SNP identification

In **poplar**, on average, 11.56% of reads were duplicated and removed and 73.22% of trimmed reads were properly mapped to the reference genome. Following the SNP filtering steps, a total of 16,703,467 SNPs, 14,990,578 SNPs and 6,739,425 SNPs were identified using Bcftools, GATK and FreeBayes, respectively. Considering SNPs identified by at least two out of the three methods, we ended up with a set of **12,432,187** SNPs for poplar.

Following sequencing, **oak genome** coverage ranged from 84.31X to 103.69X (average 94X). Trimming led on average to 215,412,011 reads per sample and 86.05% of trimmed reads were properly mapped on the reference genome. For oak, on average, 7,235,525 SNPs per sample were identified with bcftools. Following the digital normalization step required for FreeeBayes and GATK, on average, 95,984,679 reads per sample were kept (*i.e.* 44.56% of the initial reads) to meet the required 30X sequencing depth. Mapping of those reads using the previously used parameters, resulted on average in 83.68% of properly mapped reads. A total of 5,903,813 SNPs and 8,646,615 SNPs were identified with GATK and FreeBayes, respectively. Considering SNPs identified by at least two out of the three methods, we ended up with a set of reliable **15,727,742** SNPs for oak.

Supplementary Fig. S2 Pipeline of TE neoinsertion site prediction (via TEFLoN)

Conceptual diagram of the TEFLoN analysis workflows.

This figure shows the required files and tool modules used to test TEFLoN. This tool generates one tabular output file with, for each TIP, the chromosome number, the start and stop positions of the detected TIPs, the "new insertion" status, the TE identifier, its family and superfamily, its strand (+ or -) and the number of reads in favour (present), ambiguous or against (absent) the breakpoint used to detect the TIPs. A filtration step was applied as previously described (Adrion et al., 2017): a minimum of five "favourable" and five "unfavourable" reads from a total of at least 20 reads for the prediction of the presence or absence of an insertion site. Finally, based on the proportion of reads in favour of detection (reads "present"/reads "present" + reads "absent"), results in the 10 th and 90 th percentiles were excluded. For each population, we analysed two individuals and retained only insertion sites validated in both individuals for a given TE.

Pipeline of TE neoinsertion site prediction (via EpiTEome)

Conceptual diagram of the EpiTEome analysis workflow.

This figure lists the files and tools required for the testing of EpiTEome. This tool generates four output files: 1) a tabular file with the coordinates of the TIPs, the coordinates of the target site duplicates (TSD) and the read numbers used to predict this site, 2) a SAM file with 'soft-clipped' reads for visualisation of the alignment and potential target site duplicates (TSD) and 3-4) two tabular files providing an overview of the methylome data around the detected insertion sites (methylation contexts, methylation levels (%), number of methylated cytosines, number of mapped reads).

Representative diagram of the concept of "soft-clipped" reads.

Unmapped reads were isolated and soft-clipped into two fragments of variable size (k-mers). One of these fragments was mapped onto the TE and the second was mapped onto the reference genome, to detect a potential insertion polymorphism for the TE considered.

	Paglia (PC)	
TE Equilion	TE Super families	Nhr of non-incortion aito
Helitron N2 PTr	PC/Halitron	140
Gungy 71 PTr LTP	LTP/Gungu	149
Caria 01 DTa LTD	LTR/Gypsy	155
Copia-91_PTF-LTK	LTR/Copia	62
Copia-5_F111-1	DNA/CMC Faster	43
Enspm1B_P1	DNA/CMC-Enspm	44
ENSPMI_PI	DNA/CMC-EnSpm	38
Hentron-N3_PTr	RC/Heiltron	36
Gypsy-/2_PIF-LIR	LTR/Gypsy	28
hAl-6_PIr	DNA/nAI-Tagi	21
DNA-3-1_PIr	DNA/PIF-Harbinger?	19
Helitron-N1_P1r	RC/Helitron	14
DNA-3-2B_PTr	DNA	10
Copia-93_PTr-I	LTR/Copia	10
POPGY2_LTR	LTR/Gypsy	7
Gypsy-35_PT-I	LTR/Gypsy	5
Gypsy-25_PTr-LTR	LTR/Gypsy	4
Ogre-PT1_I-int	LTR/Gypsy	4
Gypsy-79_PTr-LTR	LTR/Gypsy	4
Gypsy-73_PTr-LTR	LTR/Gypsy	3
Copia-56_PTr-I	LTR/Copia	3
Caulimovirus-1_PTr	LTR/Caulimovirus	3
hAT-1N_PTr	DNA/hAT-Ac	3
Helitron-1_PTr	RC/Helitron	3
hAT-1_PTr	DNA/hAT-Tip100	3
Copia43-PTR_I-int	LTR/Copia	2
hAT-4_PTr	DNA/hAT-Tip100	2
Copia-66_PT-I	LTR/Copia	2
EnSpm2_PTr	DNA/CMC-EnSpm	2
Gypsy-78_PTr-LTR	LTR/Gypsy	2
Gypsy13-PTR_LTR	LTR/Gypsy	1
Gypsy-78_PTr-I	LTR/Gypsy	1
POPGY1_LTR	LTR/Gypsy	1
hAT-3_PTr	DNA/hAT-Ac	1
Copia-54_PTr-I	LTR/Copia	1
Gypsy-26_PTr-LTR	LTR/Gypsy	1
Helitron-N4_PTr	RC/Helitron	1
GYPOT1_LTR	LTR/Gypsy	1
Gypsy18-PTR_I-int	LTR/Gypsy	1
Ogre-PT3_LTR	LTR/Gypsy	1
Copia-92_PTr-I	LTR/Copia	1
hAT-5_PTr	DNA/hAT-Tag1	1
Copia-55 PTr-I	LTR/Copia	1
Copia40-PTR I-int	LTR/Copia	1
Copia-81_PT-I	LTR/Copia	1
L1-3_PTr	LINE/L1	1
Gypsy-27 PTr-I	LTR/Gypsy	1
Gypsy13-PTR I-int	LTR/Gypsv	1
L1-5 PTr	LINE/L1	1
GYPOT1 I-int	LTR/Gypsv	1
Copia42-PTR I-int	LTR/Copia	1
EnSpm3 PT	DNA/CMC-EnSpm	1
suppling_r 1	and encembringin	L.

	Dranse (DRA)	
TE Families	TE Super-families	Nbr of neo-insertion site
Helitron-N2_PTr	RC/Helitron	146
Gypsy-71_PTr-LTR	LTR/Gypsy	140
Copia-3_PTri-I	LTR/Copia	60
Copia-91_PTr-LTR	LTR/Copia	51
EnSpm1B_PT	DNA/CMC-EnSpm	49
ENSPM1_PT	DNA/CMC-EnSpm	43
Helitron-N3 PTr	RC/Helitron	38
DNA-3-1 PTr	DNA/PIF-Harbinger?	33
Gypsy-72 PTr-LTR	LTR/Gypsy	29
hAT-6 PTr	DNA/hAT-Tag1	28
Helitron-N1 PTr	BC/Helitron	20
Copia 93 PTr I	LTP/Conia	11
	LTR/Commu	
POPG12_LIK	LTR/Gypsy	9
Helitron-1_P1r	RC/Helitron	8
DNA-3-2B_P1r	DNA	5
Gypsy-79_PTr-LTR	LTR/Gypsy	5
EnSpm3_PT	DNA/CMC-EnSpm	4
Gypsy18-PTR_LTR	LTR/Gypsy	4
Gypsy-35_PT-I	LTR/Gypsy	4
EnSpm2_PTr	DNA/CMC-EnSpm	3
hAT-1_PTr	DNA/hAT-Tip100	3
Harbinger1_PTr	DNA/PIF-Harbinger	3
hAT-4_PTr	DNA/hAT-Tip100	3
Gypsy-73_PTr-LTR	LTR/Gypsy	2
Gypsy-27 PTr-I	LTR/Gypsy	2
Helitron-N4 PTr	RC/Helitron	2
hAT-1N PTr	DNA/hAT-Ac	2
_ Copia-56_PTr-I	LTR/Copia	2
Gypsy-30_PTr-LTR	LTR/Gypsy	2
Ogre-PT2_LTR	LTR/Gypsy	2
Copia1-PTR_I-int	LTR/Copia	2
Caulimovirus-2_PTr	LTR/Caulimovirus	2
Copia-55_PTr-I	LTR/Copia	1
Gypsy-26_PTr-LTR	LTR/Gypsy	1
GYPOT1_I-int	LTR/Gypsy	1
hAT-7_PTr	DNA/hAT-Ac	1
hAT-3_PTr	DNA/hAT-Ac	1
Copia22-PTR_I-int	LTR/Copia	1
Caulimovirus-1 PTr	LTR/Caulimovirus	1
Gypsy13-PTR I-int	LTR/Gypsy	1
Gypsy-25 PTr-LTR	LTR/Gypsy	1
Gypsy-39 PT-I	LTR/Gypsy	1
Ogre-PT3_LTR	LTR/Gypsy	1
Cariall PTP Lint	LTR/Gypsy	1
L 1-1 PTr	LINE/L1	1
Grand 2 DED 1 222	LTB/Come	1
Gypsy15-PIR_LIR	LTR/Gypsy	1
GYPOTI_ETR	LTR/Gypsy	1
Copia26-PTR_I-int	LTR/Copia	1
Copia30-PTR_I-int	LTR/Copia	1
L1-4_PTr	LINE/L1	1
Ogre-PT1_I-int	LTR/Gypsy	1
L1-3_PTr	LINE/L1	1
Copia-55_PTr-LTR	LTR/Copia	1
Ogre-PT1_LTR	LTR/Gypsy	1
L1-2_PTr	LINE/L1	1
Ogre-PT2_I-int	LTR/Gypsy	1
Helitron-2_PTr	RC/Helitron	1
POPGY1_LTR	LTR/Gypsy	1

TE Equilion	Val d'allier (ALL)	Nhr of noo incortion oito
IL Familes	DC/Usliterer	INDE OF HEO-INSERTION SILE
Gungu 71 PTr LTP	LTB/Gungy	195
Copie 2 PTri I	LTR/Gypsy	184
Copia-3_PTH-I	LTR/Copia	62
Copia-91_PTF-LTK		50
Enspm1B_P1	DNA/CMC-EnSpm	52
ENSPMI_PI	DNA/CMC-EnSpm	48
Helltron-N3_P1r	RC/Helitron	43
hAl-6_PIr	DNA/nAI-Tagi	37
Gypsy-72_PTr-LTR	LTR/Gypsy	26
Helitron-NI_PIr	RC/Helitron	26
DNA-3-1_P1r	DNA/PIF-Harbinger?	18
Copia-93_PTr-1	LTR/Copia	10
POPGY2_LTR	LTR/Gypsy	7
DNA-3-2B_PTr	DNA	4
Gypsy-35_PT-I	LTR/Gypsy	4
Helitron-1_PTr	RC/Helitron	4
hAT-1_PTr	DNA/hAT-Tip100	3
Gypsy-26_PTr-LTR	LTR/Gypsy	3
Ogre-PT1_I-int	LTR/Gypsy	3
EnSpm2_PTr	DNA/CMC-EnSpm	2
hAT-1N_PTr	DNA/hAT-Ac	2
Gypsy-73_PTr-LTR	LTR/Gypsy	2
hAT-5_PTr	DNA/hAT-Tag1	2
POPGY1_I-int	LTR/Gypsy	2
L1-2_PTr	LINE/L1	2
Gypsy13-PTR_I-int	LTR/Gypsy	1
Copia43-PTR_I-int	LTR/Copia	1
Gypsy13-PTR_LTR	LTR/Gypsy	1
Caulimovirus-1_PTr	LTR/Caulimovirus	1
Gypsy-30_PTr-LTR	LTR/Gypsy	1
POPGY1_LTR	LTR/Gypsy	1
Copia-80_PT-I	LTR/Copia	1
L1-3_PTr	LINE/L1	1
Gypsy-25_PTr-LTR	LTR/Gypsy	1
Ogre-PT3_LTR	LTR/Gypsy	1
Copia-55_PTr-LTR	LTR/Copia	1
Gypsy-79_PTr-LTR	LTR/Gypsy	1
Copial1-PTR I-int	LTR/Copia	1
Caulimovirus-2 PTr	LTR/Caulimovirus	1
Harbinger1 PTr	DNA/PIF-Harbinger	1
hAT-4 PTr	DNA/hAT-Tip100	1
SAT-1 PTr	Satellite	1
Gypsy-27 PTr-LTR	LTR/Gypsy	1
Copia-56 PTr-I	LTR/Copia	1
Copia52-PTR I-int	LTR/Copia	1
Ogre-PT3 I-int	LTR/Gypsy	1
Gypsy-28 PTr-I	LTR/Gypsy	1
Copia-55 PTr-I	LTR/Copia	1
POPCOP2 Lint	LTR/Conia	1
Gynsy-25 PTr-I	LTR/Gypsy	1
Ogre_PT2_ITP	LTR/Gypsy	1
OSIG-LI LIK	Livoypsy	1

Numbers of TIPs in each TE family, for each population of P. nigra.

Numbers of TIPs and TE superfamilies predicted by TEFLoN in each population.

A. Numbers of TIPs predicted by TEFLoN after each filtering step on WGS data for the following individuals: ALL-14, ALL-19, DRA-038, DRA-045, PG-31 and PG-34. Each filtering step has been described elsewhere (Adrion et al., 2017): Results are filtered based on start and stop values, 3' and 5' soft-clipping and a minimum of five "favourable" reads or five "unfavourable" reads from a total of at least 20 reads for insertion site detection. Based on the proportion of reads in favour of detection (reads "present"/ (reads "present" + reads "absent")), results in the 10th and 90th percentiles were excluded for each population; we retained only TIPs detected in both individuals of each population. **B.** Venn diagram of the number of TIPs detected in each population by TEFLoN tools. TIPs common to two populations represent a same TIPs at the same insertion site (or overlap) in both populations. **C.** Proportion of TE superfamilies. On the left, the proportion of TE superfamilies of the 23,728 TE as TE library for TEFLoN. On the right, the proportion of cumulated TE superfamilies predicted for the 3 populations.

Correlations between TE families detected in the methylome data from Sow et al. 2023 with TEs predicted by TEFLoN to be newly inserted.

Each line corresponds to a methylation context: CG, CHG, CHH. The first column shows the proportion of methylated cytosines if only one population (DRA, PG or ALL) has a methylation value above the threshold of 25% for CG and CHG and 5% for CHH. The second column shows the proportion of TEs methylated, which is correlated with TEFLoN prediction.

Proportions of active TEs according to Mobilome-seq P. nigra data.

A. Pie chart of all TEs detected in the mobilome-seq database (Sow et al., 2021) for P. tremula x alba. **B.** Pie chart of TIPs detected by TEFLoN in the three poplar populations (P. nigra): ALL-14, ALL-19 (Val d'Allier), DRA-038, DRA-045 (Dranse), PG-31, PG-34 (Paglia). TEs were classified according to their depth of coverage (DOC), as follows: TE for a DOC of 1 to 200 reads (2689 TEs); TE+ (1994 TEs) for a DOC of 201-2,000 reads, TE++ (111 TEs) for a DOC of 2,001-10,000 reads and TE+++ (34 TEs) for a DOC over 10,000.

CpG base pearson cor.

Correlations between SeqCapBis and WGBS results for P. nigra samples in the CG context.

Pearson correlation coefficient for SMPs common to WGBS and SeqCapBis in the CG context.

CHG base pearson cor.

Correlations between SeqCapBis and WGBS results for P. nigra samples in the CHG context. Pearson correlation coefficient for SMPs common to WGBS and SeqCapBis in the CHG context.

CHH base pearson cor.

Correlations between SeqCapBis and WGBS results for P. nigra samples in the CHH context.

Pearson correlation coefficient for SMPs common to WGBS and SeqCapBis in the CHH context.

Principal component analysis (PCA) and heatmap for SeqCapBis and WGBS in the CHG and CHH contexts.

a. PCA on WGBS and SeqCapBis results for two P. nigra genotypes (Dranse in blue and others in orange, see Table 2) and two fragmentation approaches (acoustic shearing (Covaris) and enzymatic digestion) for the CHG context. **b.** PCA on WGBS and SeqCapBis results for two P. nigra genotypes (Dranse in blue and others in orange, see Table 2) and two fragmentation approaches (acoustic shearing (Covaris) and enzymatic digestion) for the CHH context. **c.** Heatmaps (Euclidean distance for clustering) based on SeqCapBis and WGBS data obtained in different experimental setups in the CHG context. **d.** Heatmaps based on SeqCapBis and WGBS data obtained in different experimental setups in the CHG context. **d.** Heatmaps based on CHG methylation data for Dranse samples fragmented by acoustic shearing. **f.** PCA on CHH methylation data for Dranse samples fragmented by acoustic shearing.

ID Condition reads Dranse_DRA-038_CC E01 28,311,331 27 Dranse_DRA-038_CC E01 28,311,331 27 Dranse_DRA-038_CC E02 31,397,407 27 Dranse_DRA-038_CC E03 26,752,606 34 Dranse_DRA-038_CC E04 26,111,601 34 Dranse_DRA-038_CC E04 26,111,601 34 Dranse_DRA-038_CC E04 26,011,601 34 Dranse_DRA-038_CC E05 27,345,856 41 Dranse_DRA-038_CC E06 24,026,040 37 Dranse_DRA-038_CC E07 26,031,231 47 Dranse_DRA-038_CC E07 26,031,231 47 Dranse_DRA-038_CC E07 26,031,231 47 Dranse_DRA-038_CC E07 28,350,316 44 Loire_VDL-052 E10 28,350,316 44 Dranse_DRA-038_CC E11 25,729,274 34 Dranse_DRA-038_CC E11 25,729,274 34	reads 28,311,331 31,397,407 26,752,606 26,111,601 26,111,601 27,345,856 24,026,040 26,031,231 22,546,694	(%) 27.4 34.1 34.7 41.4 37 41.9	mapped reads (%) 45.9 46.9 45.3 46.1 43.0 43.4	ON-Target (%) 63.9 61.7 60.4 59.1 56.7 57.3	1,651,768 1,762,876 1,691,561 1,736,287 1,731,123	2,460,998 2,609,903 2,513,765	13,402,495 17,515,26 14,119,374 18,492,15 13,517,857 17,723,18
Dranse_DRA-038_CC E01 28,311,331 27 Dranse_DRA-038_CC E02 31,397,407 27 Dranse_DRA-038_CC E02 31,397,407 27 Dranse_DRA-038_CC E03 26,752,606 32 Dranse_DRA-038_CC E04 26,111,601 32 Dranse_DRA-038_CC E04 26,111,601 37 Dranse_DRA-038_CC E05 27,345,856 41 Dranse_DRA-038_CC E06 24,026,040 37 Loire_SPM-038_CC E07 26,031,231 41 Dranse_DRA-038_CC E07 26,031,231 41 Dranse_DRA-038_CC E09 24,895,439 35 Loire_SPM-004 E09 24,895,439 35 Loire_VDL-052 E10 28,350,316 44 Ticino_N-30 E11 25,729,274 34 Dranse_DRA-038_CC E12 24,846,345 35 Dranse_DRA-038_CC E12 24,846,345 35 Dranse_DRA-038_CC E12 24,846,345 35	28,311,331 31,397,407 26,752,606 26,111,601 27,345,856 24,026,040 26,031,231 22,546,694	27.4 27.7 34.1 34.7 41.4 37 41.9	reads (%) 45.9 46.9 45.3 46.1 43.0 43.4	(%) 63.9 61.7 60.4 59.1 56.7 57.3	1,651,768 1,762,876 1,691,561 1,736,287 1,731,123	2,460,998 2,609,903 2,513,765	13,402,495 17,515,26 14,119,374 18,492,15 13,517,857 17,723,18 13,673,900 17,996,04
Dranse_DRA-038_CC E01 28,311,331 27 Dranse_DRA-038_CC E02 31,397,407 27 Dranse_DRA-038_CC E03 26,752,606 34 Dranse_DRA-038_CC E04 26,111,601 34 Dranse_DRA-038_CC E04 26,111,601 34 Dranse_DRA-038_CC E04 26,111,601 37 Dranse_DRA-038_CC E05 27,345,856 41 Dranse_DRA-038_CC E06 24,026,040 37 Dranse_DRA-038_CC E07 26,031,231 41 Dranse_DRA-038_CC E07 26,031,231 41 Dranse_DRA-038_CC E07 26,031,231 41 Dranse_DRA-038_CC E07 26,031,231 41 Dranse_DRA-038_CC E09 24,895,439 35 Loire_VDL-052 E10 28,350,316 44 Ticino_N-30 E11 25,729,274 34 Dranse_DRA-038_CC E12 24,846,345 35 Dranse_DRA-038_CC E12 24,846,345 35	28,311,331 31,397,407 26,752,606 26,111,601 27,345,856 24,026,040 26,031,231 22,546,694	27.4 27.7 34.1 34.7 41.4 37 41.9	45.9 46.9 45.3 46.1 43.0	63.9 61.7 60.4 59.1 56.7 57.3	1,651,768 1,762,876 1,691,561 1,736,287 1,731,123	2,460,998 2,609,903 2,513,765	13,402,495 17,515,26 14,119,374 18,492,15 13,517,857 17,723,18 13,673,900 17,996,04
Dranse_DRA-038_CC E02 31,397,407 27 Dranse_DRA-038_CC E03 26,752,606 34 Dranse_DRA-038_CC E04 26,111,601 34 Dranse_DRA-038_CC E04 26,111,601 34 Dranse_DRA-038_CC E04 26,111,601 34 Dranse_DRA-038_CC E05 27,345,856 41 Loire_SPM-034 E06 24,026,040 37 Dranse_DRA-038_CC E07 26,031,231 41 Dranse_DRA-038_CC E07 26,031,231 41 Dranse_DRA-038_CC E07 26,031,231 41 Dranse_DRA-038_CC E08 22,546,694 35 Loire_SPM-004 E09 24,895,439 35 Loire_VDL-052 E10 28,350,316 44 Ticino_N-30 E11 25,729,274 34 Dranse_DRA-038_CC E12 24,846,345 35 Dranse_DRA-038_CC E12 24,846,345 35	26,752,606 31,397,407 26,111,601 27,345,856 24,026,040 26,031,231 22,546,694	27.7 34.1 34.7 41.4 37 41.9	46.9 45.3 46.1 43.0 43.4	61.7 60.4 59.1 56.7 57.3	1,762,876 1,691,561 1,736,287 1,731,123	2,609,903 2,513,765 2,513,765	13,517,857 17,723,18 13,517,857 17,723,18 13,673,900 17,996,04
Dranse_DRA-038_CC E03 26,752,606 34 Dranse_DRA-038_CC E04 26,111,601 34 Dranse_DRA-038_CC E05 27,345,856 41 Dranse_DRA-038_CC E05 27,345,856 41 Dranse_DRA-038_CC E05 24,026,040 37 Dranse_DRA-038_CC E07 26,031,231 41 Dranse_DRA-038_CC E07 26,031,231 41 Dranse_DRA-038_CC E07 26,031,231 41 Dranse_DRA-038_CC E09 24,895,439 35 Loire_SPM-004 E09 24,895,439 35 Loire_VDL-052 E10 28,350,316 44 Ticino_N-30 E11 25,729,274 34 Dranse_DRA-038_CC E12 24,846,345 35 Dranse_DRA-038_CC E12 24,846,345 35	26,752,606 26,111,601 27,345,856 24,026,040 26,031,231 22,546,694	34.1 34.7 41.4 37 41.9	45.3 46.1 43.0	60.4 59.1 56.7 57.3	1,691,561 1,736,287 1,731,123	2,513,765 2 585 860	13,517,857 17,723,18 13,673,900 17,996,04
Dranse_DRA-038_CC E04 26,111,601 34 Dranse_DRA-038_CC E05 27,345,856 41 Loire_SPM-034 E06 24,026,040 37 Dranse_DRA-038_CC E07 26,031,231 41 Dranse_DRA-038_CC E07 26,031,231 41 Dranse_DRA-038_CC E08 22,546,694 35 Loire_SPM-004 E09 24,895,439 35 Loire_VDL-052 E10 28,350,316 44 Ticino_N-30 E11 25,729,274 34 Dranse_DRA-038_CC E12 24,846,345 35	26,111,601 27,345,856 24,026,040 26,031,231 22,546,694	34.7 41.4 37 41.9	46.1 43.0 43.4	59.1 56.7 57.3	1,736,287 1,731,123	7 585 860	13,673,900 17,996,04
Dranse_DRA-038_CC E05 27,345,856 41 Loire_SPM-034 E06 24,026,040 37 Dranse_DRA-038_CC E07 26,031,231 41 Dranse_DRA-038_CC E08 22,546,694 35 Loire_SPM-004 E09 24,895,439 35 Loire_VDL-052 E10 28,350,316 44 Ticino_N-30 E11 25,729,274 34 Dranse_DRA-038_CC E12 24,846,345 35 Dranse_DRA-038_CC E11 25,729,274 34	27,345,856 24,026,040 26,031,231 22,546,694	41.4 37 41.9	43.0 43.4	56.7 57.3	1,731,123	2,000,000,2	
Loire_SPM-034 E06 24,026,040 37 Dranse_DRA-038_CC E07 26,031,231 41 Dranse_DRA-038_CC E08 22,546,694 35 Loire_SPM-004 E09 24,895,439 35 Loire_VDL-052 E10 28,350,316 44 Ticino_N-30 E11 25,729,274 34 Dranse_DRA-038_CC E12 24,846,345 35 Dranse_DRA-038_CC E12 24,846,345 35	24,026,040 26,031,231 22,546,694	37 41.9	737	57.3		2,544,811	13,331,464 17,607,39
Dranse_DRA-038_CC E07 26,031,231 41 Dranse_DRA-038_CC E08 22,546,694 33 Loire_SPM-004 E09 24,895,439 33 Loire_VDL-052 E10 28,350,316 44 Ticino_N-30 E11 25,729,274 34 Dranse_DRA-038_CC E12 24,846,345 33	26,031,231 22,546,694	41.9			1,901,994	2,859,895	15,142,331 19,904,22
Dranse_DRA-038_CC E08 22,546,694 33 Loire_SPM-004 E09 24,895,439 33 Loire_VDL-052 E10 28,350,316 44 Ticino_N-30 E11 25,729,274 34 Dranse_DRA-038_CC E12 24,846,345 33	22,546,694		46.1	54.7	1,668,747	2,444,243	12,789,973 16902,963
Loire_SPM-004 E09 24,895,439 33 Loire_VDL-052 E10 28,350,316 44 Ticino_N-30 E11 25,729,274 34 Dranse_DRA-038_CC E12 24,846,345 33		33.1	45.8	59.1	1,631,743	2,430,118	12,886,868 16,948,72
Loire_VDL-052 E10 28,350,316 44 Ticino_N-30 E11 25,729,274 34 Dranse_DRA-038_CC E12 24,846,345 35	24,895,439	33.6	44.1	59.3	1,757,730	2,622,119	14,200,412 18,580,26
Ticino_N-30 E11 25,729,274 34 Dranse_DRA-038_CC E12 24,846,345 35 Dranse_DBA 038_CC E13 20,686,867 47	28,350,316	44.5	45.2	55.8	1,831,152	2,760,750	14,678,900 19,270,80
Dranse_DRA-038_CC E12 24,846,345 35	25,729,274	34.6	45.3	59.8	1,706,486	2,541,907	13,688,207 17,936,60
	24,846,345	33.9	45.6	60.4	1,696,627	2,535,353	13,567,280 17,799,26
	29,686,867	42.1	46.1	57.7	1,941,441	2,975,150	15,437,966 20,354,55
Dranse_DRA-038_CC E27 36,867,205 30	36,867,205	30.7	47.9	57.8	1,918,427	2,822,291	14,809,802 19,550,52
Dranse_DRA-038_CC E28 24,751,793 25	24,751,793	29.4	46.8	61.3	1,774,362	2,676,680	14,225,631 48,676,67
Dranse_DRA-038_CC E29 23,183,272 26	23,183,272	28.4	46.7	61.9	1,711,015	2,575,099	13,724,648 18,010,76
Dranse_DRA-038_CC E30 27,505,283 4(27,505,283	40	48.8	51	1,708,586	2,461,130	12,013,675 16,183,39
Dranse_DRA-038_CC E31 25,874,987 35	25,874,987	33.2	47.2	58.9	1,763,456	2,613,577	13,715,239 18,092,27

Statistics for the 18 experimental conditions tested on five P. nigra samples with the SeqCapBis approach in the CG, CHG and CHH methylation contexts. A total of 17.84 Mb of sequence corresponding to 25,434 DMRs is considered for each sample.

Supplementary Table. S1

MGS								
NCBI ID	Sample ID	Total read pairs	Properly mapped	SNP Samtools	SNP GAT	INS X	P FreeBayes	
SAMN26818645	Bezange_82	167,369,201	78.98	7,051,865	5,134,514	1 4,43	31,359	
SAMN26818644	Gresigne_37	244,496,293	85.60	7,413,814	5,384,298	3 4,62	17,074	
SAMN26818643	Lappwald_108	223,042,876	85.60	7,415,315	5,392,681	4,6(31,098	
SAMN26818642	Berce_193	194,147,247	85.77	7,241,681	5,304,389	9 4,57	77,253	
SAMN26818641	StSauvant_6	185,113,993	86.67	7,191,650	5,252,899	9 4,55	58,342	
SAMN26818640	Bourran 274	254,070,813	90.17	6,846,400	5,396,314	4,65	58,437	
SAMN26818639	Bourran_214	206,603,533	89.83	6,928,104	5,374,525	4,62	16,138	
SAMN26818638	Gohrde 89	231,229,747	87.11	7,704,570	5,638,236	3 4,82	12,614	
SAMN26818637	Troncais 189	192,150,012	86.77	7,249,255	5,269,930	9,55	51,542	
SAMN26818636	Longchamps_136	258,680,310	83.97	7,312,595	5,366,521	4,63	31,983	
WGBS								
NCBI ID	Sample ID	Total read pairs	Properly mapped	Coverage x C(C)	CHG	СНН	
SAMN26818645	Bezange 82	295,416,479	48.3	45 21	.,687,540	31,149,273	206,835,072	
SAMN26818644	Gresigne_37	267,854,604	64.0	54 21	,720,368	31,211,753	207,458,959	
SAMN26818643	Lappwald_108	229,120,755	55.1	40 21	,440,880	30,876,124	205,497,023	
SAMN26818642	Berce_193	303,969,825	58.4	56 21	.,821,871	31,331,555	208,097,689	
SAMN26818641	StSauvant_6	277,093,047	61.2	53 21	.,710,249	31,198,800	207,418,420	
SAMN26818640	Bourran_274	336,584,932	66.4	70 22	2,802,963	32,479,615	215,183,473	
SAMN26818639	Bourran 214	269456029	64.1	54 22	2,687,271	32,338,993	214,289,161	
SAMN26818638	Gohrde_89	250,519,557	62.7	49 21	.,718,208	31,197,273	207,268,829	
SAMN26818637	Troncais_189	413,725,043	61.5	80 22	2,046,594	31,614,934	209,923,445	
SAMN26818636	Longchamps_136	296,584,323	61.7	58 21	.,759,083	31,252,613	207,700,986	
Before filtering				21	,939,503	31,465,093	208,967,306	
After filtering				4,5	256,014	14,429,956	96,137,556	

Summary of the WGS and WGBS sequencing data analysis for Q. petraea. Before and after filtering: mapping statistics and number of SNPs detected with samtools/bcftools, GATK and FreeBayes.

Supplementary Table. S2

	4 s	amples altogeth	ler		Individual sam	ıples
Sample ID	Sequencing type	Methylated positions	Depth >10X	Correlation coefficient	Common pos. WGBS - SeqCapbis	Correlation coefficient
T189	WGBS	15,608,479	15,592,853	0.951	202,534	0.927
T193	WGBS	18,050,016	18,031,956	0.943	195,277	0.925
Т6	WGBS	19,613,356	19,593,724	0.944	169,509	0.930
Т82	WGBS	16,496,039	16,479,527	0.950	162,971	0.936
T189	SeqCapBis	363,564	363,196	0.951		
T193	SeqCapBis	343,431	343,084	0.944		
T6	SeqCapBis	273,487	273,213	0.945		
T82	SeqCapBis	275,721	275,444	0.950		

Correlations between the SeqCapBis and WGBS results for the four Q. petraea samples. Pearson correlation analysis for positions common to the WGBS and SeqCapBis analyses in the CG context. When the four Q. petraea samples were considered together, 110,957 positions with at least 10X sequencing coverage were common to all datasets. Considering the samples separately increased number of common positions between SeqCapBis and WGBS to 182,573 per sample on average.

Supplementary Table. S3