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A B S T R A C T   

The coronavirus disease 2019 (COVID-19) pandemic recently demonstrated the devastating impact on public 
health, economy, and social development of zoonotic infectious diseases, whereby viruses jump from animals to 
infect humans. Due to this potential of viruses to cross the species barrier, the surveillance of infectious path-
ogens circulation in domestic and close-to-human animals is indispensable, as they could be potential reservoirs. 
Optical biosensors, mainly those based on Surface Plasmon Resonance (SPR), have widely demonstrated its 
ability for providing direct, label-free, and quantitative bioanalysis with excellent sensitivity and reliability. This 
biosensor technology can provide a powerful tool to the veterinary field, potentially being helpful for the 
monitoring of the infection spread. We have implemented a multi-target COVID-19 serology plasmonic biosensor 
for the rapid testing and screening of common European domestic animals. The multi-target serological biosensor 
assay enables the detection of total SARS-CoV-2 antibodies (IgG + IgM) generated towards both S and N viral 
antigens. The analysis is performed in less than 15 min with a low-volume serum sample (<20 μL, 1:10 dilution), 
reaching a limit of detection of 49.6 ng mL− 1. A complete validation has been carried out with hamster, dog, and 
cat sera samples (N = 75, including 37 COVID-19-positive and 38 negative samples). The biosensor exhibits an 
excellent diagnostic sensitivity (100 %) and good specificity (71.4 %) for future application in veterinary set-
tings. Furthermore, the biosensor technology is integrated into a compact, portable, and user-friendly device, 
well-suited for point-of-care testing. This study positions our plasmonic biosensor as an alternative and reliable 
diagnostic tool for COVID-19 serology in animal samples, expanding the applicability of plasmonic technologies 
for decentralized analysis in veterinary healthcare and animal research.   

1. Introduction 

In the last century, we have faced multiple zoonotic infection out-
breaks such as the Bird flu caused by H5N1 virus [1], the Swine flu 
carried out by Influenza H1N1 virus [2], the Severe Acute Respiratory 
Syndrome (SARS) and the Middle East Respiratory Syndrome (MERS) 
triggered by coronaviruses [3,4], the Ebola [5], the Dengue and Zika 
viruses [6,7], and recently the Coronavirus Disease 2019 (COVID-19), 
caused by the Severe Acute Respiratory Syndrome Coronavirus 2 
(SARS-CoV-2) [8]. Zoonotic diseases, transmitted from animals to 
humans, have always occurred naturally, and it is estimated that more 

than 60 % of human pathogens are of zoonotic origin [9]. Nonetheless, 
the increasing industrial livestock farming operations, globalization, 
massive urbanization, and the growing social trend for acquiring do-
mestic animals collectively pose an escalating threat to the emergence of 
novel and potentially hazardous zoonotic pathogens. 

Coronaviruses are generally found in several domestic and wild an-
imals, including cattle, horses, ferrets, dogs, cats, and bats. The major 
transmission route is among individuals of the same species, but coro-
navirus can also be transmitted from animals to humans and other an-
imals and vice versa [10,11]. Due to this potential to cross the species 
barrier, the close contact between humans and pets, and the 
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susceptibility of certain species to coronavirus infection, it is crucial to 
study and determine the circulation of SARS-CoV-2 virus in domestic 
animals, which could act either as transmission vectors or reservoirs [12, 
13]. Surveillance of SARS-CoV-2 circulation in domestic animals could 
improve the knowledge regarding the spread and susceptibility in 
multiple animal species, enabling anticipation and prevention of new 
surges of viral zoonotic diseases. Early identification of COVID-19 
infection in domestic animals could provide them with specific veteri-
nary healthcare and could help in controlling the animal transmission 
chain. 

SARS-CoV-2 serology assays, which rely on detecting the specific 
immunoglobulins (Ig) in blood generated by the infected host, play an 
important role in the surveillance of infectious diseases and in the 
pandemic management, providing information about the dynamics of 
acquired immunity and the global incidence of the infection. Specif-
ically, serology assays developed for COVID-19 are based on the 
detection of both IgG and IgM antibodies generated towards either the 
spike (S) protein or the nucleocapsid (N) protein of the virus [14]. In 
veterinary patients, traditional serology techniques include seroneu-
tralization tests [15,16], microplate-format immunoassays, such as 
ELISA (enzyme-linked immunosorbent assay) [17,18], and fluorescent 
tests, such as Luminex assay [19,20]. These standard techniques are 
highly sensitive and reliable, offering multiplexed capabilities for par-
allel analysis of different samples. However, they are laborious, 
time-consuming, and require trained technicians and specific equipment 
to be operated in centralized laboratories [14,21]. Considering the need 
for massive sample screening, the immunochromatographic lateral flow 
assay (LFA) stands out due to its facile handling at the point-of-care and 
rapid time-to-result response (15 min) [22]. However, the sensitivity 
and specificity of LFAs tend to be moderate, and they are only validated 
for human diagnosis, so their reliability in animal testing cannot be 
assumed. Therefore, implementing new technologies that enable rapid, 
accurate, and decentralized serological assays in animals could greatly 
benefit the veterinary research and clinic community, allowing for 
efficient screening of animal populations and gaining relevant insights 
into the virus spread, potential transmission chains, and their global 
incidence. 

Optical biosensors, particularly those employing plasmonic tech-
nologies, have been positioned as a powerful alternative to fill this gap. 
Biosensors based on the Surface Plasmon Resonance (SPR) technique 
can perform direct, label-free, quantitative analysis with excellent 
sensitivity, rapid response, and high reliability. In fact, SPR instruments 
are the most versatile and consolidated biosensor technology for 
biomedical and clinical purposes [23–25], with a myriad of applications 
demonstrating clinical diagnostic accuracy, especially for human dis-
eases [14,26–28], and the suitability for miniaturisation and 
point-of-care operation. In the frame of COVID-19, the contribution of 
SPR biosensors to human diagnosis has been undeniable [14,29–33]. 
However, the application and implementation of SPR biosensors in 
veterinary healthcare and research is yet to be explored. In recent years, 
only a few SPR sensors have been applied for the detection of antibiotics 
[34] and bacteria [35] on animal milk samples or for the determination 
of cancer [36] and sepsis [37] biomarkers in sera. But they still need to 
be fully validated with real animal samples. 

In this work, we report for the first time the implementation and 
clinical validation of an SPR serology biosensor for the rapid determi-
nation of SARS-CoV-2 total antibody levels in common European do-
mestic animals: dogs, cats, and hamsters. The biosensor has been 
rationally designed and optimized to detect total SARS-CoV-2 IgG and 
IgM antibodies in animal sera samples, ensuring a highly sensitive and 
selective analysis in minimally processed samples (blood serum dilu-
tion). Furthermore, we have performed a comprehensive study of 75 
clinical specimens from different species to evaluate and demonstrate 
the applicability of our technology for rapid COVID-19 testing in 
animals. 

2. Materials and methods 

2.1. Chemical and biological reagents 

Organic solvents (acetone and ethanol) were purchased from Pan-
reac (Barcelona, Spain). Reagents for carboxylic acid activation (N-(3- 
dimethyl aminopropyl)-N′-ethyl carbodiimide hydrochloride (EDC) and 
N-hydroxysulfosuccinimide (sulfo-NHS), 16-mercaptohexadecanoic 
acid (MHDA), compounds and salts for PBS 10 mM (10 mM phosphate 
buffer, 2.7 mM KCl, 137 mM NaCl, pH 7.4), and MES 0.1 M (2-(N- 
morpholino) ethanesulfonic acid, pH 5.5), Tween 20, dextran sulfate 
sodium salt (DS), ethanolamine (EA 1 M, pH 8), and commercial sera 
were provided by Sigma-Aldrich/Merck (Steinheim, Germany). Re-
combinant IgG and IgM antibodies against SARS-CoV-2 Spike S1 protein 
(IgG-S and IgM-S), recombinant IgG and IgM antibodies against SARS- 
CoV-2 Nucleocapsid protein (IgG-N and IgM-N), SARS-CoV-2 Nucleo-
capsid protein (N-protein) and SARS-CoV-2 Spike 1 protein (S1-protein) 
were obtained from GenScript (Rijswijk, Netherlands). Monoclonal IgG 
antibody against CRP C7 (anti-CRP) was acquired from HyTest (Turku, 
Finland). Milli-Q water was employed for all the buffer preparation. 

2.2. Plasmonic biosensor device 

The biosensor device employed is a proprietary Surface Plasmon 
Resonance (SPR) biosensor, which is integrated into a compact platform 
(20 × 20 cm), and it has been described previously [38,39]. The device 
is based on the Kretschmann configuration and operates with a fixed 
incidence angle (θ = 70◦). The custom-made flow cell is connected to a 
microfluidic system consisting of a fluidic pump to constantly deliver 
fluid to the gold sensor chips and injection valves coupled to a 100 μL 
loop to introduce samples. The SPR biosensor monitors the binding 
events, through an increase in the local refractive index (RI), or 
desorption (decrease in the local RI) in real time by tracking the SPR 
wavelength displacements (Δλ, nm). 

2.3. Plasmonic sensor chip preparation 

The gold sensor chips (glass substrates (n = 1.52) coated with 1 nm of 
titanium and 49 nm of gold) were fabricated by metal evaporation using 
electron beam deposition (AJA International Inc. ATC-8E, Orion, USA). 
After cleaning, the sensor chips were chemically modified by forming a 
self-assembled monolayer (SAM) of carboxyl groups with 16-mercapto-
hexadecanoic acid (MHDA) at 1 mM. The sensor chip was then rinsed 
with ethanol and water, dried with N2 flow, and placed on the SPR set- 
up to immobilize the receptor proteins in-situ. The biofunctionalization 
procedure consisted of the covalent binding of viral proteins (N protein, 
S1 protein, or multianalyte (N + S1 1:1)) to carboxyl groups present in 
the SAM through EDC/NHS reaction. The unreacted carboxylic groups 
on the sensor surface were blocked with an EA solution injection for 2 
min. Finally, the sensor chips were kept under a continuous flow of 
PBST + DS (PBS 10 mM + 2 % Tween 20 + 2 mg mL− 1 DS) at 15 μL 
min− 1. Fig. 1 shows a scheme for the SPR biosensor employed and an 
interaction between the proposed biosensor and antibodies IgM and IgG 
on the chip surface. 

2.4. Biosensor assays for the antibodies detection 

The biofunctionalized plasmonic sensor chips were employed to 
detect COVID-19 antibodies directly. The experiments were performed 
and optimized using the sensor chips functionalized with viral antigens 
(N and S1 protein), and two different types of antibodies (IgG and IgM) 
specific for each of them (anti-N IgG and IgM, and anti-S IgG and IgM, 
respectively) as detection targets. Biosensor assays for the antibody 
detection were performed by injecting several antibody solutions at 
different concentrations (from 1000 ng mL− 1 to 9000 ng mL− 1) and 
monitoring the binding to the immobilized viral antigens in real-time 
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(shift in the resonance peak position (Δλ, nm)). Calibration curves were 
obtained by analysing the response of the antibody concentrations in 
duplicate in standard phosphate buffered saline (PBS) or in commercial 
serum (diluted to 10 % in the antifouling buffer: PBS + Tween 20 +
Dextran Sodium Sulfate (PBST-DS)) and fitting them into a linear 
regression equation. Limits of Detection (LOD) were calculated by 
interpolating the signal value corresponding to three times the standard 
deviation (3xSD) of the blank signal, and Limits of Quantification (LOQ) 
were determined as the concentration corresponding to 10 times the 
standard deviation. All the antibody solutions were injected at a con-
stant flow rate of 15 μL min− 1. A solution of NaOH 20 mM was injected 
for 1 min at a constant flow rate after each antigen-antibody interaction 
to completely dissociate it, allowing the reuse of the biosensor 10–15 
times without modifying the immobilized proteins and the biosensor 
performance. 

2.5. Animals’ samples 

A total of 75 animal sera samples were collected by the Ecole 
Nationale Vétérinaire d’Alfort (Maisons-Alfort, France), the Nancy 
Laboratory for Rabies and Wildlife (Malzéville, France), and the 
Department of Veterinary Medicine of the University of Bari Aldo Moro 
(Bari, Italy) following their studies [40,41]. The collection included cats, 
dogs, and hamster samples, and SARS-CoV-2 infection was determined 
by ELISA (N-prot), seroneutralization, or Luminex, as available standard 
reference method in each laboratory (see Table S1 in Supporting Infor-
mation (SI)). This collection consisted of 42 sera samples from hamsters 
(12 negative samples collected and 30 COVID-19 positive samples), 14 
sera samples from dogs (11 negative pre-pandemic samples collected 
and 3 COVID-19 positive samples), and 19 sera samples from cats (10 
negative pre-pandemic samples, 5 negative samples collected in 2020, 

and 4 COVID-19 positive samples). All the data analysis and the deter-
mination of relevant parameters can be found in the SI. 

3. Results and discussion 

3.1. Serology biosensor development 

For developing an accurate and highly sensitive serology biosensor, 
the most immunogenic antigens from the SARS-CoV-2 should be 
considered as the biorecognition elements, granting for the capture and 
detection of all antibodies generated by the host during its immune 
response. In the SARS-CoV-2 infection, both the N protein (contained 
inside the viral capsid) and the receptor binding domain (RBD) on the S1 
sub-unit of the Spike (S) protein have been identified as immunogenic 
antigens, and thereby, antibodies targeting the two proteins may be 
found circulating in the host blood. In a previous work [14], we devel-
oped an SPR COVID-19 serology biosensor employing a combination of 
both the N and the RBD antigens as a biorecognition interface, demon-
strating that the multi-target strategy maximizes the sensitivity and 
specificity for human diagnostics. However, the RBD antigen is known to 
be prone to undergo mutations during viral spread, especially during 
cross-species transmission. Therefore, to ensure the capture of all im-
munoglobulins in different animal samples, we selected both the N 
protein and the whole S1 protein as our biorecognition elements in this 
new biosensor. 

Another pivotal aspect for maximizing the accuracy and reliability of 
the serology biosensor assay is to consider the detection of both IgG and 
IgM, as they can be commonly found in infected individuals depending 
on the sample collection time from infection. IgMs appear first during 
the acute infection phase and disappear after a few days or weeks and 
IgGs appear after a few days and remain in the bloodstream for months. 

Fig. 1. Scheme of the experimental SPR device, including the plasmonic gold chip (top) and the real-time monitoring of the wavelength displacement (Δλ) related to 
antibodies concentration in the sample. 

J.F. Giarola et al.                                                                                                                                                                                                                               



Talanta 271 (2024) 125685

4

Thus, detecting both immunoglobulins can deliver valuable data about 
present and past infections and the immunological host response. 
Therefore, we employed both types of immunoglobulins to assess the 
performance of the biosensor assay regarding sensitivity. We employed 
commercial antibodies (IgG and IgM) for both N and S proteins and 
evaluated the two types individually over a multianalyte surface (N +
S1): a mixture of anti-N and anti-S IgGs (1:1) and a mixture of anti-N and 
anti-S IgMs IgM (1:1). Fig. 2A and B shows the calibration curves for 

IgGs and IgMs detection, respectively, over a range from 1000 to 9000 
ng mL− 1. A linear relationship was obtained in both cases (slope =
0.151 nm mL ng− 1, R2 = 0.929 for IgG, and slope = 0.161 nm mL ng− 1, 
R2 = 0.986 for IgM). From these calibration curves, we determined the 
Limit of Detection (LOD), for each biosensor assay, which resulted in 
94.2 ng mL− 1 for IgG and 88.4 ng mL− 1 for IgM, respectively. These 
values confirm the capability of our multi-target sensor to effectively 
capture and detect both types of antibodies with high sensitivity. 

To mimic a more accurate scenario where all antibody types co- 
circulate in the host blood, we then analysed a mixture of both IgG 
(anti-N IgG + anti-S IgG) and both IgM (anti-N IgM + anti-S IgM) at a 
ratio 2:1 IgG-IgM. Previous studies in human samples showed the 
presence of both immunoglobulins at this ratio after 15–30 days from 
infection [42–44] and also in cats after 14 days [45]. Fig. 2C shows the 
total antibody calibration curve obtained in standard buffer (PBS). The 
LOD was determined at 82.7 ng mL− 1 (slope = 0.172 nm mL ng− 1, R2 =

0.984), similar to the one obtained for the individual antibody calibra-
tions, indicating that our biosensor surface can efficiently detect with 
high sensitivity all antibody types present in the sample. Although there 
are different studies about identifying COVID-19 antibodies in domestic 
animals, especially cats and dogs [46–49], the concentration levels are 
not provided. According to previous studies that suggest the antibody 
levels for SARS-COV-2 in human patients might be in the range of μg 
mL− 1 [50], we can assume that the proposed biosensor may provide 
enough analytical sensitivity for COVID-19 serological testing in do-
mestic animals. 

Finally, a specificity assay was performed using a nonrelated anti-
body (i.e., anti-CRP Ab – an IgG against C-reactive protein) to confirm 
that the biosensor response is exclusively caused by specific interactions 
between the viral antigens and their corresponding antibodies. The 
negative control antibody did not show any signal (green dots in Fig. 2C) 
compared to specific IgG or IgM, demonstrating the high selectivity and 
specificity of our serology biosensor methodology. 

3.2. Assessment of domestic animal samples 

To apply the proposed biosensor for direct serological assay, we need 
to consider the influence of the serum matrix on the biosensor surface 
and in the antibody recognition. Since our biosensor works in a label- 
free format, any nonspecific adsorption of molecules on the sensor 
surface might induce a false positive signal; moreover, the different pH 
content of salts and other molecules present in the serum could affect the 
affinity interaction between the antibodies and the viral antigens. Based 
on our previous studies [14,38,51], we have demonstrated that the 
addition of different anionic surfactants (Tween 20 and dextran sodium 
sulfate, DS) to sera dilution buffer (PBS) can effectively reduce the 
nonspecific adsorptions to the sensor surface as well as can minimize the 
influence of the matrix components in the recognition interaction, 
leading to a negligible and reproducible background signal in most of 
the cases. 

To that, we evaluated the biosensor response in the presence of 
commercial sera diluted 1:10 in PBS containing different concentrations 
of Tween 20 and DS (Fig. S1 in the SI). Optimal conditions (i.e., lowest 
signal) were found with a dilution buffer containing 2 % Tween 20 and 
2 mg mL− 1 DS; therefore, this buffer was selected for subsequent ex-
periments. The analytical behaviour of the biosensor was evaluated by 
measuring total antibody (IgG + IgM) in serum samples (Fig. 3), con-
firming a good performance with a LOD of 49.6 ng mL− 1, nearly two 
times better than the one calculated in standard buffer conditions (slope 
= 0.318 nm mL μg, R2 = 0.967). This sensitivity improvement might be 
due to the surfactant’s effects in the sample, which are known to sta-
bilize the biomolecules, preventing their denaturation or aggregation, 
thereby enhancing the recognition and interaction efficiency. Further-
more, these surfactants also aid in reducing the assay variability and in 
increasing the reproducibility. Finally, it is worth mentioning that the 
high sensitivity achieved by our biosensor technology, in the ng mL− 1 

Fig. 2. A) Calibration curve in the standard buffer for the IgG, and B) for the 
IgM. C) Total antibody calibration curve in the standard buffer for IgG + IgM 
(2:1). Control antibody (anti-CRP IgG) at the same concentration ranges is also 
shown. Each signal corresponds to the mean ± SD of duplicate measurements. 
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range, comfortably allows a 10-fold dilution factor of serum, which is 
indeed much lower than the one usually needed in other techniques such 
as ELISA or seroneutralization assays, commonly between 100- 
to10,000-fold [47,52,53]. 

The suitability of this serum dilution was finally evaluated in animal 
sera, since there are no such studies applied to these types of samples 
and the specific composition of the dilution buffer should be optimized. 
We tested the validity of our multi-target sensing methodology for the 
accurate discrimination of COVID-19-positive and negative animal 
samples with this buffer composition. We biofunctionalized three 
different sensor chips with (i) only the N protein (50 μg mL− 1), (ii) only 
the S protein (50 μg mL− 1), and (iii) the N + S protein (1:1, 50 μg mL− 1). 
Fig. 4 shows representative detection signals obtained for the three 
biofunctionalized sensor surfaces with a hamster-negative sample and 
hamster-positive sample. In agreement with our previous work [14], it 
can be clearly observed that the positive sample signal obtained for the 
multi-target sensor (N + S) corresponds to the sum of the individual 

surfaces (N and S separately). On the other hand, the background signal 
of the negative sample signal is relatively lower in the case of the 
multi-target surface compared to the individual ones, significantly 
increasing the difference between positive and negative results and, 
therefore, enhancing the ultimate sensitivity and specificity of the 
biosensor. 

3.3. Validation of the SPR-based COVID serology for domestic animals 

A complete clinical validation of the serology biosensor was carried 
out by analysing 75 serum samples from three different domestic ani-
mals with reported susceptibility to SARS-CoV-2 infection (hamsters, 
dogs, and cats) [54,55]. The sample cohort included 37 
COVID-19-positive specimens collected in veterinary healthcare and 
research institutions during the pandemic and 38 COVID-19-negative 
specimens. All samples were analysed for active COVID-19 diagnosis 
through conventional and standard techniques like ELISA, seroneutral-
ization, and Luminex technology (see Table S1 in SI for details). 

Initially, we evaluated the samples for each animal species separately 
(Fig. 5). Hamsters are one of the animal species most susceptible to 
SARS-CoV-2 infection [56], primarily found in bats and rodents, and it is 
also a common companion animal, especially in European countries – 
after cats, dogs, and birds. We measured 42 hamster samples (12 neg-
atives and 30 positives) with the plasmonic biosensor, and the results are 
summarized in Fig. 5A. An evident difference between positive and 
negative samples is observed, with the nonparametric Kruskal-Wallis’s 
test confirming a significant difference (p < 0.0001) at 0.05 level. The 
diagnostic sensitivity (SE) and negative predictive value (NPV) were 
determined to be both at 100 %, and specificity (SP) and positive pre-
dictive value (PPV) were calculated to be 81.8 % and 93.8 %, respec-
tively, considering the calculated threshold (Δλ = 0.65 nm). Besides, the 
high values for positive results compared to the negatives ones 
confirmed the hamster’s susceptibility to SARS-CoV-2 infection. Next, 
we analysed dog samples, which are also known to be susceptible to 
SARS-CoV-2 infection, and their study could be of great relevance 
because of their close contact with humans. For dog samples, we could 
only obtain and analyse 15 samples (11 negatives and 3 positives). 
Fig. 5B shows a clear difference between the negative and positive 
biosensor response, with only one significant outsider and two in-
determinates among the negative samples, considering the calculated 
threshold (Δλ = 0.28 nm). However, due to the limited number of 
positive samples the statistical analysis is not conclusive. Finally, the 
most particular findings were observed by the evaluation of cat samples 
(Fig. 5C). In this case, we measured 19 samples (15 negatives and 4 
positives), and unlike hamsters and dogs, here we did not observe a 
significant difference between positive and negative samples, with many 
COVID-19 negative samples generating relatively high sensor signals, far 
from the estimated background. The most plausible hypothesis to 
explain these results can be found in the recently demonstrated 
cross-reactivity between SARS-CoV-2 viral antigens and Feline Corona-
virus (FCoV) antibodies [57], which is a very widespread virus in do-
mestic cats [16]. In the biomedical study published by Hancock et al. 
[57], pre-pandemic feline serum samples were submitted to an ELISA 
screening for SARS-CoV-2 RBD antibodies detection, and about 50 % 
resulted in positive responses, indicating that cat sera might contain 
antibodies generated in previous CoV infections that can recognize the 
SARS-CoV-2 viral antigens. Additionally, some studies have been con-
ducted in the literature about how etiological agents could generate an 
anti-SARS-CoV-2 RBD cross-reactivity [58–60], providing insights into 
surveillance and developing new methods for managing cat samples and 
interpreting the results. 

Regardless of setbacks with cat antibodies cross-reactivity, to fully 
validate and position our biosensor as a tool for serological analysis for 
different domestic animals, we considered all animal samples together 
(N = 75, 38 negative, and 37 positive), having a well-distributed cohort 
with sufficient number of positive and negative samples for a significant 

Fig. 3. Total antibody calibration curve (IgG + IgM, 2:1) in standard buffer 
(SB) with a detergent combination (2 % of Tween 20 and 2 mg mL− 1 of DS). 
Each signal corresponds to the mean ± SD of duplicate measurements. 

Fig. 4. Biosensor response of a negative and a positive hamster sample diluted 
10 % and tested in three different biofunctionalized surfaces (N, S, and N + S 
protein). Sensor response represents the mean ± SD of two measurements. 
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statistical analysis. Fig. 6A shows the biosensor performance for all 
domestic animals evaluated in this study, and the distribution of the 
sensor signal is depicted in Fig. 6B. In this study, the nonparametric 
Kruskal-Wallis’s test at 0.05 level confirmed that the positive samples 
are significantly different from the negative samples (p < 0.0001), with 

10 false-positive samples, 2 indeterminate and 0 false negatives. The 
analytical and diagnostic performance parameters of our serological 
biosensor are summarized in Table 1, considering a recalculated 
threshold that includes all COVID-19 negative samples regardless of the 
observed FCoV cross-reactivity. Remarkably, the diagnostic SE was 
determined at 100 %, with 100 % NPV. However, the diagnostic SP was 
moderate (71.4 %), with a PPV of 78.7 %, mainly due to the presumed 
cross-reactivity of feline CoVs with the COVID-19 viral antigens, which 
should be further characterized with a larger number of samples and the 
corresponding molecular analysis techniques. 

In light of the results obtained and considering the lack of decen-
tralized technologies available for animal COVID-19 testing, our SPR 
biosensor appears as a promising solution for rapid serological analysis 
of domestic animals, offering a highly sensitive detection in less than 20 
min. Moreover, it is integrated into a compact and user-friendly device 
for facile installation and operation in veterinary healthcare venues or 
animal research laboratories. 

4. Conclusions 

In this study, we have implemented a label-free serological biosensor 
that enables fast one-step identification of total SARS-CoV-2 antibodies 
in serum samples from European domestic animals (hamsters, dogs, and 
cats). We have carefully designed and optimized the biosensor assay 
parameters, including a multi-target sensor chip biofunctionalization 
and the direct analysis of diluted blood serum with no additional 
treatment processes. Our biosensor has demonstrated an excellent limit 
of detection in serum (49.6 ng mL− 1) with a short assay turnaround time 
(20 min sample-to-result). A clinical validation study with 75 samples 
from different animal species has shown statistically significant 
discrimination between positive and negative samples, with a diagnostic 
sensitivity of 100 % and diagnostic specificity of 71.4 %. Interestingly, 
our experiments reveal a presumed cross-reactivity of common feline 
coronavirus (FCoV) with COVID-19 viral antigens, as suggested in 
several biomedical reports recently published. In order to enhance the 
diagnostic specificity of the biosensor serology, future perspectives 
would involve the implementation of a multi-channel SPR biosensor 
[61,62] that enable parallel analysis with different antigens that provide 
exclusive detection of FcoV and SARS-CoV-2, respectively. Beyond 
further considerations for enhancing the diagnostic accuracy in cats, this 
case might contribute to the comprehensive study of animal immuno-
logical mechanisms towards coronavirus infections, which may aid in 
deciphering the pathways for the understanding and surveillance of 
zoonotic viral transmission, spread, and global incidence. 

Overall, our plasmonic biosensor is presented as a unique tool for 
decentralized, accurate, and efficient animal infection diagnosis and 
screening. In our technological system, all components are integrated 
into a compact and user-friendly device suitable for point-of-care 
operation in different scenarios, from laboratory environments to vet-
erinary clinics or farms. Our findings confirm the value of plasmonic 
biosensors as a highly sensitive and efficient serology tool for the 
screening of large populations, and in addition, corroborate the need for 
targeted developments and validation studies for the application of 
novel diagnostics in the veterinary field, where different pathogens may 
co-exist imposing a high risk for cross-reactivity and low-specificity in 
the diagnosis assays. 
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