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A B S T R A C T   

Vegetation Optical Depth (VOD), a vegetation parameter that quantifies the extinction effect of microwaves 
penetrating the canopy, plays a crucial role in global-scale biomass monitoring and climate change research. 
However, the spatial gridding of existing long-term VOD products is relatively coarse (approximately 25 km), 
with restrictions on their application at a regional scale. High-resolution active-microwave proxies and optical 
vegetation indices can potentially be used to disaggregate coarse-resolution VOD, but it is unclear which proxy is 
optimal. In this paper, the Normalized Difference Vegetation Index (NDVI) and active-microwave proxies (VH, 
VV, and cross-polarization ratio CR) from Sentinel-1 were quantitatively assessed with VOD products at various 
frequencies (L-/C-/X-VOD) across the contiguous United States (U.S.). The results showed that VH (R = 0.80) and 
NDVI (R = 0.77) exhibit a high spatial correlation with L-VOD products. For temporal correlation, NDVI had the 
highest overall performances with all VOD products, but good correlations were also achieved with CR and, to a 
lesser extent, VH. Further comparisons of the performance between Brightness Temperature (TB) and VOD 
revealed that while TB displayed a strong temporal correlation with active-microwave proxies, its spatial cor
relations with such proxies were low. In contrast, VOD had good correlations both temporally and spatially with 
active-microwave proxies (e.g., VH). These evidences suggested that the downscaling of VOD using the com
bination of VH and other proxies could be an alternative promising method to estimate high-resolution VOD.   

1. Introduction 

Vegetation optical depth (VOD) is a variable parameterizing the 
microwave-based vegetation extinction effects (Frappart et al., 2020), 

which has been potentially used to estimate vegetation water content 
(VWC) (Jackson and Schmugge, 1991), Gross Primary Production (GPP) 
(Teubner et al., 2018) and above-ground biomass (AGB) (Brandt et al., 
2018; Cui et al., 2023; Fan et al., 2023, 2019; Tong et al., 2020; Vittucci 
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et al., 2019). Global long term VOD product datasets are available from 
various microwave sensors, e.g., C-band ASCAT (Advanced SCATter
ometer) (Liu et al., 2023, 2021) and C-band AMSR2 (Advanced Micro
wave Scanning Radiometer) (Owe et al., 2008), X-band AMSR2 
(Karthikeyan et al., 2019; Wang et al., 2021a), and L-band SMOS (Soil 
Moisture and Ocean Salinity) (Wigneron et al., 2021) and SMAP (Soil 
moisture Active and Passive) (Chaubell et al., 2022; Konings et al., 
2016). 

Currently, the available VOD products are typically coarse (approx
imately 25 km) as they are generally retrieved from the brightness 
temperature (TB) measured by passive microwave sensors (e.g., SMOS 
and AMSR2) or backscatter data measured by scatterometers (e.g., 
ASCAT). The coarse resolution of these VOD products hampers their 
application to accurately monitor biomass dynamics and agroforestry 
management at regional scales. Those developed VOD products have 
coarse grid cells, hence each grid cell usually contains various land cover 
types, which leads to the limitation of monitoring the dynamic status of 
various vegetation classes (Vreugdenhil et al., 2020). 

The vegetation information represented within the VOD products is 
different for the L-, C- or X-bands. Each channel has a different canopy 
sensing depth. Higher frequency (e.g., C-/X-band) VOD products are 
influenced by leaf properties, particularly leaf biomass, leaf area index, 
and leaf water potential (Momen et al., 2017; Olivares-Cabello et al., 
2023; Schmidt et al., 2023). Compared to C-/X-band VOD, the low- 
frequency VOD at L-band is less influenced by leaf properties, enables 
deeper penetration into vegetation and soil, and is more sensitive to 
overall above-ground biomass (Chaparro et al., 2019; Rodríguez- 
Fernández et al., 2018; Schmidt et al., 2023). 

The downscaling of coarse-resolution VOD products to high- 
resolution VOD will allow to obtain a high spatial resolution informa
tion of the VWC and AGB (Mohite et al., 2022). More importantly, high- 
resolution VOD products could potentially fill the gap that optical 
vegetation indices are only available under clear-sky conditions, 
enabling all-weather monitoring of vegetation dynamics at a fine scale. 
Previous studies (Das et al., 2019, 2014) have proposed a downscaling 
technique that is disaggregating the radiometer-based TB using high- 
resolution Synthetic Aperture Radar (SAR) backscatter data and subse
quent inversion to target parameters. However, this method requires the 
high-resolution ancillary data such as land surface temperature (Fan 
et al., 2022; Peng et al., 2017). Alternatively, multiple data fusion 
downscaling methods in the framework of spatio-temporal machine 
learning may be a promising way to obtain high-resolution VOD, which 
could be performed using the relationships between optical or active- 
microwave proxies and VOD products. 

Backscatter data in VV and VH polarization with high spatial (~20 
m) and temporal (6–12 days) resolutions can be provided from the 
Sentinel-1 constellation (Torres et al., 2012). Sentinel-1 is a constella
tion of satellites launched by the European Space Agency (ESA) equip
ped with the C-band SAR. Disaggregating coarse-resolution VOD using 
high-resolution backscatter data could be prospective, but the imple
mentation of these disaggregation methods is challenged by the different 
relationship between VOD and backscatter data, depending on different 
vegetation properties (Rötzer et al., 2017). It is because the backscatter 
of vegetated surfaces is related to VOD, but is also affected by soil 
backscatter and by the ratio between backscatter and extinction cross- 
sections of vegetation elements (Attema and Ulaby, 1978). 

In previous studies, backscatter data, such as co-pol VV and cross-pol 
VH or HV, have been found to closely correlate with vegetation infor
mation monitored by VOD (El Hajj et al., 2019; Rötzer et al., 2017; 
Vreugdenhil et al., 2020; Zhou et al., 2022). For instance, Aquarius/ 
SAC-D HV-pol backscatter data were used to retrieve L-band VOD 
(Rötzer et al., 2017), and recent studies used Sentinel-1 VV-pol back
scatter to retrieve high-resolution (1-km) C-band VOD over agricultural 
areas (El Hajj et al., 2019) and grasslands (Zhou et al., 2022). Another 
proxy, the cross-polarization ratio (CR, calculated by the difference of 
VH- and VV-pol backscatter (in dB)) was found to be closely associated 

with VWC (Vreugdenhil et al., 2018) and with optical vegetation indices 
(e.g., the normalized difference vegetation index, NDVI) (Veloso et al., 
2017). Furthermore, Vreugdenhil et al., (2020) found high correlations 
between the temporal dynamics of Sentinel-1 CR and active microwave 
VOD from ASCAT and passive microwave VOD Climate Archive 
(VODCA, (Moesinger et al., 2020)) over Europe. Here, low correlations 
between VODCA and CR were found over sparse vegetation and decid
uous forests. These studies show that the correlations between these 
active-microwave proxies (e.g., VV, VH, CR) and VOD can be variable, 
depending on vegetation types and regional factors. 

Alternatively, optical vegetation indices with a high spatio-temporal 
resolution can serve as proxies to downscale coarse-resolution VOD. 
NDVI has a good spatio-temporal correlation with VOD at different 
frequencies (Lawrence et al., 2014; Li et al., 2021; Rodríguez-Fernández 
et al., 2018). However, the relationship between VOD and NDVI has 
rarely been compared to that between VOD and active-microwave 
proxies. 

This research is aimed at determining the optimal high-resolution 
proxies for the downscaling coarse-resolution VOD at different fre
quencies. We are trying to comprehensively compare the relationship 
between VOD and these proxies at different frequencies, which is 
important for the development of downscaling algorithms. Thus, this 
study quantitatively assessed the performance of an optical index (i.e., 
NDVI) and Sentine-1 based active-microwave proxies (i.e., VV, VH, and 
CR) to monitor the vegetation dynamics as observed in L-VOD from 
SMOS (Wigneron et al., 2021), C-/X-VODAMSR2 from AMSR2 (Wang 
et al., 2021a) and C-VODASCAT from ASCAT (Liu et al., 2023) across the 
contiguous United States (U.S.). 

2. Datasets 

2.1. Study region and land cover product 

The contiguous U.S. (CONUS) was selected as the study region, and 
its vegetation types were shown in Fig. 1. In the contiguous U.S., there 
are different climate regimes and vegetation types, and Sentinel-1 
backscatter observations have a revisit time of 6–12 days there. There
fore, the contiguous U.S. is a suitable test area to identify the optimal 
proxies for downscaling VOD products. 

We use the 2020 ESA CCI LC (Climate Change Initiative Land Cover) 
to map the land cover over the contiguous U.S., which is a worldwide 
land cover dataset available with a grid-resolution of 300 m (ESA, 
2017). There were 37 original LC classes in the ESA CCI LC product, 
which were merged into four classes, i.e., forest, shrubland, cropland 
and grassland (Fig. 1), following the rules given in Table S1 and 
excluding non-vegetation types. The 0.25◦ land cover map was produced 
from aggregating the 300 m map of four classifications (i.e., forest, 
shrubland, cropland and grassland) into a 0.25◦ map using dominant 
class inside every VOD grid cell. 

2.2. VOD products 

Four VOD datasets (referred to as VODs in the following) have been 
used in the assessment as listed in Table 1, including passive microwave- 
based SMOS L-VOD (Wigneron et al., 2021) and C-/X-VODAMSR2 (Wang 
et al., 2021a), and active microwave-based C-VODASCAT (Liu et al., 
2023). 

2.2.1. L-VOD 
The L-VOD was acquired from the SMOS satellite based on the SMOS- 

IC algorithm (Wigneron et al., 2021). Daily global L-VOD were produced 
from SMOS descending and ascending orbits at 25 km grid resolution for 
2010–2021 (Fan et al., 2023). Signals received by satellite sensors may 
be distorted due to radio frequency interference (RFI), leading to an 
unreliable VOD retrieval. L-VOD observations influenced by RFI are 
filtered out using the technique reported by Wigneron et al., (2021), 
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with a threshold on the root mean square error between the measured 
and simulated brightness temperature (referred to as TB-RMSE) equal to 
8 K. In addition, L-VOD was reprojected and aggregated to 0.25◦ spatial 
resolution using bilinear interpolation, which was commonly employed 
in previous studies involving VOD processing (Chaparro et al., 2019; Li 
et al., 2021; Liu et al., 2018). Daily L-VOD from four years (2017–2020) 
were used in this study. 

2.2.2. X-/C-VODAMSR2 
The AMSR2 is a passive microwave sensor that provides accurate 

measurements of surface radiation through seven frequency channels. 
Wang et al., (2021a) provided daily X-VODAMSR2 and C-VODAMSR2 
products at 0.25◦ resolution, which were derived from X-band (10.65 
GHz) and C-band (6.925 GHz) AMSR2 TB observations (Wang et al., 
2021a, 2021b). The X-/C-VODAMSR2 products were retrieved from TB 
observations of the descending orbits, considering the heat balance in 
the soil, vegetation canopy, and near-surface air at night (Owe et al., 
2008). The high-quality daily X-/C-VODAMSR2 from 2017 to 2020 was 
obtained by filtering out retrievals using the technique reported by 
Wang et al., (2021a), with a threshold on TB-RMSE larger than 5 K. 

2.2.3. C-VODASCAT 
The ASCAT scatterometer is a C-band sensor working at 5.255 GHz 

providing VV-pol backscatter observations at angles of incidence from 
25◦ to 65◦ (Wagner et al., 2013). ASCAT can achieve a complete global 
coverage of the Earth in three days. Liu et al., (2023) developed a global 
C-band ASCAT IB VOD product (referred to as C-VODASCAT in our study), 
which was retrieved with a multi-time (MT) based algorithm. The 
following study was conducted using daily C-VODASCAT with 0.25◦ grid- 
resolution from 2017 to 2020. 

2.3. TB Products from SMOS and AMSR2 

The daily SMOS L3 TB product (referred to as SMOS TB in the 

following), obtained from Centre Aval de Traitement des DonnéeS 
(CATDS), corresponds to the TB observations measured at multiple- 
angles and dual-polarization (i.e., horizontal and vertical, denoted as 
TBH and TBV, respectively) (Al Bitar et al., 2017). The CATDS L3 pro
cessor averages the SMOS TB observations with an angle bin width of 5◦

and bin centers ranging from 2.5◦ to 62.5◦, which also includes an 
interpolation field at θ = 40◦. In this study, only TB layers acquired 
during the ascending orbits from 2017 to 2020 were used (Li et al., 
2022). 

AMSR2 has a sun-synchronous orbit with an incidence angle of 55 
degrees and provides TB observations at H-polarization (TBH) and V- 
polarization (TBV). We collected the TB (Level 3) from the AMSR2 
(referred to as AMSR2 TB below) at C-band (6.925 GHz) (https:// 
suzaku.eorc.jaxa.jp/GCOM_W/data/data_w_index.html). AMSR2 TB at 
the descending pass (1:30 am LST) was considered for four years from 
2017 to 2020 in our study. 

2.4. Sentinel-1 data 

Sentinel-1 constellation is composed of two ESA-launched satellites, 
Sentinel-1A and Sentinel-1B (Torres et al., 2012). The two satellites 
provide Ground Range Detected (GRD) Interferometric Wide-swath (IW) 
backscattering coefficients (referred to as σ0) in VV (σ0

VV) and VH (σ0
VH) 

polarization (Geudtner et al., 2014). The revisit period of two sensors (A 
and B) is 6 ~ 12 days (note that Sentinel-1B has not been operative since 
December 23, 2021, resulting in a revisit of ≥ 12 days with only one 
satellite). VV- and VH-pol backscattering coefficients from the ascending 
orbit during 2017–2020 were selected. 

To obtain the high-quality Sentinel-1 backscatters, the pre- 
processing was as follows: 

(1) Pre-processing of Sentinel-1 data. 
The backscattering coefficients in VV and VH polarization were 

preprocessed using the Sentinel-1 Toolbox (S1TBX) supplied with Goo
gle Earth Engine, including the removal of thermal and GRD boundary 

Fig. 1. The land cover classes for 2020 in the contiguous U.S. based on CCI LC product at 300 m spatial resolution. The land cover classes were merged into four 
classes (i.e., forest, shrubland, cropland, and grassland). The red points in the figure represent the four selected sites (pixels) to characterize the temporal variation of 
VOD and Sentinel-1 based active-microwave proxies in various vegetation conditions. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Table 1 
Overview of utilized VOD datasets in the research.  

Variable name Sensor Frequency Period Grid resolution Temporal resolution Reference 

L-VOD SMOS 1.4 GHz 01/2017–12/2020 25 km Daily Wigneron et al., (2021) 
C-VODASCAT ASCAT 5.255 GHz 01/2017–12/2020 0.25◦ Daily Liu et al., (2023) 
C-VODAMSR2 AMSR2 6.925 GHz 01/2017–12/2020 0.25◦ Daily Wang et al., (2021a) 
X-VODAMSR2 10.65 GHz  
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noise, radiometric correction, and ranging-Doppler topographic 
correction (Filipponi, 2019). Note that radar incidence angle has a sig
nificant impact on the observed backscattering coefficients. To reduce 
its effect, the cosine correction technique proposed by Ulaby et al., 
(1982) was used to normalize the Sentinel-1 data: 

σ0
θref

= σ0
θ ×

cos2θref

cos2θ
(1)  

where θref is the reference incidence angle; θ is the local incidence angle; 
σ0

θref 
means the normalized backscattering coefficient; and σ0

θ represents 
the measured backscatter at corresponding local incidence angle. θref 

was set as 40◦ of acquired Sentinel-1 data, thus the backscattering co
efficients from different local incidence angle were normalized at 40◦ in 
this study. Finally, the normalized backscattering coefficients were 
transformed into dB by 10*log10 σ0. 

(2) Data selection 
Low and high thresholds were applied to backscattering coefficients 

to minimize the effect of outliers with extremely higher or lower values, 
typically inconsistent with responses from vegetated areas. These out
liers are often caused by noise from water bodies, buildings, and shaded 
areas. Based on the filter, the high-quality VV- and VH-pol backscat
tering coefficients were obtained in the range of − 20 dB ≤ σ0

VV ≤ − 5 dB 
and − 26 dB ≤ σ0

VH ≤ − 11 dB, respectively (Bauer-Marschallinger et al., 
2019). The spatial resolution of the VV- and VH-pol backscattering co
efficients was resampled to 0.25◦ using the arithmetic mean for spatial 
matching with the VOD data. 

2.5. MODIS NDVI product 

The optical vegetation index NDVI was compared with each VOD 
product. The NDVI dataset was obtained from the Moderate-resolution 
Imaging Spectroradiometer (MODIS) Collection 6 NDVI products 
(MOD13A2 Collection 6; 16-day composites at a 1 km grid cell) for 
2017–2020 (Didan, 2015). High-quality NDVI retrievals can be identi
fied by referencing the quality control (QC) layer. NDVI was subse
quently aggregated to 0.25◦ using nearest-neighbor interpolation. 

3. Methods 

3.1. The cross-polarization ratio (CR) 

Sentinel-1 CR is calculated by the difference between VH- and VV-pol 
backscattering coefficients in the following form: 

σ0
CR = σ0

VH − σ0
VV (2)  

where σ0
VH and σ0

VV are the backscattering coefficients in dB. CR is 
scarcely influenced by the variations of surface soil moisture (Khabba
zan et al., 2022; Vreugdenhil et al., 2018), which makes it a useful in
dicator for monitoring crops (Jiao et al., 2009; Kim et al., 2012). 

3.2. Spatial and temporal analysis 

(1) Spatial analysis. 
The relationships between proxies (VV, VH, CR, and NDVI) and 

VODs were estimated by comparing the average values of each dataset 
for the year of 2020. We conducted the Kolmogorov-Smirnov test at the 
p < 0.05 significance level and found that our datasets do not adhere to 
the assumption of a normal distribution. Therefore, the Spearman cor
relation coefficient (R) was used here to estimate the correlations be
tween proxies and VODs (Vachaud et al., 1985). The Spearman 
correlation coefficient is a non-parametric measure that assesses the 
strength and direction of monotonic relationships between variables, 
and it does not assume that the variables are normally distributed 
(Hauke and Kossowski, 2011). It assesses the monotonic relationship 

between the rank values of two variables. The expression for R is given 
by: 

R =

∑N
i=1(XY) − N(N+1

2 )
2

N(N2 − 1)/12
(3)  

where N represents sample size, and (N + 1)/2 denotes the average rank 
of X and Y, which stand for the proxies (i.e., VV, VH, CR, and NDVI) (X) 
and VODs (Y), respectively. It was regarded to be statistically significant 
R if p < 0.05. 

(2) Temporal analysis. 
Initially, to evaluate the relationships between all proxies (active- 

microwave proxies and NDVI) and VODs, VODs and active-microwave 
proxies for each pixel were averaged over 16 days for consistency 
with the temporal sampling of NDVI. The per-pixel temporal correlation 
between VODs and proxies was quantified by the Spearman correlation 
coefficient (R). Only significant R (p < 0.05) was used in the analysis. 

Secondly, to assess of the correlation between active-microwave 
proxies and VODs, VODs were matched to the revisit period of 
Sentinel-1, which is 6 ~ 12 days. The temporal resolution of VOD 
products from SMOS, AMSR2, and ASCAT ranges from 1 to 3 days. 
Hence, the values of each VOD product were matched with the obser
vations of Sentinel-1. Additionally, a half-width window of 6 days was 
employed to retrieve VOD observations that were temporally closest to 
the Sentinel-1 observations. Only grid points with a minimum of 60 
paired observations during the period from 2017 to 2020 were utilized. 

4. Results 

4.1. Spatial pattern comparison 

4.1.1. Across all land cover types 
The spatial patterns of VODs (i.e., L-VOD, C-/X-VODAMSR2, and C- 

VODASCAT) and proxies (i.e., VV, VH, CR, and NDVI) showed that L-VOD 
(Fig. 2a) and C-VODASCAT (Fig. 2d) had similar spatial features. The 
highest VOD values were found in forest in the southeastern U.S., while 
areas with short vegetation in the central region generally exhibited 
lower VOD values. Notably, although C-/X-VODAMSR2 (Fig. 2b, c) is 
generally higher relative to L-VOD (Fig. 2a) in grassland and cropland 
areas, their spatial patterns were similar to that of L-VOD. Considering 
active-microwave proxies, the spatial distributions of VV (Fig. 2e) and 
VH (Fig. 2f) were more related to vegetation classes (Fig. 1) relative to 
CR (Fig. 2g). 

The corresponding density scatter plots and correlation coefficients 
between proxies and VODs for the year 2020 revealed a clear non-linear 
relationship (Fig. 3). Note that the correlations between VODs and NDVI 
(R = 0.59–0.77) were slightly higher than those between VODs and 
active-microwave proxies (R = 0.46–0.80). Specifically, L-VOD and C- 
VODASCAT had the highest correlation with NDVI (R = 0.77, Fig. 3a, m), 
followed by C-VODAMSR2 (R = 0.74, Fig. 3i) and X-VODAMSR2 (R = 0.59, 
Fig. 3e), respectively. 

In addition, strong spatial correspondence was found between L-VOD 
and active-microwave proxies, with R reaching 0.80 for VH (Fig. 3b), 
0.75 for CR (Fig. 3c), and 0.73 for VV (Fig. 3d), respectively. Conversely, 
poor spatial correlations between active-microwave proxies and C-/X- 
VODAMSR2 could be observed, as indicated by R values between VV and 
X-VODAMSR2 lower than 0.5 (Fig. 3h). 

4.1.2. Different land cover types 
The median value of R between VODs and all proxies across the years 

(2017–2020) over different vegetation types were summarized (Fig. 4). 
The density scatter plots for 2020 and for different vegetation types were 
given in supplement figures (Fig. S1–S4). 

Over forest, all correlations between VODs and proxies were lower 
than 0.5 (the 1st column in Fig. 4). L-VOD had the slightly higher cor
relation with all the proxies, relative to C-VODASCAT, C-VODAMSR2, and 
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X-VODAMSR2. For example, L-VOD showed the highest correlation with 
VV (R = 0.35, Fig. 4a), followed by C-VODASCAT (R = 0.32, Fig. 4a), C- 
VODAMSR2 (R = 0.27, Fig. 4a), and X-VODAMSR2 (R = 0.16, Fig. 4a). 
Notably, active-microwave proxies saturated significantly compared 
with L-VOD (Fig. S1b–d). Similar saturation could be observed in the 
comparison of active-microwave proxies with the other three VODs 
(Fig. S1), indicating saturation of C-band active-microwave proxies over 
forest. Additionally, similar saturation could be observed in shrubland 
(Fig. S2), where correlations between active-microwave proxies and 
VODs were generally lower than 0.45 (the 2nd column in Fig. 4). 
Moreover, higher R values were observed in cropland, relative to forest 
and shrubland. 

Over grassland, high correlations were generally observed between 
active-microwave proxies and VODs. Relative to VV (Fig. 4a) and CR 
(Fig. 4c), VH exhibited the highest correlations with VODs, with R of 
0.82 for L-VOD, 0.75 for C-VODASCAT, 0.70 for C-VODAMSR2, and 0.45 for 
X-VODAMSR2 (Fig. 4b). 

In comparison to active-microwave proxies (Fig. 4a–c), NDVI 
exhibited superior performance over forest, shrubland, cropland and 
grassland (Fig. 4d). For example, correlations between NDVI and C- 
VODAMSR2 reached 0.41 over forest, 0.61 over shrubland, 0.58 over 
cropland, and 0.72 over grassland (Fig. 4d). 

4.2. Temporal correlation between proxies and VODs 

Per-pixel temporal correlations between 16-day averaged VOD 
products and proxies were shown in Fig. 5. Overall, the correlation 
distributions of L-VOD with VV, VH, and CR were found to be spatially 
similar (Fig. 5a, e, i). Positive correlations could be observed in the 
central U.S., which was covered by grassland or cropland. A distinct 
positive relationship existed in the Mississippi River Basin in the south- 
central U.S., mainly covered by cropland. On the contrary, negative 
correlations between L-VOD and active-microwave proxies could be 
observed in most shrubland and forest areas. Specifically, the correla
tions between L-VOD and active-microwave proxies were negative over 
eastern forest and most shrubland, while they were positive over west
ern forest, cropland and grassland (Fig. 5a, e, i). Notably, the negative 
relationship between L-VOD and NDVI could be observed only in the 
western U.S. (Fig. 5m). 

Similar patterns (the distribution of R values between active- 

microwave proxies and L-VOD) could be observed in X-VODAMSR2 
(Fig. 5b, f, j) and C-VODAMSR2 (Fig. 5c, g, k). Compared with NDVI, X- 
VODAMSR2 (Fig. 5n) and C-VODAMSR2 (Fig. 5o) presented positive R 
values over 93 % and 95 % of the pixels, respectively. In the western U. 
S., a few negative correlations (less than 10 % of the pixels) could be 
seen between NDVI and C-/X-VODAMSR2. Note that the active micro
wave VOD product (C-VODASCAT) was positively correlated with either 
VV or VH over most of the study area, while the passive VOD products 
(L-VOD, C-VODAMSR2, and X-VODAMSR2) exhibited negative correlation 
with either VV or VH (R < 0) in southeastern and western U.S. 

The strongest per-pixel correlations between active-microwave 
proxies and VODs were shown in Fig. 6. Pixels with an absolute differ
ence in R values below 0.02 were shaded in gray. The comparison was 
based on the daily temporal correlations between active-microwave 
proxies and VODs, which were shown in Supplementary Fig. S5. The 
percentages of pixels exhibiting the highest R values for every active- 
microwave proxy were given in the rectangular box within each sub
graph in Fig. 6. 

Overall, CR was better correlated with passive VODs, relative to VV 
or VH over most of the study area (Fig. 6a–c). In Fig. 6a, CR had the 
highest correlation with L-VOD over 36.76 % of the pixels, followed by 
VH (23.12 %) and VV (17.46 %). A similar pattern for the highest R 
could be observed for C-/X-VODAMSR2 (Fig. 6b, c). For C-/X-VODAMSR2, 
the highest correlations were generally found for CR (over 50.06 % and 
44.95 % of the pixels, respectively), showing highest R values in the 
central and eastern U.S. Note that VV (33.86 %) and VH (31.71 %) 
performed better with active microwave-based C-VODASCAT, relative to 
CR (13.72 %) (Fig. 6d). 

To account for the seasonality of the active-microwave proxies and 
VODs, a time series analysis was conducted, based on daily L-VOD and 
active-microwave proxies at four selected sites (see Fig. 1). Fig. 7 
showed the time series of active-microwave proxies and L-VOD for four 
vegetation types, i.e., (a) forest, (b) shrubland, (c) cropland and (d) 
grassland. Over forest and shrubland (Fig. 7a, b), contrasting temporal 
trends were apparent between L-VOD and active-microwave proxies. 
For example, over forest (Fig. 7a), L-VOD showed an increase from 
March to June and a slight decrease in October and November. Simul
taneously to the increase of L-VOD, CR and VH decreased, resulting in 
negative correlation coefficients of − 0.76 and − 0.79 (Fig. 7a), respec
tively. Consistent temporal variations were found between active- 

Fig. 2. Yearly VODs and proxies for 2020. Average of VODs for (a) L-VOD, (b) X-VOD, (c) C-VODAMSR2, (d) C-VODASCAT, average of active-microwave proxies for (e) 
VV, (f) VH, (g) CR, and (h) average of NDVI. 
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microwave proxies and L-VOD at sites covered by mild vegetation, i.e., 
the cropland (Fig. 7c) and the grassland (Fig. 7d). Generally, for sites in 
cropland and grassland, L-VOD and active-microwave proxies increased 
with vegetation growth and decreased during senescence. Over the 
grassland site (Fig. 7d), the seasonal dynamics of active-microwave 
proxies and L-VOD were closely consistent (e.g., R values for CR and 
L-VOD was 0.89). 

4.3. Comparison of the spatio-temporal performance of TBs and VODs 

Note that the available passive VOD products are retrieved from the 
TB measured by passive microwave sensors. Moreover, VOD was 
retrieved using the difference between TBV and TBH (TBV-TBH) (Owe 
et al., 2001). Previous studies have proposed a method to retrieve high- 
resolution passive microwave-derived products (e.g., VOD and soil 
moisture) by downscaling TB using high-resolution radar backscattering 
coefficient (Das et al., 2019, 2014). This method is based on the 
assumption that TB has a close relationship with radar backscattering 
coefficient. Thus, to better explore the potential downscaling VOD 
methods, we made the comparison of the correlations between coarse- 
resolution VODs and radar backscattering coefficients vs. the correla
tions between coarse-resolution TB datasets (TBV, TBH and TBV-TBH) 
and radar backscattering coefficients. Here, coarse-resolution TB 

datasets and VODs from SMOS and AMSR2 were compared with active- 
microwave proxies from Sentinel-1 (i.e., VV, VH and CR). 

At the spatial scale, the spatial correlations of the active-microwave 
proxies with TB datasets (|R| < 0.6, Fig. S6, S7) were found to be lower 
than the ones achieved with VODs (Fig. 3). At the temporal scale, the 
per-pixel temporal correlations between TB datasets and active- 
microwave proxies (Fig. S8, S9) were comparable to that between 
VOD and active-microwave proxies (Fig. S5). Notably, the temporal 
dynamics of TBH and TBV are similar, indicated by almost the same 
distribution pattern of temporal correlations between active-microwave 
proxies and either TBH or TBV (e.g., Fig. S8a and Fig. S8b). However, the 
spatial pattern of temporal correlations between active-microwave 
proxies and TBV-TBH appears to differ. For example, the negative cor
relation pixels between CR and either AMSR2 TBH (Fig. S8g) or AMSR2 
TBV (Fig. S8h) could be observed in the southeast U.S. covered by forest, 
where CR was positively correlated with AMSR2 TBV-TBH (Fig. S8i). 

For C-band, AMSR2 TBH (TBV, Fig. S10c) showed the best perfor
mance with CR (Fig. 8c), reaching 4,285 pixels, followed by VH (2541 
pixels, Fig. 8b) and VV (2388 pixels, Fig. 8a). There were more highly 
correlated pixels between AMSR2 TBH (TBV, Fig. S10a–c) and active- 
microwave proxies, compared to the correlations between C- 
VODAMSR2 and active-microwave proxies (Fig. 8a–c). Therefore, down
scaling of TB using active-microwave proxies is a superior option for 

Fig. 3. Density scatter plots between average L-VOD (1st row), X-VODAMSR2 (2nd row), C-VODAMSR2 (3rd row), C-VODASCAT (4th row) and NDVI (1st column), VH 
(2nd column), CR (3rd column), VV (4th column) for 2020. Note that */** denotes significant correlation with the 0.05/0.01 confidence level (p < 0.05/0.01). 
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retrieving high-resolution VOD products from C-band. Similarly, for L- 
band, SMOS TBH (TBV, Fig. S10f) also showed the best performance with 
CR (4220 pixels, Fig. 8f). Note that more highly correlated pixels can be 
observed between SMOS L-VOD and VH (3070 pixels), relative to the 

correlations between SMOS TBH (TBV, Fig. S10e) and VH (2077 pixels, 
Fig. 8e). VH was also found to have a better correlation with L-VOD 
relative to TBV-TBH (Fig. S11e). These evidences suggested that VH is 
more appropriate for downscaling L-VOD products, relative to down
scale TB datasets from L-band. 

5. Discussion 

5.1. Performance of spatial correlations 

Our results showed generally a positively and non-linear spatial 
relationship between high-resolution proxies and VODs in the contig
uous U.S. It can be directly explained by the positive difference between 
the backscattering coefficient of developed vegetation and the one of 
soil, particularly at VH polarization. Therefore, an increase of vegetation 
biomass (or height or density) is associated to an increase of active- 
microwave proxies, besides the obvious increase of VOD products and 
NDVI. This is true for VH and, to a lesser extent, for VV. In addition, the 
good correlation between VH and VOD could be attributed to the fact 
that the backscattering coefficient has a positive correlation with the 
permittivity of the object, so backscattering coefficient generally rises 
with increasing vegetation moisture content (indicated by VOD) 
(McNairn and Shang, 2016). 

The saturation effect of active-microwave proxies over high-density 
vegetation should be noted, although there are good spatial correlations 
between proxies and VODs. Specifically, our results showed that active- 
microwave proxies saturated slightly while the VODs still increase 
(Fig. 3). This saturation, which was also reported in previous studies, 
poses limitations to the use of backscattering coefficient as a tool to 
monitor biomass, particularly at the higher frequencies (Imhoff, 1995; 
Joshi et al., 2017). The empirical correlations between AGB and back
scatter observations had corroborated the different degrees of saturation 
in the C-, L- and P-band (Imhoff, 1995). A possible explanation for the 
saturation is the increase in canopy cover, especially in late growth and 
decurrent forms (Lucas et al., 2006). 

Fig. 4. Comparison of median value of R for the spatial correlation for each 
vegetation class during 2017–2020 between yearly average VODs and (a) VV, 
(b) VH, (c) CR, and (d) NDVI (error bars represent the standard deviation (std)). 

Fig. 5. Per-pixel temporal correlation (R) between 16-day average values of VODs and proxies from 2017 to 2020. Gray areas represent pixels with insignificant (p >
0.05) correlations. White pixels indicate “absence of valid data”. 
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5.2. Performance of temporal correlations 

In the forest area, high positive temporal correlations between VOD 
and NDVI could be observed, but the temporal correlations between 
VOD and active-microwave proxies were generally negative. The posi
tive correlations between VOD and NDVI could be explained by that the 

seasonal cycle mostly produces foliation/defoliation processes, partic
ularly for the broadleaf deciduous forests of the southeastern U.S. VOD 
and NDVI are higher in full leaf development than in defoliated stage (Li 
et al., 2021). On the contrary, active-microwave proxies were negatively 
correlated with VOD, which could be attributed to the fact that VV- and 
VH-pol backscattering coefficients are lower in the leaf development 

Fig. 6. Spatial distribution showing which active-microwave proxie (VV, VH, or CR) correlates most highly with VODs. (a) L-VOD, (b) X-VODAMSR2, (c) C-VODAMSR2 
and (d) C-VODASCAT. Pixels with absolute values of R difference below 0.02 are indicated in gray. White pixels indicate “absence of valid data”. 

Fig. 7. Time series of Sentinel-1 CR (blue), VV (orange), VH (yellow) and L-VOD over the period 2017–2020 at 4 sites. Site details, including vegetation type and 
latitude/longitude: (a) forest, (38.38◦N/81.88◦W); (b) shrubland, (46.38◦N/119.88◦W); (c) cropland, (34.63◦N/78.38◦W); and (d) grassland, (35.88◦N/97.13◦W). 
The locations of these sites are shown in Fig. 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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stage than in defoliated stage (Fig. 7a), because leaves attenuate the 
backscattering of branches and this effect is not compensated by their 
own backscattering (Rüetschi et al., 2018; Soudani et al., 2021; Vreug
denhil et al., 2020). 

Note that, compared with the timeseries of the backscattering co
efficients (i.e., VH and VV) over forest, VOD from passive microwave (e. 
g., L-VOD) has the opposite correlation relative to that from the active 
microwave (e.g., C-VODASCAT). At a given frequency and for a given 
vegetated surface there is supposed to be a unique VOD. Therefore, it 
remains to be further investigated which VOD, retrieved by active or 
passive techniques, is more reliable. 

For shrubland area, the observed negative correlations between 
active-microwave proxies and VOD are more difficult to be explained. 
This negative correlation between NDVI and VOD was also reported by 
previous studies which found temporal lags within some environments 
between different climate and vegetation parameters (Jones et al., 2014; 
Tian et al., 2018). Specifically, in the Amazonian forests, it was found 
that the canopy biomass development phase (expressed by X-VOD) and 
net leaf flushing stage (expressed by LAI) were asynchronous (Jones 
et al., 2014). Similarly, Tian et al., (2018) discovered that in dry tropical 
woodlands, L-VOD lags behind the growth of leaves (expressed by LAI) 
as long as ~ 180 days, explaining the negative relationship between L- 
VOD and optical vegetation indices. 

5.3. Implication for potential downscaling methods 

The comparison of the correlations between coarse-resolution VOD 
and active-microwave proxies vs. the correlations between coarse- 
resolution TB datasets and active-microwave proxies provided the 
important implications for coarse-resolution VOD downscaling 
methods. Specifically, downscaling of coarse-resolution VOD products 
using high-resolution active-microwave proxies is supposed to be more 
prospective relative to disaggregating TB with those proxies, due to the 
poor spatial correlations between TB datasets and active-microwave 
proxies. Moreover, there were more highly correlated pixels between 
L-VOD and VH (2541 pixels, Fig. 8e), compared to the correlations be
tween L-VOD and VV (Fig. 8d), suggesting that VH could perform better 
in downscaling coarse-resolution L-VOD relative to VV. Thus, using VH 
in the downscaling method could produce improvements with respect to 

the existing methods, such as the one proposed by Bousquet et al., 
(2019), which disaggregated L-VOD at the spatial scale using VV-pol 
backscatter. Therefore, downscaling of coarse-resolution VOD prod
ucts using high-resolution proxies such as VH in a spatio-temporal ma
chine learning framework is promising. 

Furthermore, the advantages of downscaling coarse-resolution VOD 
products using high-resolution proxies with respect to a direct use of 
high-resolution proxies to estimate vegetation properties should be 
emphasized. Previous studies (Tian et al., 2017; Vicente-Serrano et al., 
2016; Zhu and Liu, 2015) have employed the direct use of high- 
resolution proxies to estimate vegetation properties, but these proxies 
were limited by the atmospheric effects (from optical indices) and the 
saturation (from both optical and active-microwave proxies) over dense- 
vegetated regions (Imhoff, 1995; Joshi et al., 2017; Loranty et al., 2018). 
In contrast, high-resolution VOD obtained from the downscaling method 
could potentially overcome the issues mentioned above, due to the ad
vantages of passive microwave observations (being unaffected by at
mospheric conditions and highly sensitive to high-density vegetation 
(Frappart et al., 2020; Rodríguez-Fernández et al., 2018)). Moreover, 
VOD can better present the dynamics of the VWC and biomass over 
forest (Teubner et al., 2018; Vittucci et al., 2019), which means that 
high-resolution VOD can provide alternative important information 
related to vegetation properties, relative to optical proxies (e.g., vege
tation greenness indicated by NDVI). 

5.4. Uncertainties 

The revisit time of Sentinel-1 limited the correlation analysis with 
VODs over the contiguous U.S. In theory, Sentinel-1 is supposed to 
operate with a revisit cycle of 6 days with two sensors (A and B) in 
combination, but the acquisition frequency depends on different zones 
(Geudtner et al., 2014). Currently, for areas outside of Europe, the 
completeness of Sentinel-1′s data coverage may limit the data avail
ability. In the U.S., the repetition period of Sentinel-1 is 6 to 12 days and 
some of the orbital data are lacking. To avoid inconsistency in 
ascending/descending orbit data, the ascending orbit data of two sen
sors (A and B) was used in our study. However, this approach also re
duces the data availability of Sentinel-1 in the study area, introducing 
uncertainty into the statistical results. 

Fig. 8. Maps showing which dataset (VOD or TBH) obtained the highest absolute temporal correlation (R) values with active-microwave proxies (VV, VH and CR), 
along with the corresponding number of pixels in the subplot (bottom left). Pixels with absolute values of R difference below 0.02 are indicated in gray. White pixels 
indicate “absence of valid data”. 
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The correlation between NDVI and VOD could be affected by the 
quality of NDVI, because NDVI is contaminated by atmospheric condi
tions including aerosols scattering, water vapor absorption, and cloud 
cover, and its availability is reduced, as it is indicated by the lower 
observation frequency of NDVI (Fig. S12a) with respect to the one of 
active-microwave proxies (Fig. S12b). 

The different overpass times of MODIS, Sentinel-1 and other micro
wave satellites could result in uncertainties in the calculation of the 
relationships between VODs and proxies, although the vegetation 
pattern was expected to persist spatially over several days. This 
assumption can be generally met, under the condition that no extreme 
climatic events occur associated with large vegetation losses over a short 
term (e.g., 7–15 days). 

Besides, incidence angle diversity of Sentinel-1 needs to be taken into 
consideration to accurately estimate VOD in further downscaling work 
using the Sentinel-1 backscattering coefficients. The correlations be
tween VOD products and backscattering coefficients collected at 
different local incidence angles could be limited by the angle effect. 
Normalized backscattering coefficients are able to improve the spatial 
correlation with VOD products (Table S2), e.g., the correlation coeffi
cient between normalized VH and L-VOD (0.80) has improved by 0.02, 
relative to that between VH collected at different angles and L-VOD 
(0.78). 

6. Conclusion 

This study presented a quantitative assessment of the correlations 
between VOD products obtained at X-/C-/L-bands and Sentinel-1-based 
active-microwave proxies (VV, VH, and CR), as well as the MODIS op
tical vegetation index NDVI, in the perspective of downscaling the 
coarse-resolution VOD using high spatio-temporal resolution auxiliary 
proxies. In terms of spatial correlation, NDVI and VH had a high cor
relation with all four VOD products, with the highest spatial correlation 
between L-VOD and VH (R = 0.80), followed by L-VOD and NDVI (R =
0.77). In terms of per-pixel temporal correlation, NDVI and CR showed 
higher correlations with VOD, relative to VH and VV. Overall, NDVI 
correlated best with VOD products both spatially and temporally. 
However, it is necessary to integrate active-microwave proxies (VH and 
CR) as downscaling proxies, due to the limited temporal resolution of 
NDVI. 

Although there are some uncertainties in our results due to the 
mismatch of revisit time between multi-source datasets and the satura
tion effects of active-microwave and optical indices, the assessments 
provide some crucial implications for retrieving high-resolution VOD. 
TB exhibited a comparable and even stronger temporal correlation with 
active-microwave proxies, relative to VOD, while its spatial correlations 
with such proxies were poor. Therefore, in a spatio-temporal machine 
learning framework, downscaling of coarse-resolution VOD products 
using high-resolution active-microwave proxies is supposed to be more 
promising relative to disaggregating TB with those proxies. Recently 
developed downscaling methods, e.g., machine learning (Mohite et al., 
2022; Xu et al., 2020) or empirical radiative transfer model (Merlin 
et al., 2008), could be promising ways to accurately obtain high- 
resolution VOD by using the optimal proxies. 
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