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Abstract: Soil fungi play indispensable roles in all ecosystems including the recycling of organic matter and interactions with plants, both as symbionts and 
pathogens. Past observations and experimental manipulations indicate that projected global change effects, including the increase of CO2 concentration, 
temperature, change of precipitation and nitrogen (N) deposition, affect fungal species and communities in soils. Although the observed effects depend 
on the size and duration of change and reflect local conditions, increased N deposition seems to have the most profound effect on fungal communities. 
The plant-mutualistic fungal guilds – ectomycorrhizal fungi and arbuscular mycorrhizal fungi – appear to be especially responsive to global change factors 
with N deposition and warming seemingly having the strongest adverse effects. While global change effects on fungal biodiversity seem to be limited, 
multiple studies demonstrate increases in abundance and dispersal of plant pathogenic fungi. Additionally, ecosystems weakened by global change-induced 
phenomena, such as drought, are more vulnerable to pathogen outbreaks. The shift from mutualistic fungi to plant pathogens is likely the largest potential 
threat for the future functioning of natural and managed ecosystems. However, our ability to predict global change effects on fungi is still insufficient and 
requires further experimental work and long-term observations.
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INTRODUCTION

Over the past century, CO2 levels have steadily increased, 
and global temperatures have risen accordingly. The climate is 
predicted to continue to change, with increased variability in rain 
and temperature extremes, both inter- and intra-annually (IPCC 
2014, Lee et al. 2021), and affect the whole biosphere including 
soils. In addition to the changing climate, it is the change of global 
atmospheric nitrogen (N) deposition that is perhaps the most 
threatening global phenomenon. It has increased from 34 Tg N/y in 
1860 to 93.6 Tg N/y in 2016 (Ackerman et al. 2019) and is predicted 
to continue increasing worldwide as the result of human activity. 
Whether soils will become a source or sink of greenhouse gases 
under future climate scenarios is difficult to predict due to unclear 
changes in soil carbon and nitrogen pools, and differences in 
microbial responses between ecosystems and locations (Jansson 
& Hofmockel 2020), but there is a justified concern that soils will be 
heavily affected. 

Fungi are eukaryotic microorganisms that play multiple 
fundamental roles related to the future of soil health. As major 
decomposers of organic matter, mutualists, or pathogens, fungi 
significantly influence plant health, carbon mineralisation and 
sequestration, and act as important regulators of the soil carbon 
balance (Crowther et al. 2016). It is thus important to determine 
how climate and other global change factors affect future soil fungal 
communities. The responses of the plant associated guilds to 
global change factors will likely be of particular interest due to their 
effects on plant communities. Mycorrhizal fungi act as mutualistic 
symbionts to plants, providing access to critical nutrients and can 
ameliorate abiotic stressors associated with climate change, such 
as heat and drought (Redman et al. 2002, Kivlin et al. 2013). Plant 

pathogenic fungi, on the other hand, may opportunistically attack 
plant hosts that are under stress due to the rapid change in their 
environment (Juroszek et al. 2020, Desaint et al. 2021). Therefore, 
soil fungi, particularly plant associated guilds, mediate the effects 
of global change on natural vegetation and agricultural crops in 
multiple ways. 

In addition to direct effects, climate change can indirectly affect 
soil fungi through shifts in soil chemistry and vegetation structure 
(Tedersoo et al. 2014, Větrovský et al. 2019, Zhou et al. 2020). 
It is thus important to understand how global change affects soil 
fungi. Even though this question has been repeatedly addressed 
in many contexts and settings in the past, it is still difficult to give a 
general answer. Soil is the habitat with the highest fungal diversity 
(Baldrian et al. 2021) and generalisations based on the observed 
response of individual species are difficult. This high diversity 
is associated with high levels of functional redundancy in the 
communities of saprotrophic as well as symbiotic fungi (Žifčáková 
et al. 2017). Consequently, loss of some species may in theory 
be replaced by other taxa. However, the critical level of species 
loss with consequences for ecosystem processes remains largely 
unknown. Additionally, the diversity, and dependence on plant 
hosts, of fungal lifestyles (i.e., free-living saprotrophs, mutualistic 
symbionts and plant pathogens) affect fungal species responses 
to climate change. 

In this review, we will discuss the links between soils, plants, 
and fungi to explore the paths by which global change affects 
fungi and their roles in soils. We will also estimate taxon realised 
niche space to make predictions about the relative sensitivity of 
various fungi to global change. Lastly, we will use the accumulated 
information from experimental manipulations of ecosystems to 
find general patterns in fungal responses to individual global 
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change factors. For simplicity, we will cover only selected global 
change processes, namely the increasing CO2 levels, warming, 
reduction in precipitation and N deposition (Fig. 1) since these 
effects are general and long-lasting. While there is a whole suite 
of other important phenomena linked with global change, such as 
land use change, biological invasions, increased fire frequency 
or increased phosphorus (P) input, these factors are very often 
geographically local or appear at limited temporal scales which 
makes the predictions of their effects on fungi difficult. This review 
adds to our knowledge of belowground communities’ responses to 
global change by focusing on soil fungi, comparing the possible 
and current responses of plant pathogens to that of mycorrhizal 
symbionts, leveraging estimates of fungal guilds realised niches to 
predict their responses, and only synthesising studies that impose 
realistic global change manipulations. 

Fungi and their climatic niche 

Utilisation of the niche concept is one approach to predicting the 
response of fungi to climate change: if we understand the constraints 
for fungal life, we can identify and localise the environments where 
they can live. The concept of the ecological niche provides a 
framework for understanding resource partitioning by organisms 
and emergent patterns of coexistence and distribution (Macarthur 
& Levins 1967). Realised niches define the conditions under which 
organisms can survive and reproduce in the presence of biotic 
interactions while fundamental niches are defined in the absence 
of biotic interactions. While the realised niche can be derived from 

a species’ distribution and abundance across habitat properties 
(Veresoglou et al. 2012, Davison et al. 2021), characterisation of the 
fundamental niche is more difficult, because it requires experimental 
investigation of responses to environmental gradients (Lekberg et 
al. 2007). However, knowing parameters of the fundamental niches 
of species would be a valuable tool for the prediction of species’ 
responses to changing abiotic environments. The fundamental 
niche provides information on species’ potential responses without 
the influence of biotic interactions, which must also be expected to 
change along with abiotic changes (Blois et al. 2013).

In a global metastudy of soil fungal occurrences using available 
high-throughput sequencing data, climatic factors contributed, 
on average, 40–80 % of total explained variability, substantially 
more than the soil and vegetation properties (Větrovský et al. 
2019). Though climatic factors are generally found to be among 
the most important drivers of global fungal composition, their 
relative importance varies between studies. For example, Bahram 
et al. (2018) found that soil carbon-to-nitrogen ratio was the 
most important driver of fungal abundance, taxonomic and gene 
composition while Tedersoo et al. (2014) found that soil pH was a 
major driver of many fungal guilds. Of the climatic factors tested, 
Větrovský et al. (2019) found that mean temperature of driest 
quarter, precipitation seasonality, mean temperature of wettest 
quarter, precipitation of coldest quarter and diurnal temperature 
range were most often the strongest predictors of individual species 
distributions. Here we used mean annual temperature (MAT) and 
mean annual precipitation (MAP) to define species realised niches 
because these metrics are the most widely used and intuitive 
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Fig. 1. Major current and predicted responses to global change factors. Responses to each factor is represented by the location within each section with 
responses spanning multiple sections indicating the importance of multiple climate change factors. 



3www.studiesinmycology.org

Climate change effects on soil fungi

defining features of biomes and local climates, are known to affect 
both soil biota and plants (Jetz et al. 2012, Thompson et al. 2017) 
and MAT was identified as the strongest predictor of the local 
distribution of macrofungi within Norway (Wollan et al. 2008). If 
we define the breadth of the realised climatic niche as the range 
of MAT / MAP where 90 % of occurrences are observed, fungal 

species typically inhabit soils within 5–15 °C difference in MAT and 
300–1 200 mm difference in MAP (Větrovský et al. 2019), although 
niche breadth varies largely among individual taxa (Fig. 2). When 
we compared the 200 most common soil fungi (taxa occurring in > 
99 samples worldwide) based on their membership in ecological 
guilds, the mean annual temperature at the location of occurrence 
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Fig. 2. Realised niches of the 200 most frequently observed fungal species in global soils. In panels A–D, each species is represented by a rectangle 
representing the lower and upper decile of the mean annual precipitation (MAP) and mean annual temperature (MAT) of locations from where it was reported. 
Colours indicate ecological guild membership: A) green – ectomycorrhizal fungi (n = 24), B) blue – ericoid mycorrhizal fungi (n = 9), C) purple – plant 
pathogens (n = 22), and D) yellow – saprotrophs (n = 125). The distribution of fungal species niche breadth in E) MAT and F) MAP with color representing 
guilds and pairwise significant difference between means represented by letters. Individual species are represented with columns. Data from (Větrovský et 
al. 2019).
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was lowest for ectomycorrhizal (ECM) fungi followed by ericoid 
mycorrhizal (ERM) fungi, saprotrophs, and plant pathogens while 
there was less variation between guilds in the observed mean 
annual precipitation (Table 1). More importantly, the size of the 
realised temperature and precipitation niche (the range of MAT and 
MAP between the first and the ninth decile of all observations) was 
smaller in ECM fungi than in saprotrophs, ERM fungi, and plant 
pathogens (Table 1; Fig. 2; Větrovský et al. 2019). Narrow breadth 
of the temperature niche in ECM fungi across climatic gradients 
was also observed within a smaller geographic extent spanning 
Japan (Miyamoto et al. 2018).

Since plant pathogens tend to inhabit warmer areas, and 
individual species extend both into drier and wetter climates 
than the ECM fungi (Fig. 2), warming will likely more negatively 
affect plant-beneficial fungi than plant pathogens (Větrovský et 
al. 2019). Supporting our prediction of increased soil pathogens, 
a recent global model of current and projected distributions of 
plant pathogens showed likely increases in pathogen abundance 
with MAT predicted to be the major driver (Delgado-Baquerizo 
et al. 2020a). Furthermore, there is evidence that the niches of 
pathogens may lack trade-offs between biotic and abiotic niche 
breadths (Chaloner et al. 2020) and may be more labile than that 
of plant mutualists such as AM fungi (Bebber & Chaloner 2022) 
suggesting that pathogens may adapt more rapidly to future 
climates than plant mutualists. It should be noted that the niche 
concept can be, in theory, extended to other global change factors 
as well. For example, the response of ectomycorrhizal fungi to 
nitrogen availability is known for several taxa (van der Linde et al. 
2018). However, the limited number of species with reasonable 
information on their niche breadth, and missing data on local N 
availability (which exhibits much higher spatial variability than 
climate), make this concept at present unusable for predicting 
responses to altered N.

Ecological guilds of fungi and global change

As already discussed, global surveys of soil fungal occurrences 
in the GlobalFungi database (Větrovský et al. 2020) show that 
members of various fungal guilds differ in the size of their climatic 
niche. Moreover, the level of dependence on vegetation varies 
from obligate biotrophs to free-living fungi. Due to this, global 
changes are expected to affect various ecological guilds of soil 
fungi (ECM fungi, AM fungi, ERM fungi, plant pathogens and 
saprotrophs) differently, affecting their relative share or community 
composition. These shifts may subsequently result in changes in 
various ecosystem processes such as decomposition rate or plant 
performance. 

Importantly, climate change-driven shifts in plant communities 
may lead to shifts in the host availability affecting those fungi that 

have a narrow host range. With increasing warming, some alpine 
communities have seen the replacement of forbs with deep rooted 
grasses (Liu et al. 2018) and increasing nitrogen deposition can 
lead to reduced species richness though this effect depends on 
ecosystem characteristics, such as mean annual precipitation 
(Clark et al. 2007). Altered environmental conditions promote not 
only natural range shifts of plants species (Rudgers et al. 2014), 
but also enable naturalisation of alien plant species outside their 
native distribution range (Seebens et al. 2015). Such events can 
affect local ecosystems and their fungal components in several 
ways: by competition for resources, by the introduction of novel 
fungal species (such as mycorrhizal symbionts or pathogens), or 
by selective recruitment of root-associating fungal species already 
present in the local pool by the alien plants (Rudgers et al. 2020, 
Vlk et al. 2020a). Because of all these factors, changes in local 
fungal communities are expected as has been already observed 
for plant introductions (Vlk et al. 2020b).

Due to the complex effects of N on soil chemistry and vegetation, 
and the fact that mutualistic mycorrhizal fungi mediate its transfer 
to plants, change in atmospheric deposition is perhaps the factor 
with greatest importance for guild composition of soil fungi (Fig. 1). 
Indeed, nitrogen addition to 25 grasslands distributed across four 
continents led to the increase of fungal pathogens, although it did 
not significantly affect AM fungi and saprotrophs. These guild level 
responses were primarily mediated through nutrient-induced shifts 
in plant communities (Lekberg et al. 2021). On the other hand, 
no consistent shifts in guild composition were observed across 
N-supplemented forests in the USA (Moore et al. 2021).

Among the various aspects of global change, changes in climate 
lead to severe ecosystem alterations. Forests are already facing 
increasing lengths of heat waves with unprecedented increases of 
temperature in high latitudes combined with long drought periods. 
This high level of climate stress likely increases the vulnerability of 
forests to disturbances including tree dieback and forest fires (Fig. 
1; Allen et al. 2010). These severe forest disturbances were shown 
to result in a shift of fungal communities from those dominated by 
ectomycorrhizal fungi in undisturbed forests to those dominated by 
saprotrophs in disturbed forests (Štursová et al. 2014, Rodriguez-
Ramos et al. 2021) as a response to changes in primary productivity. 

Mycorrhizal plant symbionts
Geographic distributions of plants with various mycorrhizal 
symbioses show climate-driven patterns. Temperature-related 
factors have been found to be the main predictors of the 
distributions of plant species forming AM, ECM, and ERM 
symbiosis. Recent models show AM plants to be favoured by 
warm climates, while dominance of ECM plants (and to some 
extent ERM plants) is more favoured by colder climates (Barcelo 
et al. 2019). Ectomycorrhizal symbiosis dominates forests in 

Table 1. Realised niche of fungal guilds of the 200 most common soil fungi from Větrovský et al. (2019). The centre of the niche space is represented 
by the mean guild Mean Annual Temperature (MAT) and Mean Annual Precipitation (MAP) while the size is represented by the range of MAT and MAP 
between the first and the ninth decile of all observations.
Fungal Guild n Mean MAT Mean MAP Range MAT (°C) Range Mean Annual 

Precipitation (mm)(mean ± SD °C) (mean ± SD mm)
ectomycorrhizal fungi (ECM) 24 4.8 ± 2.2 714 ± 124 5.5 365
ericoid mycorrhizal (ERM) fungi 9 4.9 ± 1.7 838 ± 194 8.7 616
saprotrophs 125 7.7 ± 3.3 809 ± 249 7.9 630

plant pathogens 22 8.1 ± 3.7 807 ± 316 10.3 774
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which seasonally cold and dry climates inhibit decomposition 
and is the predominant form of symbiosis at high latitudes and 
elevation. AM trees dominate in grasslands and the warm-and-
wet climates of tropical forests where enhance decomposition is 
typical (Steidinger et al. 2019). Warming can significantly alter 
the distribution of mycorrhizal host plants, with likely subsequent 
impacts on the proportion of various guilds of mycorrhizal fungi. In 
addition to warm climates, AM fungal colonisation has been found 
to be strongly related to soil carbon-to-nitrogen ratio and highest 
at sites featuring continental climates with mild summers and a 
high availability of soil nitrogen (Soudzilovskaia et al. 2015). In 
contrast, the intensity of ectomycorrhizal infection in plant roots 
maybe more related to soil acidity, soil carbon-to-nitrogen ratio 
and seasonality of precipitation and is highest at sites with acidic 
soils and relatively constant precipitation levels (Soudzilovskaia 
et al. 2015). As such, root colonisation by both guilds is predicted 
to respond to climatic factors and N deposition.

AM fungi primarily rely on inorganic forms of N (Phillips et al. 
2013) or small organic N compounds (Whiteside et al. 2012). In 
contrast, some ECM fungi are thought to rely more heavily on 
organic N sources (Phillips et al. 2013), having a greater capacity 
to invest in N-degrading extracellular enzymes that access complex 
organic forms of N in soil, such as proteins and chitin (Fernandez & 
Kennedy 2016). ECM fungi are thus more associated with slower 
decomposition of soil organic matter and increased soil carbon 
(C) storage (Averill et al. 2014, Averill & Hawkes 2016, Fernandez 
& Kennedy 2016), potentially by competing with free-living soil 
microbes for organic N resources. These distinctions between AM 
and ECM fungi lead to two important predictions: (a) that inorganic 
N inputs to ecosystems will favour AM-associated trees at the 
expense of ECM-associated trees, and (b) that inorganic N-driven 
declines in ECM fungal abundance will reduce the belowground C 
storage capacity of the forest biome (Fig. 1). Indeed, recent nitrogen 
deposition across USA favoured the expansion of AM trees at the 
expense of ectomycorrhizal trees, and was spatially correlated with 
reduced soil carbon stocks (Jo et al. 2019). This implies that future 
changes in nitrogen deposition may further turn the balance between 
AM and ECM fungi in forest ecosystems (Averill et al. 2018).

Ectomycorrhizal fungi
Despite the potential for climate change driven replacement of 
ECM with AM trees, most ecosystems are dominated by either 
ECM plant symbionts (in most temperate and boreal forests 
worldwide) or AM symbionts (in natural grasslands, croplands and 
tropical forests). Therefore, relative abundance of each guild or 
the change of within-guild species composition are the most likely 
responses. While shifts in dominant mycorrhizal type mediated by 
global changes will likely result in changes in nutrient cycles and 
soil carbon storage, consequences of potential shifts of within guild 
species composition are less clear.

Based on the assessment of present climatic drivers of ECM 
fungal distribution, under future climate scenarios North American 
Pinaceae forests are predicted to see as high as 26 % declines in 
ECM fungal species richness within 50 years, although there is a 
high level of regional variation (Steidinger et al. 2020). Furthermore, 
ECM fungal diversity across Japan was also demonstrated to 
significantly decrease with MAT (Miyamoto et al. 2018), suggesting 
potential decreases with warming. The observation of the ECM 
fungal community shift on Betula papyrifera and Abies balsamea 
saplings in a warming experiment (Fernandez et al. 2017) suggests 
that warming may change the future composition of the ECM fungal 
subcommunity. 

Since N supply to plants is one of the major roles of ECM 
fungi, N deposition likely affects ECM fungal communities. With 
increasing nitrogen availability, fungi that obtain nitrogen from 
complex soil organic sources using metabolically costly pathways 
– e.g., Cortinarius, Piloderma and Tricholoma – are likely at a 
disadvantage compared to fungi that use inorganic nitrogen, such 
as Elaphomyces or Laccaria (Lilleskov et al. 2011). In a large 
survey of ECM fungi associated with forest trees in Europe, several 
ECM fungi responded to N throughfall deposition. Fungi that use 
organic nitrogen tended to be negative indicators for nitrogen 
deposition, while fungi that use inorganic nitrogen tended to be 
positive indicators. Conifer specialists – particularly those with 
abundant hyphae and rhizomorphs – were more negatively affected 
by increasing nitrogen than generalists and broad-leaf specialists 
(van der Linde et al. 2018). In the future, N deposition will likely 
affect ECM fungi and promote shifts from nitrophobic species 
(e.g., Russula vinosa, Lactarius rufus) to nitrophilic species (e.g., 
Scleroderma citrinum, Amanita rubescens, Russula ochroleuca) 
(Fig. 1; van der Linde et al. 2018).

In theory, mutualistic fungi could accompany host plants in 
climate-induced migration (Rudgers et al. 2020). In a study of the 
upward migration of tree individuals above the tree line, low ECM 
diversity was observed in the roots of migrating trees indicating 
that the altitudinal shift in the ECM fungal community lags behind 
climate-driven tree migration. ECM fungal dispersal limitation is thus 
an important factor controlling this process and possibly retarding 
vegetation shifts (Alvarez-Garrido et al. 2019). Similar conclusions 
were found in a study of invasive pines that clearly showed plant 
invasions can be limited by the dispersal of ECM fungi (Nunez et 
al. 2009). 

Arbuscular mycorrhizal fungi
Similar to ECM fungi, AM fungi also fully depend on their symbiotic 
host plants as a sole source of carbon (Tisserant et al. 2013) 
and therefore any environmental shifts may affect abundance, 
species richness and AM fungal community composition directly 
as well as indirectly by altering their host plants. A recent review 
of the response of AM fungal species richness and community 
composition to various aspects of global change found that 
elevated CO2 will likely have no effect on AM fungal richness, and 
responses to N deposition, warming, and changed precipitation will 
likely be highly context dependent (Cotton 2018). 

The effects of the above-mentioned extrinsic factors associated 
with global change are translated into community composition of 
AM fungi via differential responses of each species, which are 
determined by their intrinsic characteristics, such as specific 
growth patterns, morphology or anatomy. AM fungi greatly vary in 
root colonisation traits such as extent and structure (Klironomos 
& Hart 2002), and soil hyphal traits such as extent, density and 
structure (Powell et al. 2009). Interestingly, the increase of CO2 
concentration, as well as increases in N availability, leads to lower 
relative abundance of AM fungal taxa from the Gigasporaceae and 
Diversisporaceae families, which produce high levels of extraradical 
mycelia, while relative abundance of the Glomeraceae taxa, which 
are characterised by extensive intraradical colonisation, tend to 
increase (Cotton 2018). This shift in community traits suggests 
lower investments in potentially costly nutrient acquisition traits with 
increasing nutrient availability.  

The community level responses to environmental conditions 
combined with various intrinsic characteristics indicate that niche 
optima and niche width may differ among the species of AM fungi. 
Large sampling campaigns, enabled by an onset of high-throughput 
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sequencing methods, provide sufficient data to model parameters 
of species ecological niches. While Acaulosporaceae has a realised 
niche optima in low temperature conditions, Gigasporaceae has a 
realised niche optima in high temperature and high precipitation 
conditions (Davison et al. 2021). Additionally, the width of the AM 
fungal temperature niche appears to be limiting, seeming to be 
narrower than in other fungal guilds (Větrovský et al. 2019, Davison 
et al. 2021). These findings indicate that changes of MAT and MAP 
can particularly affect the composition of AM fungal communities. 

Contrary to diversity, the abundance of AM fungi seems to be 
more consistently affected by changes in N availability and shifts in 
CO2 concentration. While the majority of studies report a decrease 
in AM fungal abundance with enhanced nitrogen (e.g., Shen et al. 
2014, Chen et al. 2017, Treseder et al. 2018, Zhang et al. 2018, 
Han et al. 2020, Jia et al. 2020a, Ma et al. 2021a), a few found no 
effect (Lilleskov et al. 2019, Karst et al. 2021). The addition of N 
can benefit AM fungi if it exacerbates plant P limitation (Johnson 
2010), but may be suppressive if nitrophilic, ruderal plants replace 
plants that allocate more C to AM fungi (Isbell et al. 2013). Thus, 
the responses likely depend on the extent to which nutrient addition 
alleviates plant deficiencies and alters plant communities. A meta-
analysis examining the global effects of nutrient enrichment on AM 
fungal and plant diversity showed that AM fungal diversity, rate of 
root colonisation, and extraradical biomass typically decreased 
with N addition, while spore abundance and hyphal length 
were unaffected. These results were consistent among forests, 
grasslands, and agro-ecosystems (Ma et al. 2021a).

The short-term fertilisation effect of elevated CO2 concentrations 
mostly stimulated AMF abundance (e.g., Treseder 2004, Antoninka 
et al. 2011, Zavalloni et al. 2012, Sun et al. 2017, Dong et al. 
2018). Importantly, while stimulation of AM fungal abundance with 
increased CO2 is expected, considering that plant productivity 
depends on nutrient supply by AM fungi, the increase of temperature 
and shifts in precipitation will likely affect AM fungal abundance 
thanks to a greater climate niche partitioning of AM fungi.

Plant pathogens
Analyses of fungal guild niche breadth indicates that plant 
pathogens may better cope with climate change than other fungal 
guilds (Chaloner et al. 2020). Conditions that affect pathogen 
overwintering and dispersal are of essential importance due to 
pathogen lifestyles, survival in soils, and outbreaks triggered 
by climatic and plant host signals. Global warming in areas with 
seasonal temperature variation has increased pathogen survival 
during winters and increased the length of vegetation seasons 
leading to faster pathogen spread or stronger outbreaks (Harvell 
et al. 2002). As an ongoing consequence of warming, movement 
of crop pests to higher latitudes has already been observed. Since 
the 1960s, fungal crop pests were observed to move polewards at 
a pace of some 5 km/y, more rapidly than most other crop pests 
(Bebber et al. 2013).

Warming appears to be the most important driver of plant 
pathogen abundance. Climatic factors, especially the MAT and 
precipitation seasonality were the most important predictors of the 
relative abundance of plant pathogens across 235 global sites. 
Under future climate change and land-use scenarios, relative 
abundance of plant pathogens is predicted to increase (Delgado-
Baquerizo et al. 2020a). A nine-year warming experiment in a 
dryland on the Iberian peninsula showed higher relative share of 
pathogens, higher relative abundance of Alternaria and higher 
absolute abundance of Alternaria in warmed plots (Delgado-
Baquerizo et al. 2020a). While the increase in relative abundance, 

or sporulation, of plant pathogens may increase the risk of a disease 
outbreak, direct causal links may be difficult to find. It is possible 
that negative responses of mycorrhizal fungi and neutral or positive 
responses of pathogens to climate change can subsequently 
manifest in negative responses of vegetation. More importantly, 
climatic events seem to be predictive factors of fungal disease 
outbreaks with high humidity and high temperature being the most 
common factors (Romero et al. 2022). Pathogens may also use the 
opportunity to attack weakened host communities such as forest 
ecosystems after dieback caused by drought or heat stress (Fig. 1; 
Anderegg et al. 2013). 

In natural systems, pathogens appear to be more abundant in 
resource-rich environments (Reynolds et al. 2003, Revillini et al. 
2016), and nutrient addition (e.g. fertilisation) has been linked to 
increased disease incidence in plants (Walters & Bingham 2007, 
Veresoglou et al. 2013) which may increase the risk of pathogen 
spread or outbreaks at elevated atmospheric N deposition. 
The effect of CO2 increase on pathogens is less clear, however, 
concentrations of spores of several pathogens were increased 
by elevated atmospheric CO2 (eCO2) in a Populus tremuloides 
plantation in air and litter. Although the responses of fungi were not 
uniform, significant increases were found in the potential pathogenic 
genera Alternaria, Cladosporium and Fusarium (Klironomos et al. 
1997).

Plant pathogen community composition may not intrinsically 
affect ecosystems because it is often individual taxa that cause 
disease outbreaks. The effects of global change on individual plant 
pathogen taxa may thus be more important than the guild-level 
effects. Based on historical observations of higher Alternaria spp. 
spore concentrations at warm temperatures, spore concentrations 
are predicted to increase with warming in the United Kingdom 
(Maya-Manzano et al. 2016) and future climate models suggest 
increased prevalence of Alternaria brassicae in North Germany 
(Siebold & Tiedemann 2012). In several instances, eCO2 increased 
spore production by Alternaria spp. several-fold (Klironomos et al. 
1997, Wolf et al. 2010). Considering disease severity, both warming 
and eCO2 has been shown to increase Alternaria leaf spot severity 
on rocket, cauliflower and cabbage (Pugliese et al. 2012, Siciliano 
et al. 2017). 

To conclude, while differential response of ECM fungal species to 
global changes such as N deposition can be predicted from their 
extracellular enzymatic capabilities related to organic nitrogen 
accessibility, response of AM fungi depends on their differential 
colonisation traits. Species traits of saprotrophs or pathogens 
related to their response to global changes are much less clear and 
therefore predictions of global change effects on these two guilds 
are much more difficult.

Fungal response to global change factors and 
lessons learned from manipulated studies

Our present understanding of the response of fungi to global 
change is based on several lines of support: (1) ecological 
theory and the predictions based on the known niches of fungal 
species, (2) predictions of responses to indirect factors affected by 
global change, such as the change of soil chemistry, vegetation 
composition, or ecosystem productivity, (3) extrapolation of 
observations of changes in fungal communities across time and 
space, (4) experimental simulation of future conditions and the 
analysis of fungal response. Since there is a lack of long-term 
observations on soil fungi under conditions of real-time climate 
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change and the extrapolation of such observations may be 
problematic, experimental manipulations simulating global change 
factors appear to be the best tool to predict the future of soil fungi.

Experimental approaches have several limitations that must 
be considered when interpreting results. Each of the experiments 
has at least three important aspects that affect the observations: 
(1) the duration of treatment, (2) the intensity of manipulation, 
and (3) the local conditions. Over the duration of treatment, 
several components of the system respond so that direct, and/or 
indirect, effects change in time and adaptations emerge. The plant 
communities likely respond first with altered productivity, while 
change in composition comes later (Smith et al. 2009). Importantly, 
the effects of short-term warming and/or precipitation experiments 
can be eclipsed by site specific year-to-year variation in climatic 
conditions. The intensity of manipulation is another critical issue. 
In many experiments, especially those simulating N deposition, 
the magnitude of treatments is considerably larger than those 
predicted by current models. Equally important, the target biome 
and local condition at the experimental sites can interact with the 
global change treatments. Moreover, soil fungi as the responding 
community are extremely diverse in terms of alpha and beta 
diversity (Baldrian et al. 2021) which limits the cross-ecosystem 
interpretation of community effects. Unfortunately, the experimental 
results reported so far show high levels of geographic bias with most 
studies in forests and grasslands of the temperate zone (Tables 
2–5). These biases in sampling mean that surprising results from 
underexplored biomes, such as massive CO2 fluxes from warmed 
plots recorded in the Panama tropical rainforest, cannot be ignored. 
Such fluxes largely exceeded model predictions and indicated high 
sensitivity of local soil C stocks to warming (Nottingham et al. 2020).

Here, we review the results from experimental simulations of 
climate change factors 1) elevated CO2, 2) warming, 3) reduction 
of precipitation, and 4) increased N deposition (Fig. 1). We ended 
up with 138 studies that applied realistic treatment types and levels 
(see each section) and reported at least one of the below response 
variables (Supp. S1). Though our survey is not exhaustive, we 
believe it is representative of the current state of knowledge. 
We decided to focus on the commonly studied fungal responses 
biomass, diversity, guild share, and changes in community 
composition. Though these responses are interconnected (e.g., 
changes in fungal diversity will likely lead to changes in composition), 
we decided to survey all factors to highlight the current focuses 
of research into the responses of fungi to climate change factors. 
The analyses of diversity, guild share, and changes in community 
composition largely rely on meta-barcoding sequencing, which we 
recognise as suffering from biases such as primer bias and the use 
of relative abundances (Quinn et al. 2018, Alteio et al. 2021), it is 
still the best tool for understanding fungal communities (Nilsson et 
al. 2018). All recorded responses are taken directly from the results 
sections and therefore represent current interests in the field. 

Increase of CO2 concentration
Elevated CO2 partially underlies global increases in plant 
productivity (Nemani et al. 2003). Furthermore, experimentally 
elevated atmospheric CO2 concentrations (eCO2) have led to short 
term increases in plant biomass production, allocation of carbon to 
roots and to soil (Adair et al. 2011) and consequently soil respiration. 
The higher C allocation belowground can fuel the breakdown of 
labile organic matter by copiotrophic microorganisms. Therefore, 
microbial biomass and heterotrophic respiration will likely increase 
(Fig. 1; Naylor et al. 2020). At longer time scales, eCO2 has been 
shown to increase microbial decomposition of soil organic matter 

(SOM) through priming (van Groenigen et al. 2014). Direct effects 
on individual fungi are unlikely since CO2 concentration in soil pores 
is higher than in the atmosphere and varies in space and time.

Furthermore, eCO2 may affect fungal propagation and dispersal. 
Under an 2×-ambient CO2 treatment in a Populus tremuloides 
plantation, the concentration of airborne fungal propagules, mostly 
spores, increased fourfold. Analysis of decomposing leaf litter 
(likely the main source of airborne fungal propagules) indicated 
that fungi produced fivefold more spores (Klironomos et al. 1997). 
Furthermore, increased total sporocarp biomass was observed 
in an eCO2 experiment (Andrew & Lilleskov 2009). Since fruiting 
and sporulation is the main mode of dispersal of soil fungi, 
consequences of this observation – if confirmed in additional 
systems – may be important.

Across the studies we surveyed, eCO2 experiments report 
either no change or increased biomass and diversity of all fungi, 
and only single cases of reduced AM fungal diversity and change 
in guild composition. Most experiments report change in the fungal 
community composition but there were no consistent observations 
of enriched or suppressed taxa (Fig. 3, Table 2). Though we 
found no clear relationship between fungal responsiveness and 
experimental length (Figs 3, 4), a meta-analysis of 11 studies found 
a positive relationship between increased fungal richness due to 
eCO2 and experimental length (Veresoglou et al. 2016). A recent 
global meta-analysis found no relationship between experimental 
length and the responsiveness of fungal biomass, but found that 
eCO2 decreased the F/B ratio across 31 studies (Sun et al. 2021). 
In our survey, the longest experiments showed contrasting effects 
on soil chemistry. A forest-based experiment reported significant 
decreases in pH, organic matter content, and P and increased 
water content (Weber et al. 2013) which may all potentially affect 
fungi. However, a grassland experiment of a similar length reported 
no significant change in soil chemistry (Maček et al. 2019).

Warming
In agreement with the increasing catalytic performance of soil 
enzymes with increasing temperature (Baldrian et al. 2013), C 
turnover across global biomes has been shown to increase with 
temperature (Carvalhais et al. 2014). Temperature sensitivity of soil 
C loss appears higher in cold regions (Crowther et al. 2016, Koven 
et al. 2017) and probably the most extreme response is expected 
in the permafrost where thawing dramatically increases organic 
matter transformation and the emissions of CO2 and CH4 (Jansson 
& Tas 2014). The expected C losses are large since the soils in cold 
regions host large C stocks (Crowther et al. 2019, García-Palacios 
et al. 2021). Additionally, warming has led to the loss of plant 
species unable to tolerate new environmental conditions (Freeman 
et al. 2018) or outcompeted by invaders better adapted to the new 
conditions (Alexander et al. 2015). These shifts in plant species 
composition may alter the quality of the carbon input into the 
system (Harte et al. 2015). Shifts in fungal saprotroph communities 
in response to both increased access to extant carbon and novel 
carbon inputs will have important implications for global responses 
to climate change (García-Palacios et al. 2021).

The responses of soil fungal communities to warming likely 
depends on the local climatic conditions, such as MAT. Not 
surprisingly, in the Antarctic, at the lower limit of fungal temperature 
tolerance, air temperature is the strongest and most consistent 
predictor of soil fungal diversity and, with current rates of warming, 
a 30 % increase in fungal diversity is predicted by 2100 (Newsham 
et al. 2016). However, this diversity response to warming is 
probably not universal since the highest level of fungal diversity 
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Fig. 3. Observations of the effects of selected global change factors on the A) biomass, B) diversity, C) guild composition and D) community composition 
of total fungi in the context of experimental length and magnitude of treatment. The pie graphs indicate the total share of experiments reporting statistically 
significant effects (increase, decrease, no change). Treatment intensities are in ppm applied for CO2, increase in °C in temperature manipulation, percent 
reduction in precipitation and kg/ha/y in N addition. For the lists of experiments, see Tables 1–4.

Fig. 4. Observations of the effects of selected global change factors on the A) biomass, B) diversity and C) community composition of AM fungi in the context 
of experimental length and magnitude of treatment. The pie graphs indicate the total share of experiments reporting statistically significant effects (increase, 
decrease, no change). Treatment intensities are in ppm applied for CO2, increase in °C in temperature manipulation, percent reduction in precipitation and 
kg/ha/y in N addition. For the lists of experiments, see Tables 1–4.
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Table 2. Effects of experimental CO2 enrichment on fungi. Manipulations of at least 1 y duration where CO2 enrichment was not combined with other factors were 
considered.

Location Experimental 
system

Duration of 
treatment 
(yr)

CO2 
concentration 
applied (ppm)

Biomass Diversity Guilds 
share

Community 
composition

Reference1

All fungi

Asia (China) cropland 2 500 + change Liu et al. (2014)

Asia (China) cropland 3 500 + 0 change Liu et al. (2017)

North America (USA) experimental 
grassland

3 500 0 / + change 
(more 
AMF)

change Procter et al. (2014)

Asia (China) shrubland 4 700 0 change Jia et al. (2020b)

Europe (Denmark) shrubland 5 510 0 Haugwitz et al. (2014)

Australia (Australia) grassland 5 550 + change Hayden et al. (2012)

North America (USA) grassland 6 680 0 Gutknecht et al. (2012)

Europe (Italy) forest 
plantation

6 550 0 change Lagomarsino et al. 
(2007)

Asia (China) cropland 8 500 + Liu et al. (2021a)

North America (USA) shrubland 8 550 + + change Lipson et al. (2014)

Europe (Switzerland) experimental 
forest

9 570 0 no change change Solly et al. (2017)

Europe (Germany) grassland 10 440 0 Guenet et al. (2012)

North America (USA) forest 
plantation

11 560 0 0 no change Dunbar et al. (2014)

North America (USA) experimental 
field

12 550 + change (more 
Basidiomycota, 
less 
Ascomycota)

Tu et al. (2015)

North America (USA) forest 
plantation

14 571 change Weber et al. (2013)

Arbuscular mycorrhizal fungi

North America (USA) experimental 
field

2; 4; 6 550 0 change (more 
Glomeraceae 
and 
Gigasporaceae)

Cotton et al. (2015) 

North America (USA) grassland 3 680 0 no change Mueller & Bohannan 
(2015)

North America (USA) shrubland 3.4–3.9 up to 750 + change (more 
Acaulospora and 
Scutellospora)

Treseder et al. (2003) 

Europe (Switzerland) experimental 
field

7 600 + (root 
colonisation)

Gamper et al. (2004)

North America (USA) orchard 7 670 0 0 Kimball et al. (2007)

Asia (China) grassland 7 580 0 - no change Zheng et al. (2022a)

North America (USA) grassland 7 560 + (soil 
hyphae)

Antoninka et al. (2011)

Asia (India) experimental 
field

8 550 + 0 change Panneerselvam et al. 
(2020)

Europe (Germany) grassland 15 440 0 (root 
colonisation)

+ no change Maček et al. (2019)
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is predicted in cold areas (Větrovský et al. 2019). Similar to soil 
fungi, the highest diversity of bacteria in global surveys has also 
been observed at locations with relatively low MAT (around 10 °C; 
Thompson et al. 2017) and temperate regions (Bahram et al. 2018), 
although bacterial biomass in soils does not seem to be affected by 
warming (Lladó et al. 2017). 

Short-term and prolonged warming may have differing effects. 
An initial loss of labile soil carbon in one of the longest running 
warming experiments in the Harvard Forest was later followed by 
increased degradation of more recalcitrant carbon compounds. 
Sustained warming for 26 years resulted in the depletion of soil 
organic carbon (SOC) with corresponding reductions in microbial 
biomass (Melillo et al. 2017). Based on a meta-analysis, warming 
initially increases soil respiration, but the magnitude of observed 
effect declines significantly as warming progresses and in fact, 
after 10 years of warming, soil respiration in experimentally warmed 
plots was similar to controls. Microbial acclimation, community 
shifts, adaptation, or reductions in labile C may ameliorate warming 
effects on soil respiration in the long-term. Accordingly, long-term 
soil C losses might be smaller than those suggested by short-term 
warming studies. The share of experiments where fungal biomass 
increased versus decreased with warming have been found to 
be roughly equivalent and no significant change in the fungal 
to bacterial (F/B) biomass ratio were observed across studies 
(Romero-Olivares et al. 2017). The F/B ratio was also unaffected 
after 7–25 yr of warming across 12 experiments in the Alpine and 
Arctic tundra (Jeanbille et al. 2021).

Temperature also alters fungal fruiting with consequences for 
dispersal. Across Europe, timing of fruiting has been shown to vary 
by 25 d among latitudes and 30 d among altitudes suggesting a 
strong temperature effect (Andrew et al. 2018). Present-day autumn 
fruiting of fungi has been shown to occur later than in the past, and 
the fruiting season length has increased, similar to the vegetation 
season (Kauserud et al. 2012). There has also been shown to be a 
significant shift in fruiting of saprotrophic and ectomycorrhizal fungi 
towards higher altitudes in the Swiss Alps between 1960 and 2010 
as a consequence of warming (Diez et al. 2020).

Warming was the most frequently applied treatment in our 
survey (47 % of studies) and as such gives the best opportunity 
for generalisations. Importantly, warming was most frequently 
reported to alter total fungal biomass and a substantial fraction 
of the observations indicate negative effects, especially between 
3–5 yr of application. In longer-lasting experiments, however, the 
effects on fungal biomass were less pronounced and AM fungi 
seem to be even less affected. Both negative and positive effects 
on total fungal diversity were reported but no effects were reported 
for experiments running for more than three years; furthermore, 
the decrease of AM fungal diversity was also observed only in 
the short term (Figs 3, 4, Table 3). Many individual experiments 
reported significant effects on fungal guild composition, which 
were, however, context-dependent. The only exception is the effect 
on plant pathogens where all reports showed their increase (Table 
3). Most warming experiments also reported change in fungal 
community composition, often within the ectomycorrhizal guild 
(Fernandez et al. 2017, van Nuland et al. 2020) and a decrease 
of the Glomeraceae was recorded within the AM fungi (Cao et 
al. 2020a, b). Interestingly, almost all studies with experimental 
lengths longer than 10 yr or any experimental length with warming 
treatments larger than 2 °C reported significant changes in 
fungal community composition. In partial support of our survey, a 
recent global meta-analysis found that warming decreased fungal 
richness but that there was no significant effect of experimental 

length on this response (Li et al. 2022). There were no reports of 
important changes in soil nutrient content or pH but some of the 
long-term experiments report the decrease of the F/B biomass 
ratio (Gutknecht et al. 2012) and lower transcription of hydrolytic 
enzymes (Romero-Olivares et al. 2019), two factors that may be 
connected since fungi are important producers of enzymes in soils 
(Starke et al. 2021).

Reduction of precipitation
Since soil C turnover across global biomes increases with 
precipitation (Carvalhais et al. 2014), any change in precipitation 
likely affects C cycling. Responses of plant communities to 
increased variability in precipitation have ranged from high 
ecosystem stability in the face of intra-annual variability (Jones et al. 
2016) to increasing functional diversity with increased inter-annual 
variability (Gherardi & Sala 2015).  Even when there is very little 
recorded change in plant community diversity, significant changes 
in species composition through reordering have been recorded 
(Jones et al. 2017). While climate models predict both decreases 
and increases in precipitation across global locations (IPCC 2014), 
drought effects on ecosystems are likely much more dramatic. 
Increases in the durations of drought are expected to be a major 
consequence of future climate and increased desertification is 
predicted for most semi-arid or arid regions in the coming decades 
(Huang et al. 2016). Based on a recent meta-analysis, terrestrial 
ecosystem productivity was decreased by drought across all 
ecosystems (Wang et al. 2021a). The response of productivity 
to drought are more pronounced with higher drought intensity 
and longer duration, and consistent across biomes and climates. 
Drought can significantly decrease soil moisture, soil C content, soil 
C:N ratios, and microbial biomass C, whereas it tends to increase 
soil pH. The relative proportion of fungal biomass (F/B ratio) 
however, frequently increases with drought (Delgado-Baquerizo et 
al. 2020b, Wang et al. 2021a). The diversity and abundance of soil 
bacteria and fungi have been shown to decrease in drylands as 
aridity increased, being largely driven by the negative impacts of 
aridity on soil organic carbon content (Maestre et al. 2015).

Since most global change models predict changes in 
precipitation, experimental manipulations of precipitation are 
relatively frequent. Unfortunately, such manipulations are highly 
diverse and range from reduction and addition to redistribution. Both 
reduction and addition are frequently combined often without a clear 
link to a model prediction for the ecosystem under study (Knapp et 
al. 2015). Moreover, many experiments use manipulations that are 
likely outside the model predictions with reductions or additions > 
50 % and the relevance of such manipulations is thus unclear. For 
simplicity, we surveyed the effects of precipitation reduction since 
drought seemed to have more profound ecosystem consequences 
(Table 4).

In our survey, no negative effects of precipitation on total fungal 
biomass were reported with most experiments reporting no effect on 
any response variable (Fig. 3, Table 4). In studies of AMF, there was 
decreased hyphal, spore density, and root colonisation in a forest 
system in connection with soil acidification (Maitra et al. 2019) and a 
reduction in root colonisation in a perennial cropping system (Emery 
et al. 2022). Reduction of precipitation most frequently did not affect 
the diversity of fungi and AM fungi and decrease of total fungal 
diversity was never observed in manipulations lasting three or more 
years (Figs 3, 4, Table 4). Contrary to our survey, a recent global 
meta-analysis found that precipitation reduction led to increased 
fungal richness with the effect size increasing with experimental 
length, though precipitation reduction had no effect on fungal 
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Table 3. Effects of experimental warming on fungi. Manipulations of at least 1 yr duration where warming was not combined with other factors were 
considered.

Location Experimental 
system

Duration 
of 
treatment 
(yr)

Temperature 
increase 
(°C)

Biomass Diversity Guilds 
share

Community 
composition

Reference

All fungi

Asia (China) grassland 1 2.0 0 no change Zhang et al. 
(2016a)

North America (USA) forest 1 5.0 0 change 
(more plant 
pathogens, 
less AMF)

change Garcia et al. (2020)

North America (USA) experimental 
field

1 5.0 0 no change change Anthony et al. 
(2020)

South America (Brazil) experimental 
field

1 2.0 0 change (more 
Hypocreales, less 
Pleosporales)

de Oliveira et al. 
(2020)

Asia (China) forest 
plantation

1.2 1.4 + Liu et al. (2021b)

Asia (China) grassland 1.3 1.0; 2.0 0 change Xiong et al. (2014)

Asia (South Korea) forest 
plantation

1.5 3.0 + change Li et al. (2017)

North America 
(Canada)

grassland 1–2 2.0 0 Bell et al. (2010)

Asia (China) grassland 1; 2; 4 1.6 0 no change Shi et al. (2020)
North America (USA) grassland 1–5 3.0 + change Guo et al. (2019)
Asia (China) cropland 2 2.0 variable - change Liu et al. (2014)

Asia (South Korea) forest 
plantation

2.7 3.0 0 change Li et al. (2018)

Asia (China) experimental 
grassland

3 1.5; 2.0 - / 0 change Zhang et al. 
(2016b)

Asia (China) cropland 3 2.0 - - change Liu et al. (2017)

Asia (China) experimental 
grassland

3 1.5; 2.0 - / 0 change Zhang et al. (2017)

North America (USA) forest 3 1.7; 3.4 no change change (within 
ECM community)

Mucha et al. (2018)

North America (USA) forest 
plantation

3 1.7; 3.4 0 change (within 
ECM community)

van Nuland et al. 
(2020)

North America (USA) desert 3 2.0 - Zelikova et al. 
(2012)

Asia (China) grassland 3 1.7 + Ding et al. (2020)
Asia (China) grassland 3 1.5; 2.0 no change Zhang et al. (2019)

Asia (Japan) grassland 3 2.0 - Yoshitake et al. 
(2015)

Asia (China) grassland 3 1.8 - Ma et al. (2011)
Europe (Switzerland) forest 

plantation
3 3.6 + 0 no change change Solly et al. (2017)

North America (USA) grassland 3 1.0 0 no change no change Jumpponen & 
Jones (2014)

Australia (Australia) shrubland 4 2.9 0 / + change 
(more plant 
pathogens)

change Birnbaum et al. 
(2019)

Europe (Spain) shrubland 4 2.5 change (less 
ECM)

change (within 
ECM community)

León-Sánchez et 
al. (2018)

Asia (China) grassland 4 1.8 - Li et al. (2013)
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Table 3. (Continued).
Location Experimental 

system
Duration 
of 
treatment 
(yr)

Temperature 
increase 
(°C)

Biomass Diversity Guilds 
share

Community 
composition

Reference

Europe (Norway) tundra 4 0.6–1.1 0 no change no change Ahonen et al. 
(2021)

Europe (Spain) shrubland 4 2 0 change (less 
ECM)

no change Querejeta et al. 
(2021)

Asia (China) forest 
plantation

5 1.5 0 0 no change Wang et al. (2019)

Europe (Denmark) shrubland 5 0.3 + Haugwitz et al. 
(2014)

Asia (China) grassland 5 1.0 - Shao et al. (2018)

Asia (China) grassland 5 0.3 + Wang et al. (2017)
Australia (Australia) grassland 5 2.0 - change Hayden et al. 

(2012)

North America (USA) forest 6 3.4 change (within 
ECM community)

Fernandez et al. 
(2017)

Europe (Norway) shrubland 6 1.7 0 no change Lorberau et al. 
(2017)

Asia (China) grassland 6 1.6 0 0 change (less 
AMF)

change (more 
Dothideomycetes)

Che et al. (2019)

North America (USA) woodland 6 5.0 0 no change Gehring et al. 
(2020)

North America (USA) grassland 6 1.0 change (less 
AMF)

Gutknecht et al. 
(2012)

Asia (China) shrubland 6 0.5 + Song et al. (2021)
Asia (China) grassland 7 1.3 0 / + change Yu et al. (2019)
Many (Many) 7–25 0.5–2.0 0 Jeanbille et al. 

(2021)
Asia (China) cropland 8 2.0 0 Liu et al. (2021a)
Asia (China) grassland 8 1.6 0 no change Peng et al. (2020)
Antarctica (Antarctica) desert 8 0.8 + 0 change Kim et al. (2018)

North America (USA) forest 10 1.6 change Romero-Olivares et 
al. (2019)

Asia (China) grassland 11 1.8 0 Zhang et al. (2015)
North America (USA) forest 12 5.0 - change (less 

AMF)
change Frey et al. (2008)

North America (USA) grassland 18 1.5–2.0 0 change Geml et al. (2015)
North America (USA) grassland 18 1.0–5.0 0 change 

(more plant 
pathogens 
and 
saprotrophs)

change (within 
Ascomycota)

Semenova et al. 
(2015)

North America (USA) grassland 18 1.5–2.0 0 change Geml et al. (2021)

North America (USA) grassland 23 2.0 0 / - 0 change 
(more AMF)

change Kazenel et al. 
(2019)

Arbuscular mycorrhizal fungi

North America (USA) experimental 
field

1 5.0 0 change Anthony et al. 
(2020)

Europe (Germany) cropland 1 2.0 0 change Wahdan et al. 
(2021)

Asia (China) grassland 2 2.0 0 no change Wei et al. (2021)

Asia (China) grassland 3 0.5–1.2 - change Shi et al. (2017)

Asia (China) forest 
plantation

3 5.0 + (root 
colonisation)

- change (less 
Glomeraceae)

Cao et al. (2020b)
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Table 3. (Continued).
Location Experimental 

system
Duration 
of 
treatment 
(yr)

Temperature 
increase 
(°C)

Biomass Diversity Guilds 
share

Community 
composition

Reference

Asia (China) grassland 3 1.2–1.7 0 0 Yang (2013) 

Asia (China) forest 
plantation

4 5.0 0 change (more 
Gigasporaceae, 
less 
Glomeraceae)

Cao et al. (2020a)

Asia (China) grassland 4.3 1.8 + Kim et al. (2015)

Asia (China) grassland 4.3 0.9 0 (soil 
hyphal 
density)

+ Kim et al. (2014)

Asia (China) grassland 6 1.8 0 (soil 
hyphal 
and spore 
density)

0 no change Gao et al. (2016)

Asia (China) grassland 7 1.5–3.2 0 - no change Zheng et al. 
(2022a)

Asia (China) grassland 17 1.5 0 no change Shi et al. (2021)

North America (USA) grassland 23 2.0 0 / - 0 no change Kazenel et al. 
(2019)

Table 4. Effects of experimental reduction of precipitation on fungi. Manipulations of at least 1 y duration where reduction of precipitation was not combined 
with other factors were considered.
Location Experimental 

system
Duration 
of 
treatment 
(yr)

Reduction of 
precipitation 
(%)

Biomass Diversity Guilds 
share

Community 
composition

Reference1

All fungi

North America (USA) grassland 1 100 0 change McHugh & Schwartz 
(2015)

Asia (China) grassland 1 50 0 no change Zhang et al. (2016a)

North America (Brazil) experimental 
field

1 100 + change (more 
selected plant 
pathogens)

no change de Oliveira et al. 
(2020)

Asia (China) forest 
plantation

1.2 50 0 Liu et al. (2021b)

Asia (Korea) forest 
plantation

1.5 30 0 change Li et al. (2017)

North America/
Australia (USA/
Australia)

grassland 1–2 50 0 / + variable change (less 
AMF)

change Ochoa-Hueso et al. 
(2018)

Asia (China) grassland 1–2 30; 50 0 no change Yang et al. (2021b)

Asia (China) cropland 1–2 30; 50 0 no change Sun et al. (2020)

Asia (China) grassland 1–2 20; 40; 60 change Zhao et al. (2016)

Australia (Australia) grassland 1; 2; 3 50 + change Ochoa-Hueso et al. 
(2020)

Asia (China) grassland 1; 2; 4 50 + change Shi et al. (2020)

North America (USA) grassland 1–5 50 - change Guo et al. (2019)
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Table 4. (Continued).

Location Experimental 
system

Duration 
of 
treatment 
(yr)

Reduction of 
precipitation 
(%)

Biomass Diversity Guilds 
share

Community 
composition

Reference1

Asia (China) forest 2 67 0 - change (more 
Basidiomycota, 
less 
Ascomycota)

Zhao et al. (2017) 

Asia (China) grassland 2 40; 80 0 change (more 
pathogens, 
less AMF)

change Huang et al. (2021)

Europe (Belgium) forest 
plantation

2 45–55 0 Hicks et al. (2018)

Asia (South Korea ) forest 
plantation

2.7 30 - change Li et al. (2018)

North America (USA) grassland 2–3 66 change Lagueux et al. 
(2021)

Asia (China) grassland 3 0–100 0 no change Wu et al. (2020)

Asia (China) grassland 3 30; 60 0 no change Wang et al. (2020a)

Australia (Australia) shrubland 4 30 0 change 
(more ECM 
and plant 
pathogens)

change Birnbaum et al. 
(2019)

Europe (Spain) shrubland 4 30 0 change (less 
ECM)

change (within 
EMF community)

León-Sánchez et al. 
(2018)

North America (USA) grassland 4 40 0/+ no change Narayanan et al. 
(2021)

Asia (China) grassland 5 50 0 change 
(more plant 
pathogens)

change Wang et al. (2020b)

Europe (Denmark) shrubland 5 50 + Haugwitz et al. 
(2014)

North America (USA) woodland 6 50 0 0 no change Gehring et al. 
(2020)

Asia (China) grassland 6 50 0 change Xiao et al. (2020)

Asia (China) forest 7 30 0 no change Zhang et al. (2021)

Asia (China) grassland 7 30 0 Jia et al. (2017)

Asia (China) forest 8 30 + Yan et al. (2021)

North America (USA) forest 10 22 change Romero-Olivares et 
al. (2019)

Arbuscular mycorrhizal fungi

Australia (Australia) experimental 
grassland

1; 2; 3; 4 50 0 Deveautour et al. 
(2020)

Asia (China) experimental 
field

2 100 + 0 Zhong et al. (2021)

North America (USA) experimental 
grassland

2 40 - (root 
colonisation)

change Emery et al. (2022)
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diversity (Li et al. 2022). Importantly, precipitation reduction typically 
shifted the share of fungal guilds with the reduction of AM fungi and 
increase of plant pathogens being frequently reported. Changes in 
fungal community composition were also relatively frequent (Table 
4). Increase of the F/B ratio was observed in a heathland experiment 
(Haugwitz et al. 2014). Changes in soil chemistry were typically not 
found, not even for the long-lasting experiments.

Increased atmospheric N deposition
Many plant communities are N limited (LeBauer & Treseder 2008), 
and additional N can thus promote plant productivity if P content is 
non-limiting (Fay et al. 2015). Additionally, N deposition may reduce 
plant species richness though this effect depends on ecosystem 
characteristics, such as MAP (Clark et al. 2007). For example, N 
addition may increase plant species richness in ecosystems with 
high MAP (Komatsu et al. 2019). In addition to effects on vegetation, 
N has multiple effects on soil chemistry, including acidification 
(Lekberg et al. 2021). Though a recent global meta-analysis found 
that N reduced overall soil fungal richness (Zhou et al. 2020), the 
effects of N deposition on soil fungi can be, like plant community 
responses, context dependent. Across N-addition studies in the 
US forests, fungal biomass and richness increased with simulated 
N deposition at sites with low ambient deposition but decreased 
at sites with high ambient deposition (Moore et al. 2021). Along 
local fertility gradients, total fungal biomass was highest in soils 
with the lowest nutrient availability and tree productivity (Nilsson 
et al. 2005). Higher N availability promotes bacterial growth due to 
their higher N demand. Especially in the N-limited boreal soils, N 
addition results in a decrease of the F/B ratio by 25–70 % (Frey et 
al. 2004, Wallenstein et al. 2006, Maaroufi et al. 2015).

There appears to be a general consensus that N deposition 
increases soil C sequestration due to the decline in SOM 
decomposition via the reduction of fungal abundance and 
decomposer activity in many different soil environments, including 
temperate and boreal forests (Frey et al. 2014, Maaroufi et al. 2015). 
Since, similar to plants, many fungi respond to P availability in soil 
and it is an important driver of fungal abundance in soils without N 
limitations (Odriozola et al. 2021), increased N content may act on 
fungal productivity and community composition indirectly through P 
limitation (Fig. 1).

Within our survey, the goal of the majority of N addition 
experiments was to simulate predicted increases in atmospheric 

deposition, but many used unreasonably high amounts of fertilizer, 
ignored ambient N deposition rates, and virtually none of them 
referenced a model that predicts future deposition, whose extent 
shows high local variation. It is currently estimated that the vast 
majority of forests are subject to total N deposition lower than 25 
kg N/ha/y (Schwede et al. 2018) and it is unrealistic to expect that 
the increase in future is several-fold. We have thus considered only 
the results of experiments where N addition was lower than 75 kg 
N/ha/y.

The effects of N addition on fungal biomass in soil were 
variable. For AM fungi, decreased spore density, root colonisation, 
and biomass were much more frequent than positive effects 
(Fig. 4). In forest ecosystems, decrease of fungal biomass 
and root colonisation appears typical (Ma et al. 2021b). Both 
increases and decreases in diversity of fungi or AM fungi were 
observed (Figs 3, 4, Table 5). This lack of consistency in diversity 
responses is somewhat supported by the effects of increased 
N on fungal richness varying between global meta-analyses 
with increased N either decreasing richness or having no effect 
(Zhou et al. 2020, Li et al. 2022). Changes in the representation 
of fungal guilds were a common consequence of N addition. In 
most long-term N addition experiments, the share of ECM fungi 
was significantly reduced (Table 5) with a shift to nitrophilic taxa 
such as Rusula vinacea (Morrison et al. 2016, Tahovská et al. 
2020). The consequences of longer N enrichment (> 4 yr) were 
relatively complex and include acidification and increased N 
availability (Choma et al. 2017, Wang et al. 2021b), decreased 
F/B ratio (Gutknecht et al. 2012, Wang et al. 2015) and decreased 
activity of enzymes decomposing recalcitrant plant biopolymers 
lignin and cellulose (Freedman et al. 2015, Hesse et al. 2015). 
Although vegetation responds to N addition as well, the change 
of soil chemistry appeared to be the immediate driver of fungal 
community composition (Zheng et al. 2014, Zhou et al. 2020, 
Wang et al. 2021b).

Combined effects and model predictions
Current models predict that the effects of global change factors 
will act simultaneously in most terrestrial habitats and the resulting 
effect of global change thus reflects their combination. Furthermore, 
shifts in plant community composition are likely determined by 
interactions between multiple climate change drivers (Avolio et al. 
2021). Between 1990 and 2014, global heterotrophic soil respiration 

Table 4. (Continued).

Location Experimental 
system

Duration 
of 
treatment 
(yr)

Reduction of 
precipitation 
(%)

Biomass Diversity Guilds 
share

Community 
composition

Reference1

Australia (Australia) experimental 
grassland

2.3 50 0 change Deveautour et al. 
(2018)

Asia (China) grassland 3 30 0 change Wang et al. (2021c)

Asia (China) forest 4 70 - (hyphal 
and spore 
density, root 
colonisation)

0 0 Maitra et al. (2019)

Asia (China) forest 
plantation

4 50 0 0 Cao et al. (2020a)

Asia (China) grassland 6 50 0 - change Zheng et al. (2022b)

North America (USA) shrubland 7 40 0 change Weber et al. (2019)

http://www.studiesinmycology.org


16

Baldrian et al.

Table 5. Effects of experimental N addition on fungi. Manipulations where N was added in a mineral form with the aim to simulate atmospheric deposition 
that lasted at least for 1 yr and where N addition was not combined with other factors were considered. Manipulations or treatments where N addition 
exceeded 75 kg N/ha/y were not considered as highly exceeding projected N deposition increase; + denotes that the experiment also included treatment(s) 
with higher N addition level(s).

Location Experimental 
system

Duration 
of 
treatment 
(yr)

N addition 
(kg N/ha/y)

Biomass Diversity Guilds 
share

Community 
composition

Reference

All fungi

North America (USA) shrubland 1 7; 15 0 no change Mueller et al. (2015)
Asia (China) grassland 1 50; + 0 change Li et al. (2020a)
North America (USA) experimental 

field
1 50 0 no change no change Anthony et al. (2020)

North America 
(Canada)

grassland 1–2 20 + Bell et al. (2010)

Asia (China) shrubland 2 60 0 change She et al. (2018)
Asia (China) forest 2 30; 60; + + + change 

(more AMF)
change (more 
Basidiomycota)

Li et al. (2019a)

Asia (China) wetland 2 30; 60; + 0 change Li et al. (2020b)
Asia (China) forest 2 25 + change Guo et al. (2021)
Asia (China) grassland 3 15; 30; 50; + 0 Zhang et al. (2018)
Europe (Czech 
Republic)

forest 4 50 0 no change Choma et al. (2020)

Asia (China) grassland 5 35 0 change (less 
AMF)

change Wang et al. (2020b)

Asia (China) forest 5 25 + + change 
(more 
saprotrophs)

change Zhao et al. (2020)

Asia (China) forest 6 50; + - 0 change (less 
Ascomycota)

Wang et al. (2021b)

North America (USA) grassland 6 70 change (less 
AMF)

Gutknecht et al. 
(2012)

Asia (China) forest 6 50; + 0 no change Li et al. (2019b)

Asia (China) experimental 
field

7 35; 70; + + - change Wang et al. (2015)

North America (USA) experimental 
grassland

7 28; 56; + 0 change (less 
AMF)

change Li et al. (2021)

Asia (China) forest 8 50 0 Yan et al. (2021)

North America 
(Canada)

forest 10 30 0 no change no change Wu et al. (2021)

North America 
(Canada)

experimental 
field

10 30; + 0 - change Tosi et al. (2021)

Europe (United 
Kingdom)

wetland 14 8; 25; 56 change (less 
ERM)

Vesala et al. (2021)

Asia (China) grassland 15 18; 53; + - 0 change (more 
Eurotiomycetes 
and 
Sordariomycetes)

Chen et al. (2019)

North America (USA) forest 16 30 0 no change Hesse et al. (2015)
North America (USA) forest 20 30 0 0 no change Freedman et al. 

(2015)

North America (USA) forest 20 50; + change (less 
ECM, more 
saprotrophs)

change (more 
nitrophilic ECM)

Morrison et al. (2016)

Europe (Switzerland) forest 20 22 0 0 change (less 
ECM)

change Frey et al. (2020)

Europe (Sweden) forest 23; 46 34; 73 0 change (less 
ECM)

Choma et al. (2017)
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and its ratio to total soil respiration increased, probably in response 
to the combined effects of global change factors (Bond-Lamberty 
et al. 2018). This suggests that climate-driven losses of soil carbon 
are currently occurring across many ecosystems, with a detectable 
and sustained trend emerging at the global scale, although the 
underlying mechanisms cannot be easily identified. Simulation of 
the global change effects until the year 2090 using available data 
from 1950 indicates that climate change acts mostly indirectly, 
through other environmental variables, e.g., changes in the soil 
pH (Guerra et al. 2021). The effects of global change factors on 
fungi thus may depend either on the relative importance of each 
individual factor under local conditions or on the combined effects 
of multiple factors.

CONCLUSIONS

While ongoing climate change has had seemingly no dramatic 
effects on soil fungal communities, and neither fungal biomass 
nor fungal diversity in soils appear to be dramatically affected, 
experiments simulating the main global change effects predict 
significant shifts in fungal community composition and the share 
of fungal guilds. The differences in the size of the realised niche 
of plant-beneficial ECM fungi compared to that of plant pathogens 
suggests that the fitness of vegetation may decrease as ecosystems 
experience increased spread of plant pathogens and potentially 
higher frequencies of outbreaks. This issue is perhaps the one that 
deserves most attention (Fig. 1). Interestingly, responses of soil 
fungi to various aspects of global change can be predicted based 
on different ecological features. While differential responses of 

Table 5. (Continued).

Location Experimental 
system

Duration 
of 
treatment 
(yr)

N addition 
(kg N/ha/y)

Biomass Diversity Guilds 
share

Community 
composition

Reference

Europe (Sweden) forest 24 40 + 0 change 
(more 
saprotrophs)

change (more 
nitrophilic ECM)

Tahovská et al. (2020)

Arbuscular mycorrhizal fungi

North America (USA) experimental 
field

1 50 0 no change Anthony et al. (2020)

Asia (China) forest 2 30; 60 + (root 
colonisation)

+ change Liu et al. (2021c)

North America (USA) shrubland 2.8 60 - (spore 
density)

- change (more 
Glomus, less 
Gigaspora and 
Scutellospora)

Egerton-Warburton & 
Allen (2000)

Asia (China) forest 
plantation

3 40; + + (root 
colonisation)

0 change (more 
Gigasporaceae)

Cao et al. (2020b)

Asia (China) grassland 3 50; + - (root 
colonisation)

+ change Jiang et al. (2018)

North America (USA) grassland 3 70 0 no change Mueller & Bohannan 
(2015)

Asia (China) forest 4 50 0 no change Zhao et al. (2018)

Asia (China) experimental 
field

5 50; + - - change Zhu et al. (2018)

Asia (China) grassland 6 15; 75 - (spore 
density)

+ no change Zheng et al. (2014)

North America (USA) grassland 6 70 - (biomass) Gutknecht et al. 
(2012)

Asia (China) grassland 7 50; + - (root 
colonisation)

0 change Lu et al. (2020)

Asia (China) grassland 7 50; + - (root 
colonisation, 
biomass)

- change Chen et al. (2017)

Asia (China) grassland 8 25; 50 0 0 no change Li et al. (2015)
North America (USA) forest 12 30 change (more 

Glomus)
van Diepen et al. 
(2011)

North America (USA) forest 16 30 0 no change van Diepen et al. 
(2013)
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ECM fungal species to global changes such as N deposition can 
be predicted from their extracellular enzymatic capabilities related 
to organic nitrogen accessibility, response of AM fungal species 
depends on their differential colonisation traits.

Global change effects on ecosystems are highly context 
dependent and there are undoubtedly ecosystems where changes 
will be more pronounced. Where global change relieves existing 
limitations, such as the coldest or N-limited areas, novel limitations 
will arise, such as increased desertification or induced P-limitation, 
respectively. Unfortunately, these systems are rarely the subject of 
research. Experimental manipulations in underexplored systems 
are thus most welcome.

Although the experiments combining multiple factors are 
relatively frequent (Yang et al. 2021a), they are in most cases 
applying unrealistic treatment intensities and so far too rare to allow 
generalisations. Since global change factors act in combination and 
their effects are not simply additive (Rillig et al. 2019), it would be 
more than welcome to see results of long-term manipulations based 
on complex predictions of multiple global change factors for given 
localities. Since it will never be possible to perform manipulations 
everywhere, long term collection of observational data is needed 
that would help to describe trends in the soil mycobiome. Global 
and regional initiatives intending to capture all available types 
of fungal community data, combined with paired environmental 
metadata, across time (Andrew et al. 2017, Větrovský et al. 2020) 
have the potential to scale our understanding of global change 
effects on soil fungi to a global level.
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