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Abstract: Soils are a finite resource that is under threat, mainly due to human pressure. Therefore,
there is an urgent need to produce maps of soil properties, functions and behaviors that can support
land management and various stakeholders’ decisions. Compaction is a major threat to soil functions,
such as water infiltration and storage, and crops’ root growth. However, there is no general agreement
on a universal and easy-to-implement indicator of soil susceptibility to compaction. The proposed
indicators of soil compaction require numerous analytical determinations (mainly bulk density mea-
surements) that are cost prohibitive to implement. In this study, we used data collected in numerous
in situ topsoil observations during conventional soil survey and compared field observations to
usual indicators of soil compactness. We unraveled the relationships between field estimates of
soil compactness and measured soil properties. Most of the quantitative indicators proposed by
the literature were rather consistent with the ordering of soil compactness classes observed in the
field. The best relationship was obtained with an indicator using bulk density and clay (BDr2) to
define three classes of rooting limitation. We distinguished six clusters of topsoil behaviors using
hierarchical clustering. These clusters exhibited different soil behaviors to compaction that were
related to soil properties, such as particle-size fractions, pH, CaCO3 and organic carbon content,
cation exchange capacity, and some BDr2 threshold values. We demonstrate and discuss the use-
fulness of field observations to assess topsoil behavior to compaction. The main novelty of this
study is the use of large numbers of qualitative field observations of soil profiles and clustering to
identify contrasting behavior. To our knowledge, this approach has almost never been implemented.
Overall, analysis of qualitative and quantitative information collected in numerous profiles offers a
new way to discriminate some broad categories of soil behavior that could be used to support land
management and stakeholders’ decisions.

Keywords: soil; compactness; on-field observations; indicators; sensitivity to compaction; clustering;
national-scale

1. Introduction

Soil degradation by compaction continues to be a concern due to the increasing use
of heavy machinery in intensive agriculture and forestry. Compaction decreases the pore
space in soils. As a result, it has important consequences for germination rates, seedling
emergence, plant rooting and crop production [1–3]. Soil compaction also reduces oxygen
diffusion and water movement, thus leading to increased N2O emissions and runoff
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risks [4,5]. Soil compaction processes have been extensively studied for a long time [6,7]
and several models have been proposed and evaluated [5]. Larson et al. [8] determined
compression curves from 36 agricultural soil samples globally (belonging to 8 different soil
orders based on soil taxonomic classification). They applied a range of stresses on these
samples under different water content, measured the resulting changes in bulk density
(BD) and concluded that the compression curves were dependent on clay content, clay
mineralogy and water content. De Lima et al. [9] developed an R package soilphysics for
simulation of soil compaction induced by agricultural field traffic. In Table 2 of their article,
De Lima et al. [9] listed a series of existing pedo-transfer functions (PTFs) for estimation
of soil precompression (σp), compressive property stress, and compressive parameters
from “readily available soil properties”. However, the very large number and types of
input parameters required to estimate σp and compressive properties raises the question
of their availability. Conversely, some very basic soil properties in the input parameters
(e.g., particle-size fractions, soil organic carbon content) are often missing. In addition,
the soils to which these PTFs apply are poorly defined, thus the domain validity of these
PTFs is unknown. We fully acknowledge the usefulness of such PTFs and the need for a
mechanistic modeling of soil compaction processes to predict the distribution of stress in
the soil induced by farm vehicles and resulting changes in soil structure [5]. However, the
very large number of input parameters on the one hand, and the oversimplification of soil
parameters inputs on the other hand, do not favor their practical use as generic tools to
predict susceptibility to compactness over large areas.

This is why there is a need for developing simple and easy-to-implement indicators of
soil compactness and/or of susceptibility to compaction. Some of the commonly proposed
indicators of soil compactness are soil BD and some of its derivative indicators, such as
packing density (PD), soil compaction degree (SCD) and root restrictive BD (BDr1 and
BDr2). The PD was first defined by Renger [10] as a function of BD and clay content. It
was used by Jones et al. [11] and Panagos et al. [12] at the EU scale. Jones [13] proposed
threshold values of BD (BDr1 and BDr2) for restricting root depth, calculated from linear
equations using clay content (BDr1) or (clay + silt) content (BDr2). Stânga [14] proposed the
soil compaction degree (SCD) based on the concept of minimum required porosity (MNP).
Stânga first defined MNP as a linear function of clay content. Then, he defined the SCD
as the ratio (MNP-Total Porosity)/MNP, expressed in %. Other proposed compactness
indicators used various ratios between the observed BD and BD measured in the lab after
application of various compaction stresses [15–17]. A limitation of these latter ratios is that
they require numerous laboratory measurements.

Indeed, most indicators of compactness or susceptibility to compaction require mea-
surements of BD for comparison against reference values. Moreover, some of these indica-
tors, such as BD, PD, BDr1 and BDr2, rely on over-simplistic hypotheses and equations.

If we simplify reality by separating mineral constituents, soil organic matter con-
stituents, and roots, the maximum compactness of soil depends on: (i) the relative pro-
portion within the soil of various mineral and organic matter particles, including their
morphological characteristics (sizes, shapes, density and rheological properties); and (ii)
the relative proportion of roots and their morphological characteristics, similar to those for
mineral and organic particles.

To establish a general relationship between these variables, it would be necessary to
describe the arrangement of all constituents according to their morphological characteristics,
proportion, and properties. In practice, this approach is not feasible given the number of
parameters to consider and the difficulty in evaluating all of them. Therefore, in a first
approximation, it seems logical to explore if simple properties, such as soil texture (ST)
and soil organic carbon content (SOC), would discriminate some typical soil behaviors
regarding their porosity and susceptibility to compaction [18]. Conversely, the “natural”
resilience of soils to compaction depends on swelling/shrinkage properties, biological
activity (e.g., bioturbation), and soil climate. As the intensity of compaction strongly
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depends on the type of mechanical stresses applied to soil and on other various factors,
there are a myriad of combinations of situations leading to an observed compactness.

Visual field assessment of soil structure quality has been used for a long time by
agronomists and soil scientists to assess the effects of different soil management practices
on soil structure [19–28]. Two examples of widely used procedures are field Visual Soil
Assessment (VSA [25]) and Visual Evaluation of Soil Structure (VESS [21,28]). VSA and
VESS often involve qualitative physical tests, such as aggregate strength, assessed by apply-
ing progressive force using fingers and hands [21]. Most of the studies on VSA and VESS
have been conducted to compare soil structure under different land use, soil types, and
agricultural practices, often based on long-term field experiments. Some studies attempted
to use VSA or VESS to build indicators of soil structure quality, such as the SOC/Clay
ratio [27,29–33]. The SOC/Clay indicator was criticized by Poeplau and Don, [34] who
demonstrated that this ratio could lead to inconsistent values. Using a large set of observa-
tions in France, Rabot et al. [35] also questioned the relevance of SOC/Clay as a national
soil health indicator. Poeplau and Don [34] proposed another ratio between actual and
expected SOC (SOC/SOCexp) as an easy-to-use alternative, where expected SOC is derived
from a regression between SOC and clay content. Overall, the literature shows that it is
hard to derive generic and commonly accepted thresholds for soil structure indicators.
Indeed, as proposed by Rabot et al. [35], some indicators might be more relevant when
calibrated locally. In addition, some other indicators are highly variable temporally and
spatially (especially when they involve BD measurements).

Considering these variations, one may wonder if a large number of observations
could support classification, not only of structural state, but also classes of soil response to
compaction. Indeed, a major drawback is that most of the studies, and even meta-analyses
(e.g., [36]), included a rather low number of in situ observations and were often restricted
to specific soils or textural ranges. This is why it is tempting to test the potential of large
databases with in situ soil observations in order to cover a maximum range of scenarios
and their combinations.

Soil scientists and soil surveyors conduct many soil descriptions during their field
work. These descriptions use national instructions and standard protocols described
in detail in field books [37–41]. However, the qualitative information gathered by soil
surveyors and/or stored in soil databases is seldom used, especially for estimating soil
physical properties and behaviors and relating them to quantitative soil properties, such as
texture, soil organic carbon content, etc. A noticeable exception is the study from Bondi
et al. [42] who used machine learning to predict soil bulk density from “visual parameters”.

Our aim is to test if multivariate analysis of in situ observations conducted in the
framework of conventional soil surveys may provide interesting insights into inherent
soil responses to compaction over a large geographic area. Our specific objectives are to
(i) unravel relationships between a simple field estimate of topsoil compactness degree
and measured properties/indicators, (ii) assess if some clusters of topsoil behavior to
compaction can be extracted from these observations, and (iii) provide a first interpretation
of these clusters in terms of topsoil behavior to compaction.

2. Material and Methods
2.1. Soil Data and Filtering
2.1.1. Soil Horizon Selection

Topsoil data come from the French national database DoneSol [43,44]. We first selected
horizons with a 0–30 cm depth from the database. Several horizons per observation site
could thus be selected. We checked the names of the horizons to keep only topsoil horizons
and we removed O horizons. From DoneSol, we selected data from all cultivated topsoil
horizons. Most of the remaining topsoil horizons were A horizons that had been subjected
to soil tillage at least once during the past 20 years. The selected horizons included topsoil
converted to no-till, and many other tillage management practices. They also included soils
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under a large variety of crop rotations, some of which included non-permanent grassland.
Soils under permanent grasslands were excluded from the study.

We used only the observations performed at a soil moisture slightly lower than field
capacity and far from the permanent wilting point. This selection was based on soil moisture
classes allocated to horizons by the soil surveyors at the time of the profile description and
on-field tests. In total, we retained 27,775 horizons from mainland France.

2.1.2. Soil Attributes

In DoneSol, the compactness of a horizon is an ordered categorical variable having
four classes. These soil compactness classes (SCCs) correspond to a knife penetrability
test performed on each horizon when describing soil profiles. The SCCs are described in
Table 1.

Table 1. Definition of each soil compactness class (SCC).

SCC Definition Data Number

SCC-1 Not compact (the knife penetrates effortlessly, and the material is inconsistent) 5183
SCC-2 Slightly compact (the knife penetrates with a slight effort) 6203
SCC-3 Compact (the knife penetrates incompletely even with a significant effort) 2956
SCC-4 Very compact (the knife only penetrates a few millimeters) 230

The SCCs correspond to a soil surveyor’s assessment of soil knife penetrability
recorded after five attempts and avoiding large voids that may have come from recent
tillage operations. The SCCs reflect “the ability of soil in a confined (field) state to resist
penetration by a rigid object” as defined by the USDA [41], but are less precise than the
USDA definition, which adds “of specified size”, after “object”. We removed horizons
with missing SCC observations. Filtering missing SCCs resulted in 14,572 horizons with a
description of compactness.

Quantitative variables corresponding to laboratory analysis for these horizons were
also extracted (Table 2), and box plots were drawn according to each SCC (Table 1). For SOC,
we eliminated values greater than 80 g kg−1 in order to remove holorganic horizons [45].
We also removed values of BD ≥ 2 because they were considered as errors, or as topsoils
containing too many hard and within-site dense coarse elements (gravels, stones, rocks),
which usually increase BD and variability and add noise to the relationships between BD
and soil compactness.

Table 2. List of quantitative variables used in this study.

Variable Unit Method Filtering Number of Remaining Data

Clay 0–2 µm g kg−1

Pipette method [46] without
decarbonation

- 14,572
Fine silt 2–20 µm g kg−1 - 14,376

Silt 2–50 µm g kg−1 - 14,572
Sand 50–2000 µm g kg−1 - 14,572

Carbon (SOC) g kg−1 Wet oxidation (Anne; [47]) <80 11,164
Bulk density (BD) Mg m−3 Cylinder method [48] <2 605

pHwater pH Soil pH in water (dilution 1/5; [49]) - 13,059
CEC cmol+ kg−1 Metson method [50] - 9956

C:N ratio - - - 9136
CaCO3 g kg−1 Scheibler Calcimeter [51] - 4724

2.1.3. Quantitative Compactness and Structural Quality Indicators

We retained nine commonly used indicators, either general indicators of structural
quality, or specifically focused on soil compactness.
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Bulk Density (BD)

Soil BD has been often used as a compactness indicator (e.g., [52–57]). Thus, we
selected this indicator. However, it is well-known that BD values and thresholds must
be interpreted in the context of other soil properties, e.g., particle-size distribution, clay
content, SOC content, coarse fragment volume (e.g., [10,11,58–62]). Therefore, we also
calculated eight other indicators taken from the literature.

Complexed Organic Carbon (COC) and Non-Complexed Organic Carbon (NCOC)

Dexter et al. [63] defined the concept of Complexed organic carbon (COC) as the ratio
of the clay content divided by SOC (Clay/SOC). For French and Polish topsoils, Dexter
et al. [63] stated that, for a couple of soil physical properties related to soil structure, the
optimal value of Clay/SOC was equal to 10. They defined COC and NCOC as follows.

If (Clay/10) > SOC then COC = SOC and NCOC = 0.
In this case, we can also possibly deduce the unsaturated clay: ClayNsat = Clay −

(SOCx10).
If (Clay/10) < SOC, then COC = Clay/10 and NCOC = SOC − COC.
In this case, all the clay is saturated (ClayNsat = 0).

SOC/Clay Index

We calculated the SOC/Clay ratio. Then, we applied the classification proposed by
Johannes et al. [29], used by Prout et al. [31,33] and tested by Pulley et al. [32], to transform
SOC/Clay ratio into four classes (Table 3).

Table 3. SOC/Clay ratio classes of soil structure quality (SSQ) and their threshold values. SOC: soil
organic carbon content (g kg−1); Clay: clay content (g kg−1).

SOC/Clay Class Threshold Values Name

SOC/ClayClass1 1/8 ≤ SOC/Clay Very good SSQ
SOC/ClayClass2 1/10 ≤ SOC/Clay < 1/8 Good SSQ
SOC/ClayClass3 1/13 ≤ SOC/Clay < 1/10 Moderate SSQ
SOC/ClayClass4 SOC/Clay < 1/13 Degraded SSQ

SOC/SOCexp Index

The SOC/SOCexp index proposed by Poeplau and Don [34] was based on a regres-
sion between observed SOC and Clay contents in Germany. Here, we kept the original
concept from Poeplau and Don but we adopted a similar yet slightly modified method to
alleviate the effect of extreme SOC values. To estimate expected SOC content (SOCexp), we
transformed clay content (%) in 25 classes of 4% clay content range. For each class of clay,
we considered SOCexp as equal to the SOC median value. Then, as proposed by Poeplau
and Don [34], we used quartiles of SOC/SOCexp. These quartiles were calculated for clay
content classes to generate SOC/SOCexp index classes as shown in Table 4.

Table 4. SOC/SOCexp ratio classes of soil structure quality (SSQ) and their threshold values. SOC: soil
organic carbon content (g kg−1); SOCexp: expected soil organic carbon content (g kg−1). SOCexp is
estimated by the SOC median value for classes of increasing clay content (%). Clay content intra-class
range is 4%. q1, q2, q3, q4: 1st, 2nd, 3rd and 4th quartile of SOC content statistical distributions in
every clay content class, respectively.

SOC/SOCexp Threshold Values Name

SOC/SOCexp1 SOC/SOCexp

1 

 

є q4 Very good SSQ
SOC/SOCexp2 SOC/SOCexp

1 

 

є q3 Good SSQ
SOC/SOCexp3 SOC/SOCexp

1 

 

є q2 Moderate SSQ
SOC/SOCexp4 SOC/SOCexp

1 

 

є q1 Degraded SSQ
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Packing Density (PD)

Packing density (PD) was defined by Renger [10] as a function of BD (Mg m−3) and
clay content (Clay, <0.002 mm size, in %). Packing density is calculated as:

PD = BD + 0.009 × Clay (1)

where PD et BD are expressed in Mg m−3 and Clay is expressed in % (i.e., g 100 g−1).
Interpretation limits for PD classes are shown in Table 5.

Table 5. Packing density (PD) classes and threshold values.

PD Class Threshold Values Name

PDClass1 ≤1.40 Not compact
PDClass2 ≤1.75 and >1.40 Moderately compact
PDClass3 >1.75 Strongly compacted

Soil Compactness Degree (SCD)

Stângă [14] proposed the soil compaction degree (SCD, in Romanian: Gradul de Tasare,
GT) term, which was then used in the soil literature from Romania [64]. The SCD is an
index arising from bulk density (BD) and the clay content (Clay). Stângă [14] first defined
the Minimum Needed Porosity (MNP) by the following equation:

MNP = 45 + 0.163 × Clay (2)

where Clay is expressed in weight % (g 100 g−1), and MNP is expressed in % volume.
The Total Porosity (TP) is defined by:

TP = 100 ×
(

1 − BD
D

)
(3)

where BD is bulk density expressed as Mg m−3, D is the density of solid particles assumed
to be 2.65 Mg m−3, and TP is expressed in % volume.

TP = 100 ×
(

1 − BD
2.65

)
(4)

Then the SCD is calculated as:

SCD =
(MNP − TP)

MNP
× 100 (5)

where SCD is expressed in % vol.
Interpretation limits for six SCD classes are shown in Table 6.

Table 6. Soil compactness degree (SCD) classes and threshold values.

SCD Class Threshold Values Name

SCDClass1 <−17% very loose soils
SCDClass2 ≥−17 and <−10% slightly—moderately loose
SCDClass3 ≥−10 and <0% slightly loose
SCDClass4 ≥0 and <10% slightly compacted
SCDClass5 ≥10 and <18% moderately compacted
SCDClass6 ≥18% strongly compacted soils
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Root Restrictive Bulk Density (BDr1 and BDr2)

Jones [13] estimated threshold values of BD (BDr1 and BDr2) for restricting root depth
by using relationships between BD and clay (BDr1) or BD and clay + silt (BDr2). He
estimated classes of root restrictive bulk density (Table 7).

Table 7. Root restrictive bulk density (BDr1 and BDr2) classes and their threshold values. BDr1Classes
and BDr2Classes are classes of limiting root depth bulk density as g cm−3. Clay and Silt content are
both in % (g 100 g−1).

BDr Class Threshold Values Name

BDr1Class1 BD < 1.52 − (0.00646 × Clay) Rooting not restricted
BDr1Class2 1.77 − (0.00669 × Clay) ≥ BD ≥ 1.52 − (0.00646 × Clay) Rooting moderately restricted
BDr1Class3 BD > 1.77 − (0.00669 × Clay) Rooting highly restricted

BDr2Class1 BD < 1.60 − (0.00468 × (Clay + Silt)) Rooting not restricted
BDr2Class2 1.83 − (0.00429 × (Clay + Silt)) ≥ BD ≥ 1.60 − (0.00468 × (Clay + Silt)) Rooting moderately restricted
BDr2Class3 BD > 1.83 − (0.00429 × (Clay + Silt)) Rooting highly restricted

2.2. Data Treatment
2.2.1. Comparing Field Observations with Raw Quantitative Data and Indicators

We compared raw analytical data and indicators described in Section 2.1.3. to field
observations of soil compactness classes (SCCs). To this aim, we calculated the relative
proportion of the ordered qualitative indicators of soil structural quality/soil strength
according to the four observed SCCs. We also plotted box plots of quantitative raw data
and various derived data (e.g., COC, NCOC, CEC, CaCO3, pH, SOC/Clay, SOC/SOCexp)
according to each SCC. In order to project the data into a ST triangle, we selected the
Aisne equilateral ST triangle [65], which is one of the two most widely used ST triangles
in France [66]. These projections were performed in R (version 4.2.2) with the soiltexture
package [67].

2.2.2. Discretizing the Soil Texture Triangle

In an orthonormal space of silt% on the abscissa and clay% on the ordinate, we divided
the space into squares of 2% × 2%, called hereafter soil texture cells (STcells). In order to
calculate robust statistics for each STcell, we only kept STcells with ≥10 observations of
SCC (Figure 1). This filtering resulted in 422 STcells.

Land 2024, 13, x FOR PEER REVIEW 7 of 24 
 

Jones [13] estimated threshold values of BD (BDr1 and BDr2) for restricting root depth 
by using relationships between BD and clay (BDr1) or BD and clay + silt (BDr2). He esti-
mated classes of root restrictive bulk density (Table 7). 

Table 7. Root restrictive bulk density (BDr1 and BDr2) classes and their threshold values. BDr1Classes 
and BDr2Classes are classes of limiting root depth bulk density as g cm−3. Clay and Silt content are 
both in % (g 100 g−1). 

BDr Class Threshold Values Name 
BDr1Class1 BD < 1.52 − (0.00646 × Clay) Rooting not restricted 
BDr1Class2 1.77 − (0.00669 × Clay) ≥ BD ≥ 1.52 − (0.00646 × Clay) Rooting moderately restricted 
BDr1Class3 BD > 1.77 − (0.00669 × Clay) Rooting highly restricted 
BDr2Class1 BD < 1.60 − (0.00468 × (Clay + Silt)) Rooting not restricted 
BDr2Class2 1.83 − (0.00429 × (Clay + Silt)) ≥ BD ≥ 1.60 − (0.00468 × (Clay + Silt)) Rooting moderately restricted 
BDr2Class3 BD > 1.83 − (0.00429 × (Clay + Silt)) Rooting highly restricted 

2.2. Data Treatment 
2.2.1. Comparing Field Observations with Raw Quantitative Data and Indicators 

We compared raw analytical data and indicators described in Section 2.1.3. to field 
observations of soil compactness classes (SCCs). To this aim, we calculated the relative 
proportion of the ordered qualitative indicators of soil structural quality/soil strength ac-
cording to the four observed SCCs. We also plotted box plots of quantitative raw data and 
various derived data (e.g., COC, NCOC, CEC, CaCO3, pH, SOC/Clay, SOC/SOCexp) ac-
cording to each SCC. In order to project the data into a ST triangle, we selected the Aisne 
equilateral ST triangle [65], which is one of the two most widely used ST triangles in 
France [66]. These projections were performed in R (version 4.2.2) with the soiltexture pack-
age [67]. 

2.2.2. Discretizing the Soil Texture Triangle 
In an orthonormal space of silt% on the abscissa and clay% on the ordinate, we di-

vided the space into squares of 2% × 2%, called hereafter soil texture cells (STcells). In 
order to calculate robust statistics for each STcell, we only kept STcells with ≥ 10 observa-
tions of SCC (Figure 1). This filtering resulted in 422 STcells. 

 Figure 1. Number of soil compactness class (SCC) observations per STcell containing at least 10
observations of SCC.



Land 2024, 13, 909 8 of 23

2.2.3. Clustering

Within each STcell, we calculated the frequency of each SCC and we derived four
quantitative variables (SCC-1, SCC-2, SCC-3 and SCC-4), each being equal to the frequency
of a given SCC within a STcell.

We then performed a clustering of STcells, using these four quantitative variables.
Hierarchical clustering was carried out in R with the cluster package [68]. We ran the
dissimilarity matrix calculation with the Gower’s distance [69]. For the aggregation method,
to construct the dendrogram, we used the Ward method [70]. We performed a principal
component analysis (PCA) to visualize the clustering results, using the fviz_cluster function
of R package factoextra (version 1.0.7. [71]).

To optimize the number of clusters, we used three methods. The methods were sum
of squared errors (SSE), goodness of clustering measure or the “gap” statistic, and minimal
number of clusters’ members described below.

We first studied changes in the SSE with an increasing number of clusters. The SSE
is defined as the sum of the squared distance between each member of a cluster and its
cluster centroid. The formula for SSE is:

SSE = ∑(yi − y)2 (6)

where yi represents the observed value of a point, y represents the predicted value of the
cluster centroïd, and Σ represents the sum over all data points.

The SSE quantifies the overall magnitude of the residuals or errors in the clustering
model. Thus, SSE can be considered as an overall measure of error. In general, as the
number of clusters increases, SSE should decrease because clusters are, by definition,
smaller. Therefore, studying changes in SSE with increasing numbers of clusters resembles
a trade-off approach between reducing errors while keeping a reasonable number of clusters.
Figure S1 displays the SEE vs. the number of clusters. The SSE exhibited a sharp decrease
until 6 clusters and stabilized between 6 and 7 clusters suggesting that increasing the
number of clusters to >6 does not have a substantial impact on total SSE.

The second method for choosing the number of clusters k consisted of calculating a
goodness of clustering measure, i.e., the “gap” statistic [72]. The gap statistic compares the
total variation within the cluster for different values of k with their expected values under a
zero-reference distribution of the data. For a detailed description of this method, we refer
to [72]. The estimate of the optimal number of clusters is the value that maximizes the gap
statistic. This value indicates a clustering structure, being the farthest from the random and
uniform distributions of points. We performed this calculation with the clusGap function
of the R cluster package [68] by testing a number of clusters ranging from 2 to 10. Figure S2
shows that applying the gap statistic resulted in an optimal cluster number of 6, similar to
the SSE method.

Finally, we wanted to have a minimum number of individuals (i.e., STcells) in each
cluster to be able to run robust statistics. In particular, we aimed to avoid clusters with only
very few STcells to prevent a small number of STcells with similar SCCs from generating
random clusters. Figure S3 displays the number of STcells by cluster with the increasing
number of clusters.

When the number of clusters was >7, all clustering resulted in one cluster containing
only one STcell. From 6 clusters to 7 clusters, the number of clusters having rather few
STcells (≤40) doubled from 2 to 4, and represented 17.5 and 34.5% of the overall STcells’
population, respectively. In addition, using 7 clusters led to one cluster having less than
30 STcells.

Overall, the results from the 3 tests performed led to similar results. The optimal
number of clusters was 6, as shown in Figures S1–S3 and their detailed captions.

We projected the clusters onto the STcells. We also assigned clusters to each observation
point, which made it possible to analyze their relationships with quantitative data. For each
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cluster, we plotted box plots of SCC frequency, selected quantitative raw data, indicators’
raw values, and indicator classes.

3. Results
3.1. Observed Soil Compactness Classes

Figure 2 displays the distribution of all SCCs’ topsoil observations in the ST triangle.
The distributions of SCCs 1 and 2 were strongly linked to the density of all observation
points. These distributions were rather similar to other distributions found for all depths
at national or subnational scales in mainland France (e.g., [73]), though they were denser
where both low clay contents (from about 10 to 25%) and high silt contents (from about
40 up to 80%) were present. A noticeable difference between SCC-1 and SCC-2 was the
highest density of points with clay >30% for SCC-2 than for SCC-1. The SCC-2 distribution
exhibited a high density of points located very close to the silt-to-clay side of the ST triangle.
For SCC-3, the effect of point density began to fade and became almost null for SSC-4. Note
also that for SSC-4 only two points were observed for the nearly pure sand ST class.
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Figure 3 displays the frequency of each SCC within the STcells, projected in the
ST triangle.

The SCC-1 frequency exhibited gradients linked to ST. High SCC-1 densities were
mainly observed for the sandiest STcells, showing that non-compact topsoils dominated
in these ST. For other STcells, a rather fuzzy gradient linked to clay content was observed
from low (less than 0.1) to medium (about 0.5) SCC-1 frequencies. A small cluster of rather
low SCC-1 frequencies was observed for the few siltiest STcells. Gradients were less clear
for SCC-2 density, though the rather low densities close to the sand corner were consistent
with SCC-1 results. Rather high SCC-2 frequencies (0.5 to 0.7) dominated for the few siltiest
ST. Some high SCC-2 frequencies were also observed for the STcells, which were the closest
to the silt-to-clay side of the ST triangle, having clay contents ranging from 35 to 50%
(mainly pure silty clays with almost no sand). For SCC-3 a fuzzy gradient was observed,
with a scattering roughly looking like a “mirror” of the SCC-1 plot. Finally, the SCC-4
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frequency exhibited zero or less than 0.1 values nearly everywhere. The STCells with SCC-4
observations were scarce, which was consistent with the low number of SCC-4 observations
(cf. Table 1). They were evenly scattered in the triangle.
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3.2. Observed Compactness vs. Indicators of Compactness and Soil Structural Quality

In this section, we test if some commonly used indicators of structural quality/soil
strength are related to the observed SCCs. Our aim is to explore to which extent the infor-
mation carried out by these indicators and by the in situ SCC observations are consistent.

3.2.1. Ordered Qualitative Classes Based on Quantitative Threshold Values

Figure 4 shows the relative proportion of six ordered qualitative indicators of soil
structural quality/soil strength according to the four observed SCCs. Note that the number
of observations is highly diverse, as it depends on the availability of attributes used to
calculate the indicators, i.e., in decreasing order, clay and silt content, SOC, and BD (see
Table 1).

As explained in Sections SOC/Clay index and SOC/SOCexp index, two indicators
(SOC/SOCexp and SOC/Clay) were calculated using SOC and clay. The “very good”
class proportion of both indicators decreased from SCC-1 to SCC-4, while the “degraded”
class proportion increased concomitantly. The SOC/Clay index systematically indicated
an increasing trend of dominant proportions of degraded soils from SCC-1 to SCC-4.
These degraded soil proportions were always higher than the degraded soil proportions
calculated using the SOC/SOCexp index. Almost all the observations classified as very
compact (SCC-4) were also classified as degraded by the SOC/Clay indicator.

The PD and SCD indicators gave rather consistent results for the most favorable
predictions (PDClass1 vs. SCDClasses 1 and 2). However, the results of PD and SCD were
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often not consistent with on-field observations of SCCs and even sometimes contradictory
to SCC (see in particular SCC-3).
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The BDr1 classes exhibited rather erratic relative proportions with increasingly com-
pact SCC observations, especially for BDr1-Class1 and 3. In addition, SCC-4 observations
exhibited BDr1 class proportions that were inconsistent with the highest compactness class.
On the contrary, BDr2 class relative proportions showed changes that were consistent
with an increase in compactness: from SCC-1 to SCC-4, we observed a regular increase
in BDr2-Class3 proportion (rooting highly restricted) together with a regular decrease
in BDr2-Class1 (rooting not restricted), whereas the BDr2-Class2 proportion remained
nearly constant.

3.2.2. Soil Compactness Classes and Quantitative Soil Properties Values and Ratios

In this section, we present some selected box plots of quantitative soil properties
values and ratios according to SCCs. Figure 5 displays box plots of raw data (SOC, CEC,
CaCO3, pH) content, and of several properties related to relative SOC and clay proportions
(COC, NCOC, SOC/Clay, SOC/SOCexp).

All box plots showed a high variability and some high outlier values, except for
pH. The SOC content progressively decreased from SCC-1 to SCC-4. The median and
interquartile range of CEC increased from SCC-1 to SCC-4. This last result is consistent
with the different distributions of SCC observations in the ST triangle from SCC-1 to SCC-4
(see Figure 1). The median value of CaCO3 was close to zero, though very slightly positive
for SCC-3 and SCC-4. Upper quartiles of CaCO3 were rather similar for all SCCs. Therefore,
at a first look, CaCO3 appeared not relevant to discriminating against SCCs. Conversely,
pH slightly increased with increasing compactness. The COC values slightly decreased
from SCC-2 to SCC-4, whereas NCOC median values were all null, and even the upper
quartile values were equal to zero for SCC-2, -3 and -4. Nevertheless, SCC-1 exhibited a
substantially higher proportion of positive NCOC values, as shown by the upper quartiles.
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These larger values of NCOC were consistent with the dominant sandy STcells observed
for SCC-1 in Figure 3 (Section 3.1). Both SOC/SOCexp and SOC/Clay decreased with
increasing observed compactness. Note, however, that from SCC-1 to SCC-3, SOC/Clay
exhibited very high upper quartile and outlier values, when compared to medians. Overall,
very low values of SOC/Clay dominated for most of the SCCs.
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3.3. Clustering
3.3.1. Visualization of Clusters in the Texture Triangle and in the PCA Dimensions

Figure 6 displays the projection of the STcell clusters into the ST triangle and the
number of SCC observation points by cluster. Cluster 3 had more SCC observations (about
5600) than the others. Conversely, cluster 5 had much fewer SCC observations (about 900),
cluster 6 being the least populated (about 500 observations). The other clusters (1, 3 and 4)
had a very similar number of observations, close to 2000.

The clusters exhibited rather fuzzy, yet striking, distributions of locations in the ST.
Cluster 1 dominated in the sandiest parts of the ST triangle, cluster 3 showed a rather
compact geometry mainly located in the denser SCC observations area shown in Figure 1
(Section 2.2.2) and Figure 2 (Section 3.1), whereas cluster 2 was more clayey and cluster
6 was mainly located in heavy clay and clay ST. Cluster 4 had a scattered distribution.
Cluster 5, though rather scattered, showed a substantial number of STcells very close
to the clay-to-silt side of the ST triangle. Figure 7 displays selected cluster factor maps
produced from the hierarchical clustering-based PCA. All together, the three first principal
dimensions explained 93.6% of the inertia.

On the dimension 1 vs. dimension 2 plan (Figure 7a), clusters 1 and 6 were clearly
separated, similar to STcell cluster projections observed in Figure 6a whereas other clusters
more or less overlapped with each other. Only cluster 2 intersected with all other clusters.
Note that cluster 2 exhibited a large and rounded shape and was centered close to (0; 0).
Cluster 3 was the most compact. On the dimension 2 vs. dimension 3 plan (Figure 7b),
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cluster 1 was separated from clusters 4, 5 and 6, underlining its particularity. Similarly,
cluster 5 was distinct from clusters 1, 2, and 3. Clusters 2 and 3 intersected with all other
clusters, except for cluster 5. However, the intersection between clusters 3 and 6 was very
small and contained only one STcell. Interestingly, this latter STcell was the only one in
the very small intersection resulting from the overlap of clusters 2, 3, 4 and 6. Cluster 3
exhibited a large and rounded shape and was centered rather close to (0; 0).
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If we consider now both plans (i.e., three dimensions), cluster 4 is the only cluster
which intersected all dimensions except dimension 1, which is consistent with its scattering
in the ST triangle.

3.3.2. Cluster and Soil Compactness Class Frequencies

Figure 8 displays the frequency of observed SCCs of the six clusters. Cluster 1 showed
a regular and strong decrease in SCC frequency from SCC-1 to SCC-4. Overall, this cluster
had the largest frequency of non-compact values (SCC-1) and included almost no very
compact observations (SCC-4). Cluster 2 exhibited rather similar frequencies for SCC-1, 2
and 3, and a very small proportion of SCC-4. Cluster 3 exhibited high and nearly equal
frequencies of the two less compact classes (SCC-1 and SCC-2) whereas SCC-3 was less
observed, together with a very small frequency of SCC-4. Cluster 4 was dominated by
slightly compact observations (median = 50% of SCC-2), then followed by SCC-1 and SCC-2
(medians around 25%). Though the median value for SCC-4 frequency was close to zero,
cluster 4 exhibited the highest first quartile for SSC-4 (very compact). Cluster 5 had the
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highest frequency of SCC-2, which largely dominated. Finally, cluster 6 exhibited a very
different behavior, where SCC-2 and SCC-3 were largely dominant. Note also that, among
all clusters, cluster 6 had the highest SCC-3 frequency (compact), and the lowest SCC-1.
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3.3.3. Clusters and Ordered Class Indicators of Soil Structural Quality, Soil Compactness or
Soil Strength

Figure 9 displays the relative proportion of six ordered qualitative indicators of soil
structural quality, soil compactness or soil strength, according to the six clusters described
in Section 3.3.1. The SOC/SOCexp class distribution was nearly the same for all the clusters,
except cluster 5. The latter cluster exhibited a substantially higher percentage of degraded
and moderate classes, whereas other clusters had very similar and equilibrated populations
among SOC/SOCexp classes.
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The SOC/Clay class frequencies showed a much larger variability among clusters
(Figure 9b). They exhibited a large percentage of soils classified as degraded (nearly 90% for
cluster 6). Cluster 1 had the highest proportion of “very good” and “good” index, whereas
cluster 6, 5 and 2 had the largest percentage of “degraded”. From cluster 1 to 4, the SCD
index (Figure 9c) showed rather slight variations whereas SCDClass6 exhibited very low
and rather high values for cluster 5 and 6, respectively. Though much less contrasted, the
distribution of PD classes (Figure 9d) was rather consistent with SOC/Clay for clusters 2
and 6. Finally, BDr1 and BDr2 (Figure 9e,f) gave rather inconsistent results, though cluster
6 remained the highest in terms of worst class frequency and BDr1-Class1 frequency could
be seen as a good criterion to discriminate against some categories of clusters.

3.3.4. Cluster and Quantitative Soil Variables’ Relationships

We explored quantitative relationships between clusters and some soil properties. They
are available in the form of box plots in the Supplementary Material (Figures S4 and S5). SOC,
SOC/SOCexp, COC, BD, Fine silt, and C/N did not give convincing results. Interesting
contrasted values or gradients among clusters were found with particle-size fractions,
pH, CaCO3, SOC/Clay, CEC, NCOC and some BDr threshold values. Figure 10 displays
selected box plots of these properties per cluster.
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As expected from Figure 6 (Section 3.3.1), the clusters exhibited noticeable differences
in clay, silt and sand distributions (Figure 10a–c). Substantial amounts of NCOC were likely
and partly linked to low clay contents in clusters 1 and 3 (Figure 10d). Among clusters,
the CaCO3 box plots were rather contrasted (Figure 10e), whereas pH box plots exhibited
smaller differences (Figure 10f).

4. Discussion
4.1. Consistency of the Results and Main Outputs

In this article, we show that utilizing very simple information gathered in the field
supports clustering of various topsoil responses to compaction stress. These clusters are
interpretable when compared to other soil properties and indicators. This attempt could
have been viewed as rather risky, considering that an inherent and large variability in
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SCC classification should come from the different soil surveyors. As the SCCs do not
come from physical standard devices and measurements, they are highly dependent on
the observer’s physical strength and on the shape and mechanical properties of the knife
used. However, all soil surveyors were trained with similar standards and had solid
experience in the field. Consequently, we believe that, regardless of individual strength
and differences in the tools used, the field surveyors succeeded in forging an incredibly
consistent description of soil morphology. The SCCs appeared to be consistent with some
indicators of soil compaction and soil structural quality. Though they are conceptually
different, SOC/Clay and SOC/SOCexp exhibited consistent orderings with SCCs. However,
very low values of SOC/Clay dominated for most of the SCCs, either suggesting that the
SOC/Clay statistical distributions and the observed SCCs were inconsistent, or that the
SOC/Clay indicator of structure is biased, as suggested by Poeplau and Don [34], or should
be adapted more locally, as suggested by Rabot et al. [35]. If we consider the SCCs as the
“truth”, the SOC/Clay indicator resulted in much more “pessimistic” predictions than
SOC/SOCexp.

The SCC gradients within the ST triangle were more or less expected, confirming the
predominant role of ST in inherent soil susceptibility to compaction. However, the evenly
scattered SCC-4 points in the triangle suggest that extreme soil compactness resulted from
factors other than ST alone (e.g., extreme loads, compaction under specific soil moisture
conditions).

We aimed to capture several possible soil responses to compaction susceptibility, using
a single observation per each combination of location and time. Therefore, we hypoth-
esized that ST was one of the major controlling factors of soil behavior to compaction
susceptibility. Indeed, a basic and strong assumption that we made to build STcells is that
the SCC statistical distribution for topsoil at least partly depends on ST. This assumption
seems reasonable if we consider that a large expected variability in the sizes of particles
in a soil allows a priori optimization of their perfect stacking and reduced porosity (see
the pioneering work from Hénin et al. [18]). It is also consistent with the fact that certain
soil particles, in particular clay minerals, have particular rheological properties (plasticity,
shrinkage-swelling, etc.). This enabled us to gather enough information to calculate distri-
butions of SCCs among STcells and to run the clustering according to these distributions.
The distribution of SCCs by ST cells in the ST triangle confirmed our initial hypothesis,
thus allowing for partial interpretation of the clusters.

Cluster 1 corresponds to sandy soils that are the least sensitive to compaction. Cluster
2 is mainly composed of silty clays, which can reach rather high compactness states, but
they are reversible by tillage, climate, and/or by favorable pH for biological activity. Cluster
4 still remains to be explored and is not correlated to soil texture; we still need further
interpretation of this cluster. Cluster 5 is mainly characterized by large numbers of fine but
not deformable particles (silt). As particles are fine, the effect of compaction may lead to
decreases in soil microporosity. However, the dominant SCC of cluster 5 is class 2 (slightly
compact), indicating that this cluster does not often reach very high compactness. Cluster 6
is clearly linked to some clayey soils that can reach high levels of compactness. Cluster 3 is
more challenging to interpret.

4.2. Comparison with Other Studies

To our knowledge, such a study using a large number of field observations has
almost never been conducted at the national scale. The only attempt was made by Bondi
et al. [42], who used machine learning to predict soil BD from “visual parameters” in
Ireland. Briefly, they selected eleven descriptors, which they considered the most important
for the qualitative assessment of soil structure. Each descriptor was detailed and recorded
based on a set of predefined categories. They ran a decision tree-learning algorithm, which
allowed discrimination among three BD ranges. They also provided a linear equation
model, which predicted the numerical value of soil BD. A noticeable difference between the
study of Bondi et al. and our study is that they aimed to predict a state of compactness, not
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a behavior or response to compaction. In addition, they considered raw BD as a suitable
estimator of compactness, which is perhaps an acceptable assumption in Ireland, but is
far from being generally accepted elsewhere. Using BD alone may indeed not be relevant
for other conditions. Păltineanu et al. [74] compared BD, PD and SCD in a set of about
400 samples taken from a large spectrum of soils in Romania. Their aim was to test if their
interpretations lead to similar results in characterizing soil compaction. They suggested
that the soil physical state can be synthetically described by BD, PD and SCD. A highly
significant correlation expressed by a curvilinear regression equation was found between
SCD and PD. However, they did not use field observations as we did in our study.

In a systematic review and meta-analysis, Franco et al. [36] compiled 158 observations
from 31 visual soil assessment studies around the world and classified samples into five
broad ST classes. They concluded that higher structure quality scores were observed in
clayey/silty soils compared to sandy soils, regardless of climate zone. Importantly, this
meta-analysis was not able to detect differences induced by soil management and cropping
systems. Nevertheless, these authors suggested that “the visual assessment of soil structure
(VESS) is an on-farm, practical and reliable tool for evaluating the structural quality of
soils globally”.

Indeed, most national and continental-scale studies on compaction used measurements
and rather simple indicators such as PD, SCD, BDr1 and BDr2, thresholds of porosity,
and/or PTFs or pedo-transfer rules to derive them (e.g., [11,12,75–77]), or use models that
require many properties that are most often derived from PTFs (e.g., [5,78–81]) rather than
measured or in situ observed. Though an interpretation of indicator values is subject to
many precautions, this result suggests that SOC and Clay relationships may partly help
to discriminate some clusters. Finally, except for SOC/SOCexp, all indicators were able to
discriminate at least one cluster from the others; however, their threshold values did not
seem to reflect reality.

We explored to which extent the information contained in a series of indicators and
by the in situ SCC observations were consistent. We showed both some consistencies
and inconsistencies; we also demonstrated that some indicators were sensitive but did
not reflect a plausible reality of soil compactness. Such an assessment might be seen as
considering two sides of the same coin. Do the indicator values afford the confidence that
we may have on using SCC information to characterize the soil mechanical behavior and
resilience to compaction? Or do the large amount of SCC data enable us to estimate the
robustness and generality of indicators? Though it is not an easy task with the data that we
have, we tried to look at these two sides in a plausible way.

From a practical perspective, the clusters that we identified exhibited various suscepti-
bilities to soil compaction and some of them are clearly related to some broadly available
soil properties. Therefore, we believe that this kind of clustering and the relationships that
we found between clusters and some inherent soil properties will be useful for practitioners
and advisers to formulate recommendations on soil management practices.

4.3. Limitations
4.3.1. Basic Assumption and Limiting Number of On-Field Information

We used only one test for in situ compactness assessment. Strictly speaking, the data
we used can thus be considered as proxies of a test of penetration resistance [40,41,82]
rather than a test of compaction. However, we choose this on-field test because of its
simplicity and the numerous available information. Besides, Canarache [83] compared
several factors and indices regarding compactness of agricultural soils and found very good
relationships between various compactness indices and resistance to penetration at field
capacity (R2 ranging 0.92–0.99) for a large range of soil clay content (0–70%). In addition,
Van Orsouw et al. [82] recently assessed soil compactness using penetrologgers that measure
the penetration resistance of the soil. Though they also stressed that penetration resistance
“is therefore a measure of soil strength rather than the density”, they provided a list of
33 references of previous articles using penetration resistance threshold values to evaluate
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the state of soil compactness. We could have added other tests that are routinely performed
to assess compactness. However, adding other tests would certainly have reduced the
number of observations gathering all tests together. It might also make the interpretation
of the results overly complex. Though there is an interest in adding more information
for exploring data-based knowledge discovery tools mixing many field indicators, we
think that the use of a single indicator already demonstrates the interest in mining such
qualitative observations. Therefore, we reached our main goal of an enhanced use of
qualitative field observations conducted in the framework of conventional soil surveys, to
provide interesting insights and information related to soil response to compaction at a
broad scale.

4.3.2. Clusters’ Size and Interpretation

Cluster 3 largely dominated the others, whereas cluster 6 was rather small. This has
statistical implications for the robustness of our results. One can easily understand that
one STcell and/or cluster can contain points having different behaviors, as shown by the
variability expressed in cluster box plots. More importantly, it calls into question the real
occurrence of some clusters. Is cluster 3 simply what remains once extreme situations
have been identified and removed? Does it actually reflect a particular behavior or is it
a mixture of behaviors that could potentially be subdivided or stratified? We have not
answered these questions yet. Different questions arise for other clusters. For example,
for cluster 4, the absence of a relationship with ST still questions the factors controlling its
behavior. Though cluster 6 is overall the most clayey cluster, it is spread among other clay
STcells belonging to other clusters, therefore further work is needed to better interpret and
characterize clusters 4 and 6.

4.4. Possible Improvements, Perspectives and Prospects
4.4.1. Moving to Deeper Horizons

Subsoil compaction is a severe problem mainly due to its persistence and its effects
may be even permanent [84–86]. Moreover, soil compaction has been a rising concern
since the adoption of reduced tillage and/or no-till agricultural practices (e.g., [86–91]).
Therefore, it would be worth testing our approach for subsoils. One may even wonder why
we did not begin by exploring subsoil compaction. The main reason is the discrepancy that
may exist between soil surveyors, who mainly sample by pedogenetic horizons (except for
the tilled layers), and agronomists or specialists of compaction who systematically take into
account differences in soil strength and agricultural induced compaction to describe and
sample soil layers. A careful exploration of the database is thus necessary before deciding
if it is worth investigating this topic.

4.4.2. Considering Compaction Impacts Using a Loss-Function Approach

We classified clusters without giving a weight to the consequences of misclassification.
From a practical point of view, we could have used weights in order to take into account
the losses due to misclassification. Classifying a soil as rather resilient to compaction when
it is not may have serious consequences. Indeed, this misclassification may induce inappro-
priate decisions for agricultural practices and loading. In other words, we should relate the
misclassification errors to cost benefit and/or risk assessment approaches. A loss-function
approach could be used to differentiate different kinds of errors and their consequences
on various soil functions or services [82,92], such as infiltration, crop production, erosion,
etc. Adopting this approach would require some in-depth studies, which may come from
long-term experiments, information on yields, or from expert judgment. However, many
of these loss-function approaches will also require additional variables, such as relief and
climate for erosion, soil capacity and condition for yields, and deep soil saturated water
conductivity for infiltration.
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4.4.3. Digital Soil Mapping of Clusters

Digital Soil Mapping (DSM, [93]) of soil behavior to compaction could be a way to
(i) further interpret clusters (from a soil geography perspective), (ii) discover patterns of
clusters that may provide additional explanation on their behaviors to compaction, and
(iii) check if the clusters are operational for decision making and at what scale. This will
necessitate identification of relevant covariates. These selected covariates could be particle-
size distribution fractions, some indicators of sensitivity to compaction, and potentially
relevant covariates that were not used in this study (e.g., climate, relief, soil parent material).
This is tempting and an exciting challenge as it could bring both new knowledge on
controlling factors of soil behavior and spatial predictions that can improve soil connectivity
with stakeholders and farmers [94].

5. Conclusions

Incorporating cost-effective data is one of the ways forward to improve the number
of observations and the relevance of a soil behavior assessment capturing complex soil
responses to various pressures. In this article, we used about 10,000 field observations of
topsoil compactness classes (SCCs) collected by qualified soil surveyors in mainland France.
We demonstrated that mining numerous in situ observations conducted in the framework
of conventional soil surveys provides interesting insights into inherent soil behavior to
compaction at a broad-scale. This novel approach has been seldom explored and paves the
way to research exploring the potential of field observations to provide new insights into
soil function and responses to management practices.

The main outputs of this study are the following.

1. The SCC field observations were interpretable when compared to some compactness
quantities or sensitivity to compaction indicators derived from analytical measurements.

2. Conversely, some quantitative indicators did not capture large variations in SCCs and/or
over- or underestimated topsoil compactness or topsoil sensitivity to compaction.

3. A clustering based on these SCCs provided useful insights into specific behaviors to
soil compaction.

4. Though soil texture and SOC affected some clusters of topsoil behavior to compaction,
other controlling factors still remain to be elucidated. This is a limitation of the present
study and we believe that adding a DSM approach may help to unravel other factors
controlling soil compaction.

5. Approaches that include rescuing and gathering observations that are routinely con-
ducted by field soil surveyors may offer a great potential for assessing and classifying
complex soil properties and behaviors.

6. This classification of complex soil behavior to compaction can be used by soil practi-
tioners and advisers to adapt practical recommendations according to inherent soil
susceptibility to compaction.

7. Increasing the number of field indicators to classify various soil behaviors, and con-
ducting digital soil mapping and assessment studies based on such field observations
and data-driven approaches would further increase the utility of existing data.

Indeed, the encouraging results that we obtained using only one field indicator advo-
cate for testing other ones and for exploring data-based knowledge discovery tools mixing
many field indicators together- or without- quantitative measurements of soil properties.
Such an approach is worth testing and we plan to tackle this question in the near future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land13070909/s1. Figure S1. Plot of sum of squared errors (SSE)
as a function of the number of clusters. Figure S2. Plot of the optimal number of clusters by gap
statistic method. Figure S3. Number of STcells per cluster depending on the number of clusters
created. Figure S4. Box plots of different topsoil properties per cluster. Figure S5. Box plots of
different topsoil properties per cluster (continue).
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