only C++ library, as a Python package, as an R package,
and as a command line tool. These packages are all available
on conda-forge (https://conda-forge.org, last access: 30 Jan-
uary 2024), the Python package is also available from PyPI
(https://pypi.org/project/evalhyd-python, last access: 30 Jan-
uary 2024), and the R package is also available from R-
universe (https://hydrogr.r-universe.dev/evalhyd, last access:
30 January 2024). These packages come with extensive on-
line documentation accessible at https://hydrogr.github.io/
evalhyd (last access: 30 January 2024).

The main limitations identified for the tool are the lack of a
visualisation functionality, the lack of support for the evalu-
ation of continuous probability distributions, and the limited
scope for extensibility by non-expert programmers.

Some of the developments envisaged for future versions of
the tool include the addition of other evaluation metrics, es-
pecially multivariate ones; the implementation of additional
bindings for other open-source languages (e.g. Julia or Oc-
tave); the addition of other preliminary processing options
(e.g. computation of commonly considered high-flow and
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Figure 9. Energy skill score (ESS) for the GIoFAS reforecasts (v2.2) against the persistence benchmark. The ESS is computed using the
multi-dimensional design of evalhyd for six main French hydrographic basins (from north to south — Meuse, Seine, Loire, Rhone, Garonne,
and Corse) and for four lead times, i.e. (a) 15d, (b) 20d, (c¢) 25d, and (d) 30d.

low-flow statistics, summary statistics on sliding windows,
etc.); and support for configuration files common across the
software stack to further simplify collaboration and repro-

ducibility.

Due to its polyglot character, this tool is aimed at the hy-
drological community as a whole, and we hope that it can
foster collaborations amongst its users without a program-
ming language barrier. The organisation of user workshops
could lead to new evaluation metrics and new evaluation
strategies, for example based on bilateral conditioning, that
could then be implemented in the tool to directly benefit our
community at large.
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Appendix A

(a) C++ interface

1 #include <xtensor/xtensor.hpp>
> #include <evalhyd/evalp.hpp>

4 xt::xtensor<double, 2> obs =

5 {{4.7, 4.3, 5.5, 2.7, 4.1}};

6 xt::xtensor<double, 4> prd =

7 {{{{5.3, 4.2, 5.7, 2.3, 3.1},

8 {4.3, 4.2, 4.7, 4.3, 3.3},

9 {5.3, 5.2, 5.7, 2.3, 3.9}}}};

10 xt::xtensor<double, 2> thr = {{4., 5.}};

1 auto res = (
12 evalhyd::evalp(obs, prd, {"BS"}, thr, "high")
13 );

(c) Rinterface

library(evalhyd)

1
2
5 obs « rbind(c(4.7, 4.3, 5.5, 2.7, 4.1))
4 prd &« array(

5 rbind(c(5.3, 4.2, 5.7, 2.3, 3.1),

6 c(4.3, 4.2, 4.7, 4.3, 3.3),

7 c(5.3, 5.2, 5.7, 2.3, 3.9)),

8 dim=c(1, 1, 3, 5)

s )

10 thr & rbind(c(4., 5.))

1 res « (

12 evalhyd::evalp(obs, prd, c("BS"), thr, "high")

T. Hallouin et al.: EvalHyd v0.1.2

(b) Python interface

® N v s W o

©

11

import numpy
import evalhyd

obs = numpy.array([[4.7, 4.3, 5.5, 2.7, 4.11]1)
prd = numpy.array([[[[5.3, 4.2, 5.7, 2.3, 3.1],
[4.3, 4.2, 4.7, 4.3, 3.31,
[5.3, 5.2, 5.7, 2.3, 3.91111)
thr = numpy.array([[4., 5.11

res = (
evalhyd.evalp(obs, prd, ["BS"], thr, "high")

(d) Command line interface

1

cat "./obs/site_a.csv"
4.7,4.3,5.5,2.7,4.1

cat "./prd/leadtime_1/site_a.csv"

5.3,4.2,5.7,2.3,3.1
4.3,4.2,4.7,4.3,3.3
5.3,5.2,5.7,2.3,3.9

cat "./thr/site_a.csv"
4.,5.

res=$(evalhyd evalp \
"./ODS/" "./pl"d/" nBg" \
--q_thr "./thr/" --events "high")

Figure A1. Comparison of the interfaces for the probabilistic entry point evalp across the evalhyd software stack through a simple ex-
ample evaluating ensemble predictions (prd) of shape [sites : 1, lead times : 1, ensemble members : 3, time : 5] against observations (obs)
of shape [sites : 1, time : 5] using the Brier score (BS) based on streamflow thresholds (thr) of shape [sites: 1, thresholds : 2] for flood
events (i.e. high flows): (a) C++ interface fed with xtensor data structures, (b) Python interface fed with numpy data structures, (¢) R
interface fed with R data structures, and (d) command line interface fed with data in CSV files in structured directories.
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Figure A2. Continuous rank probability skill score (CRPSS) for the GloFAS reforecasts (v2.2) against the persistence benchmark. The
CRPSS is computed with evalhyd for all 23 GIoFAS stations located in France and for four lead times, i.e. (a) 1d, (b) 3d, (¢) 5d, and
(d) 10d, mirroring a zoomed-in version of Fig. 6 in Harrigan et al. (2023).
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Figure A3. Comparison between the CRPSS reported in Harrigan et al. (2023, x axis) and the CRPSS computed using evalhyd (y axis)
against the persistence benchmark. Each panel represents one of the 23 GIoFAS stations located in France, in each panel the diagonal
represents the 1:1 line, and each data point represents one of the 17 lead times in the GloFAS reforecasts (v2.2).

Code and data availability. The package used for the illustra-
tive example is evalhyd-python. It is available from HAL
(https://hal.science/hal-04088473, last access: 30 January 2024;
Hallouin and Bourgin, 2024a). The evalhyd user guide and
tutorials are available in the HTML documentation archived at
Software  Heritage (https://archive.softwareheritage.org/swh:1:
snp:06bf77ee55040ed205e757b513a0807¢9209770f;origin=https:
//github.com/hydroGR/evalhyd; Hallouin and Bourgin, 2024b).
The scripts used to produce the figures in the illustrative example
are available on Zenodo (https://doi.org/10.5281/zenodo.11059148,
Hallouin, 2024). The observation data used in this study,
i.e. the GIoFAS-ERAS5 v2.1 river discharge reanalysis data,
can be downloaded from the Copernicus Climate Data Store
(https://doi.org/10.24381/cds.a4fdd6b9, last access: 10 May 2023;
Harrigan et al., 2021). The prediction data used in this study,
ie. the GIoFAS v2.2 river discharge reforecast data, can
also be downloaded from the Copernicus Climate Data Store
(https://doi.org/10.24381/cds.2d78664e, last access: 10 May 2023;
Zsoter et al., 2020).
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