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Peanut is a worldwide oilseed crop and the need to assess germplasm in a non-destructive manner is important for
seed nutritional breeding. In this study, Near Infrared Spectroscopy (NIRS) was applied to rapidly assess germ-
plasm variability from whole seed of 699 samples, field-collected and assembled in four genetic and environment-
based sets: one set of 300 varieties of a core-collection and three sets of 133 genotypes of an interspecific pop-
ulation, evaluated in three environments in a large spatial scale of two countries, Mbalmayo and Bafia in
Cameroon and Nioro in Senegal, under rainfed conditions. NIR elemental spectra were gathered on six subsets of
seeds of each sample, after three rotation scans, with a spectral resolution of 16 cm-1 over the spectral range of
867 nm to 2530 nm. Spectra were then processed by principal component analysis (PCA) coupled with Partial
least squares-discriminant analysis (PLS-DA). As results, a huge variability was found between varieties and ge-
notypes for all NIR wavelength within and between environments. The magnitude of genetic variation was
particularly observed at 11 relevant wavelengths such as 1723 nm, usually related to oil content and fatty acid
composition. PCA yielded the most chemical attributes in three significant PCs (i.e., eigenvalues >10), which
together captured 93% of the total variation, revealing genetic and environment structure of varieties and ge-
notypes into four clusters, corresponding to the four samples sets. The pattern of genetic variability of the
interspecific population covers, remarkably half of spectrum of the core-collection, turning out to be the largest.
Interestingly, a PLS-DA model was developed and a strong accuracy of 99.6% was achieved for the four sets,
aiming to classify each seed sample according to environment origin. The confusion matrix achieved for the two
sets of Bafia and Nioro showed 100% of instances classified correctly with 100% at both sensitivity and speci-
ficity, confirming that their seed quality was different from each other and all other samples. Overall, NIRS
chemometrics is useful to assess and distinguish seeds from different environments and highlights the value of the
interspecific population and core-collection, as a source of nutritional diversity, to support the breeding efforts.
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J.R. Nguepjop).

m 7 March 2024; Accepted 12 March 2024

Chinese Academy of Agriculture Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:joel.romaric.nguepjop@cirad.fr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ocsci.2024.03.003&domain=pdf
www.sciencedirect.com/science/journal/20962428
http://www.keaipublishing.com/en/journals/oil-crop-science
https://doi.org/10.1016/j.ocsci.2024.03.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ocsci.2024.03.003
https://doi.org/10.1016/j.ocsci.2024.03.003


Table 1
Characteristics of the field environments.

Trial
Environments

Bafia Mbalmayo Nioro
Country Cameroon Cameroon Senegal
Location Bafia Mbalmayo Nioro
Peanut
cultivation

þþþþ þþþ þþþþþ

Ecology type Tropical savanna Tropical forest Sahelian
Climate type Sudano-guinean

equatorial
Humid-forest
bimodal rainfall

Sahelian semi-
humid

Temperature
(�C)

25.1 26.5 30.0

Rainfall (mm) 1500 2403 758
Soil type Yellow vertisol Ocher vertisol Deck-Dior (leached

ferruginous)
Previous crop Maize Maize Millet
Experiment
period

April–July April–July July–October
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1. Introduction

Peanut is an annual oilseed crop cultivated globally on 36.18 million
hectares of area in the world, yielding 71.68 million metric tons of pods
in 2020 (FAOSTAT, 2020). As a functional food, peanut seed contains
34% – 56% oil, 22% – 30% protein, 10% – 25% carbohydrates, and
0.05% – 1% of various secondary metabolites, beneficial to human
health, such as vitamin E, K and B complex, folic acid, niacin, and min-
erals (Ca, P, Mg, Zn, and Fe) (Desmae et al., 2019; Harch et al., 1995;
Janila et al., 2013; Parilli-Moser et al., 2022). The main production
constraints of the crop include drought, pests, diseases, and environ-
mental changes. The oil content of seeds, shelf life, aroma, flavor and
cooking quality are all affected by these constraints. Consequently, seed
quality traits are targets in genetic breeding (Nawade et al., 2018; Parmar
et al., 2022; Tang et al., 2022).

Peanut (Arachis hypogaea L.) is an autogamous species, allotetraploid
(AABB genome; 2n ¼ 4x ¼ 40) with narrow genetic base (Burow et al.,
2009; Simpson et al., 2001). The narrow genetic diversity coupled with
low utilization of genetic resources are the major factors limiting peanut
breeding. Thus, interspecific hybridization is currently used as a realistic
strategy for introgressing prospective diversity from wild species into the
cultivated gene pool (Favero et al., 2006; Fonceka et al., 2012a, 2012b;
Mallikarjuna et al., 2011b; Tossim et al., 2020). Likewise, genetic di-
versity assessment and the detection of promising quality-related geno-
types are fundamental to germplasm utilization and management in
breeding strategies to support food security. To facilitate the investiga-
tion of large germplasm, it is reasonable to begin by examining subsets of
germplasm that embody appropriate diversity and of manageable size,
such as core collections or interspecific populations derived from wild �
elite crosses, using appropriate characterization procedures.

Although significant efforts have been devoted to characterizing
germplasm for simple traits and for the most important agronomic traits
(yield and resistance to pests and diseases) (Fan et al., 2020; Kumari
et al., 2014; Mallikarjuna et al., 2011a; Upadhyaya, 2005; Upadhyaya
et al., 2011), less is known about quality traits across environments
(Grosso et al., 2000; Wang et al., 2023). This is mainly due to the fact that
these traits are quantitative and multigenic, with low heritability, and
strong genotype environment interactions (Grosso et al., 1994; Isleib
et al., 2008). Moreover, the phenotyping of these traits, regularly base on
chemical survey, is expensive in terms of both direct monetary input and
human labor, time-consuming, complex, and irreversibly destructive.
Another main factor limiting chemical studies are the difficulties to assess
many samples, each requiring many seeds (Davis et al., 2021; Nawade
et al., 2018). Efforts to improve the knowledges of seed attributes might
be supported by rapid and non-destructive tools. These include modified
refractive index, capacitance sensor (Kandala et al., 2008), hyperspectral
imaging (Huang et al., 2014; Rabanera et al., 2021) and near infrared
(NIR) spectroscopy (Davis et al., 2021; Govindarajan et al., 2009; Tao
et al., 2019; Wang et al., 2022). Among these, NIR-based methods are
rapid, make it possible to analyze large number of samples. Moreover,
some scholars have already applied machine learning as promising sta-
tistical methods to assist humans in the modeling and analysis of complex
spectral data (Fordellone et al., 2019; Song et al., 2018) in many research
fields including seed quality detection, genotyping of cultivars (Panero
et al., 2022), varieties identification (Panero et al., 2018, 2022; Wang
and Song, 2023; Xu et al., 2023) and classification (Sampaio et al., 2021;
Singh et al., 2023; Tian et al., 2023). Some works previously described
the feasibility of near infrared spectrometers to achieve some quick
prediction of various peanut chemical compounds (proximal components
and secondary metabolites) (Bilal et al., 2020; Li et al., 2019; Liu et al.,
2022; Yu et al., 2020). In this paper, we focused on the non-destructive
approach by NIR spectroscopy to investigate the environment and the
genetic contribution of germplasm variability from intact-peanut-seed
spectra without chemical references.

In this study, NIR spectroscopy was applied and coupled with che-
mometrics to assess germplasm variability from peanut intact-seed of a
133
core-collection and of an interspecific population field-evaluated in three
different environments. The objectives were specifically to i) perform a
rapid NIRmeasurement on seeds and check the quality of spectra data, ii)
assess genetic variation of varieties and genotypes from seed spectra, iii)
study the pattern of genetic variability of the interspecific population in
comparison to the core-collection, iv) potentially discriminate geneti-
cally related interspecific genotypes within and between environments
by developing a classification model using PLS-DA.

2. Materials and methods

2.1. Genetic materials

Two distinct genetic materials were used in this study: an interspecific
advanced backcross QTL (AB-QTL) population of 133 genotypes and a
core collection of 300 cultivars. The AB-QTL population of 133 BC2F4
derivatives was developed from an interspecific cross, using Fleur11 as
recurrent cultivated parent and the wild synthetic tetraploid ‘ISATGR
278-18’ (Nguepjop et al., 2016). The cultivated parent, Fleur 11, is an
elite Spanish-type variety, widely cultivated in West Africa. The wild
parent, ISATGR 278-18 is derived from a cross between A. batizocoi ICG
13160 (GKBSPSc 30,082, PI 468328) and A. duranensis ICG 8138 (GKP
10038, PI 262133) (Mallikarjuna et al., 2011b). The core collection of
300 cultivars was defined based on the knowledge of breeders and on
diversity data from a collection of 1050 accessions (breeding lines and
landraces) held by 10 breeding programs in East, Southern and West
Africa (Conde et al., 2023). The detailed information of the 300 varieties
of the core-collection and the 133 genotypes of the population are pre-
sented in the Supplementary Tables 1 and 2, respectively.
2.2. Trials environment and field experimental design

Whole seed used were collected from field experiments. Experiments
were conducted in 3 different locations in 2 countries, Mbalmayo and
Bafia in Cameroon and Nioro in Senegal, under rainfall conditions in
2021. The 3 locations were chosen to meet environmental differences,
based on different criteria, largely based on ecology (climate and vege-
tation) and tradition of peanut cultivation and crop rotation (Table 1).
Bafia is one of the main areas of peanut production in Cameroon. It is
located in tropical savanna and has yellow vertisol soil (Temga et al.,
2021) and equatorial climate of the Sudano-Guinean type with an
average temperature of 25.1 �C and annual rainfall of 1500 mm. Mbal-
mayo is located in the tropical forest of Cameroon and has ocher vertisol
soil (Temga et al., 2021) with a bimodal humid-forest rainfall climate
with an average temperature of 26.5 �C and rainfall of 2402 mm. Nioro is
located in the South of the Senegalese peanut basin and have Sahelian
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semi-humid ecology with a Deck Dior soil, a leached ferruginous tropical
soil (Bogie et al., 2018), and annual rainfall of 758 mm and average
temperature of 30 �C. The fields at Bafia and Mbalmayo were one-year
fallow land after maize cultivation by farmers and were cleared and
plowed for the study. The previous crop at Nioro was millet. The ex-
periments in Bafia and Mbalmayo were conducted during one of the two
rainy seasons from April–July, while the Nioro experiment was done
during the rainfall season between July and October, at the Research
Station of National Agricultural Research Center.

The same experimental design with common agricultural practices,
from sowing to harvest, were used in each of the 3 environments. Within
each environment, an alpha-lattice design was used with 3 replications,
with 10 elementary plots within blocks. A plot consisted of rows of 3 m
long on which 10 plants of the same genotype were sown with a spacing
of 30 cm between plants on the same row, and 50 cm between two
adjacent rows. The seeds were treated with Granox (captafol 10%,
benomyl 10%, and carbofuran 20%) before planting to protect them
against parasitic attacks and one seed per hill was sown manually at 4 cm
depth. According to usual cultural practice, one hundred and fifty kg/ha
of mineral fertilizer (6-20-10) were added 20 days after sowing.
Throughout the vegetative development, weeds were manually har-
vested. The harvest was done at 95 days after sowing, followed by free-air
drying for one month. At the end of the pod-drying stage, pods of each
plant were separated from haulms, stored and dehulled.

2.3. Whole seed sample preparation

Whole seeds from pods of the three agronomic replicates of each
genotype were bulked into one specific sample, stored in plastic bag, and
labelled according to their respective name and environment. Thus, seeds
of each sample for NIR analysis came from pods of 25–30 harvested
plants of each genotype. From the expected 699 samples, we discarded
21 who had less than 100 seeds, 3 from Bafia, 9 from Mbalmayo and 9
from the core-collection. Finally, a total of 680 samples of seed were
assembled in four genetic- and environment-based sets: one set of the 291
samples from cultivars from Nioro and three sets of the interspecific
genotypes (130 samples for Bafia, 124 samples for Mbalmayo, 135
samples for Nioro, including the 133 genotypes and the CS16 variety and
the cultivated parent Fleur11, both commonly used as check varieties in
Nioro). All sample sealed in hermetic plastic bags were conveyed to the
laboratory and kept at ambient temperature prior to spectra acquisition.

2.4. NIR spectra acquisition

Spectra acquisition was performed to generate a reference database.
Prior to recording spectra, a gold reference was used. Spectra were then
acquired on six subsets of each 680 samples. The six subsets of each
sample were used, as six replicates, to minimize uncertainties due to the
hypothetical heterogeneity of seed. Specifically, seeds of each sample,
were six-fold randomly sampled to provide biological and analytical
replicates, from each other to cover the whole sample. Seeds of each
subset were then loaded in the ring cup with an internal diameter of 5 cm
and the six subsets of each sample were measured in sequence. Spectra of
each of the six subsets were gathered after 3 rotation scans with a spectral
resolution of 16 cm�1 over the spectral range of 3952 cm-1

– 11528 cm�1

(867 nm – 2530 nm), using Tango spectrometer from Bruker. At the end,
each sample was analyzed in six replicates, and the mean spectra were
used for data analyses.

2.5. Statistics and PCA analysis

R software (R Core Team, 2021) with rchemo (Brandolini-Bunlon,
et al., 2023) and rnirs packages (Lesnoff, 2021) were used to visualize
raw spectra and perform data analysis. PCA over the spectral range
selected from 1000 nm to 2500 nm was applied to describe variability
according to the varieties and interspecific genotypes within and
134
between environments. PCA is a multivariate unsupervised statistical
method able to project multivariate data and describe relevant trends in
the analyzed dataset. PCA can also reveal variables with loading that
determine some inherent structure of the data, which can be interpreted
in chemical terms. The reduction of the number of variables is achieved
by making a linear combination of original variables, which yields the
so-called principal components (PC) that are decorrelated with each
other. PCA was conducted on the pretreated spectra. The full whole
spectra have been pre-processed to improve the signal by reducing un-
controlled variations as noise and baseline through Savitsky Golay
(SavGol) and derivative.

Mahalanobis distance was computed after PCA to check the 6 repli-
cates distances for each sample. The Mahalanobis distances were deter-
mined in units of standard deviations from the center (mean) of the
dataset. The 6 replicates were averaged or each sample, and the Maha-
lanobis distances were computed again.

In this study, the following PCA results were considered (i) the score
plot, to visualize the projection of the sample on each PC; and (ii) the
loading plot, to evaluate the influence of wavelength, on each PC. Thus,
PCA allows emphasizing and interpreting variables and all relevant dif-
ferences among genotypes within and between environments.

2.6. Classification using PLS-DA modeling on NIR spectra

PLS-DA was used to classifying varieties and interspecific genotypes
thorough modeling and prediction of genotype-specific spectra, accord-
ing to genetic and environmental origin. Data have been split by Duplex
method (Snee, 1977) into train set (N ¼ 541, 201, 108, 109, 126
respectively for Core population, AB-QTL Bafia, AB-QTL Mbalmayo,
AB-QTL Nioro) and test set (N ¼ 139, 42, 32, 31, 34 respectively for the
previous populations) in each group (to keep the same proportionality).
The train set was used to train the model, while the test set is used to
evaluate its performance. Prior to applying PLS-DA algorithms, the train
set spectra were pre-processed by SavGol filter and derivative. The best
preprocessing was selected according to the error of classification by
cross validation (2 K-fold group repeated 20 times) and the number of
latent values was fixed. Then, these parameters were used to build the
PLS-DA model and applied on test set spectra.

The resulting confusion matrix of each model were further evaluated
to assess the model's performance using the following metrics for each
group and for all.

- Recall (the proportion of samples of a specific class that have been
predicted by the model as belonging to that class; also known as
sensitivity)

RECALL¼ TP
FN þ TP

- Specificity (The number of samples predicted correctly to be in the
negative class out of all the samples in the dataset that actually belong
to the negative class.)

SPECIFICITY ¼ TN
FPþ TN

- Precision (the proportion of correct predictions among all predictions
for a particular class)

PRECISION¼ TP
FP

- Accuracy (the number of samples correctly classified out of all the
samples present in the test set)
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ACCURACY ¼ TPþ TN
TPþ FN þ FPþ TN
- the proportion of false-negatives (FNR)

FNR¼ FN
TPþ FN

- the proportion of false-positives (TNR)

TNR¼ TN
FPþ TN

- the F1-score (the harmonic mean of precision and recall)

F1score¼ 2TP
2TPþ FPþ FN

True Positive (TP) refers to a sample belonging to the positive class
being classified correctly. True Negative (TN) refers to a sample
belonging to the negative class being classified correctly. False Positive
(FP) refers to a sample belonging to the negative class but being classified
wrongly as belonging to the positive class. False Negative (FN) refers to a
sample belonging to the positive class but being classified wrongly as
belonging to the negative class. Model performances were evaluated by
their classification accuracy, which was calculated as the ratio of the
number of correctly classified samples to the total number of samples.
Fig. 1. Plot showing Mahalanobis distance among the six subsets of each sample of fo
is figured from the 4080 spectra (A) for a better MD visualization among the 6 spe
Standard Deviation squared (Brandolini-Bunlon, et al., 2023)).
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3. Results

3.1. Spectra profiles and quality control

From the raw spectra, eleven relevant absorbance peaks were
observed around the wavelengths of 929 nm, 1033 nm, 1465 nm, 1763
nm, 2306 nm, 2350 nm and 2510 nm, with four wide spectral peaks
appearing close to 1210 nm, 1723 nm, 1932 nm and 2140 nm (Fig. S1).
Quality control of spectra was performed to identify atypical spectra and
to check variation among the six subsets of each samples. As results, 2 of
4080 spectra (0.04%), were identified as an outlier (Fig. S1) and were
discarded for analyses. PCA was performed to check the effect of date on
spectra acquisition and no cluster related to date was found (Fig. S2),
indicating that there were stable lab conditions during the 6 days of
spectra acquisition. With few exceptions, the Mahalanobis distance (MD)
among the 6 subsets of each sample was consistent among the 680
samples (Fig. 1). Thus, the spectra graph was presented in Fig. 2 as the
average absorption of each sample from the 6 replicated spectra.

3.2. Genetic variability and environmental impact on intact-seed
composition

The mean absorbance spectra of varieties and interspecific genotypes,
according to their environment are presented in Fig. 2. A huge variation
of absorbance along the spectra was observed among varieties and
interspecific genotypes within and between environments. Four spectra
group, superimposed on each other, was observed for all wavelength
ur populations. Each dot represents one spectrum. MD Details of 40 samples (B)
ctra of each sample (dotted line: distance cutoff - Chi-squared distribution for



Fig. 2. NIR spectra of intact-seed according to genetic and environment origin of samples without treatment (A) and after Stavisky Golay filter with derivative 2 pre-
processing (B). Spectra of varieties of the core collection are labelled in black. Spectra of interspecific AB-QTL genotypes from Bafia, Mbalmayo and Nioro, envi-
ronments are labelled in red, green and blue, respectively.
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from 1000 nm to 2500 nm (Fig. 2 A). Each spectra group corresponds to
each of the four studied sets. The widest spectra group corresponded to
the set of the core collection while the three other ones were each specific
to the three sets of the interspecific population, each from one of the 3
Fig. 3. Plot showing Mahalanobis distance among varieties and interspecific genoty
collection are labelled in black. Interspecific AB-QTL genotypes from Bafia, Mbalm
(dotted line: distance cutoff - Chi-squared distribution for Standard Deviation square
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studied environments, Bafia, Mbalmayo and Nioro (Fig. 2 A). The
absorbance range of interspecific population was highest in Bafia fol-
lowed by Mbalmayo and Nioro, pointing out the effect of environmental
factors on chemical composition of seeds.
pes Each dot on the plot represents a variety or genotype. Varieties of the core
ayo and Nioro, environments are labelled in red, green and blue, respectively
d (Brandolini-Bunlon, et al., 2023)).
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3.3. Pretreatments effects on spectra

Different spectra pretreatments, SNV, Detrend and SavGol were
applied in the raw spectra since spectral measurements can be affected by
many factors leading to interference (light diffusion, scattering, …) with
consequence observed as additive and multiplicative effects on raw
spectra data. As example, the absorbance spectra pre-treated by SavGol
filter with a window width of 15 points and first derivative was shown in
Fig. 2B. As expected, the pretreatments eliminated physical effects due to
seed dimension, surface of seed, etc., with consequences on light diffu-
sion. Thus, from pretreated spectra, a hugeMD variation, from 1 to 8, was
found among varieties and genotypes (Fig. 3). Likewise, a distinct MD
was found between 3 environments with a highest value at Mbalmayo
followed by Bafia and Nioro.

3.4. Principal component analysis

PCA was performed using pretreated spectra after Savitzky-Golay
filter with a window width of 15 points and first derivative. The first 5
PC represent more than 95% of the total variability with the values 60.5,
17.0, 15.5, 3.6 and 1.6, respectively. The PC1/PC2 and PC3/PC4 score
plots are shows in Fig. 5. As expected, these figures show greater vari-
ability in the core collection and less variability in the other groups. The
PC3/PC4 plot allows to distinguish easily the 4 seed lots. These plots
showed that samples from different genetic and environmental origins
are able to be well clustered and that they have great potential to be
correctly identified.

Loading plots showing how each variable correlates with PC are
shown in Fig. 4. The first loading indicates that the regions around 1900
nm and 2150 nm have a higher influence on PC1. Likewise, regions
around 1210 nm, 1720 nm and 2300 nm seemedmore related to PC2. For
PC3, the region around 2400 nm seemed to be more important. PC4 was
more related to 1400 nm, 1800 nm, 1950 nm and 2150 nm regions. The
varieties and interspecific genotypes demonstrating contrasted scores in
the top PCs were recorded (Fig. S3) and could be used further in peanut
breeding programs.
Fig. 4. PCA loading plots for the fourth first PCs showing h
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3.5. Discrimination of genetically related interspecific genotypes among
environments

The score plots illustrated that data could be grouped into four clus-
ters, with overlapping the main clusters at the margin, with some inter-
specific genotypes and varieties superimposed, particularly, at the Nioro
environment-set cluster (Fig. 5). The twomost separated environments in
the plane determined by plot scores were Mbalmayo and Bafia. With few
exceptions, all interspecific genotypes from Mbalmayo exhibited high
positive values at the PC3 compared to the other environments. This
suggests that Mbalmayo environment might positively increases the seed
traits associated with PC3. Finally, the African varieties studied in one
environment added genetic variability to the environmental variability,
resulting in a wide range of differences.
3.6. Classification based on whole seed spectra

A PLS-DA model was developed and the classification results of the
model were shown in Table 2. The classification accuracy on the test set
was 99.6% with correctly classified instances of the 4 samples sets i.e.
African varieties in one environment and the interspecific genotypes
from the 3 environments (Table 2). Interestingly, the confusion matrix
achieved for the two sets, Bafia and Nioro shows 100% of instances
classified correctly with 100% at both sensitivity and specificity. These
two sets did not show incorrect instances, even in the model generated
when all other sets were considered, thus confirming that their seed
composition seemed very different from each other and from those of the
other seed samples. These results showed that NIRS combined with
discrimination analysis based on PLS regression is a simple and efficient
tool for the classification of peanut genotypes, depending on each com-
bination of the genetic and environment origins, which determine plant
nutritional availability.

4. Discussion

The efficiency of NIR spectroscopy, as tool for fast and non-
destructive large germplasm characterization in multi-environment
were later discussed under the umbrella of breeding in intra and inter-
specific context.
ow each variable correlate to each PC for wavelength.



Fig. 5. PCA visualization of core varieties and interspecific genotypes among environments. PCA 2-dimensional score plots of PC2 and PC1 (A) and PC3 and PC4 (B)
using NIRS spectra. Each dot on the plot represents a variety or genotype. Varieties of the core collection are labelled in black. Interspecific AB-QTL genotypes from
Bafia, Mbalmayo and Nioro, environments are labelled in red, green and blue, respectively.

Table 2
Confusionmatrix showing classification performance of PLS-DAmodel applied to test set sample samples (N¼ 139, Class 1: Core, Class 2: AB-QTL Bafia, Class 3:
AB-QTL Mbalmayo, Class 4: AB-QTL Nioro).

Predicted

1 2 3 4 Actual Accuracy Precison Recall F1-score

Actual 1 41 0 0 0 42 0.993 0.976 1.000 0.988
2 0 32 0 0 32 1.000 1.000 1.000 1.000
3 1 0 31 0 31 0.993 1.000 0.969 0.984
4 0 0 0 34 34 1.000 1.000 1.000 1.000
Pred 41 32 31 34 139

Accuracy 0.996
Specificity 0.998
Recall 0.993
Precision 0.993
Proportion of false-negatives 0.007
Proportion of false-positives 0.002
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Peanut is an important oil seed crop and the need to characterize
peanut germplasm is essential as the demand for peanut is increasing
continuously in various end product applications. According to the rapid
and non-destructive attributes of the NIR, a total of 6 days was required
to obtain all spectra of the six subsets of seed of 680 samples. The low
level (0.04%) of outlier spectra on the global data set was considered as a
good basis for analysis. Typical spectra observed in this study were in
accordance with those reported in past studies. From raw spectra, eleven
major peaks were observed. The region around 1210 nm, 1720 nm, 1763
nm, 2306 nm and 2350 nm could be assigned to fatty acids or oil content,
which are generally considered as major components of peanut kernels
(Govindarajan et al., 2009; Sundaram et al., 2009; Tao et al., 2019). The
spectral peak around 2140 nmwould likely result from the absorbance of
proteins. The absorbance peak around 1465 nm might be related to the
O–H overtone bond. The sharp peak around 1932 nm was due to the
strong absorption of water contained in peanut kernels (Govindarajan
et al., 2009; Sundaram et al., 2009; Tao et al., 2019). In the future,
predictive models will be developed for nutritional content of peanut
seeds.

A wide genetic variation was found among varieties and interspecific
genotypes within environments. An environmental effect on seed com-
pounds was highlighted by using the same interspecific population,
thorough 3 environments. The largest variation was found in Bafia, fol-
lowed by Mbalmayo and Nioro. Bafia in savanna andMbalmayo in forest,
grown under yellow and ocher vertisol, respectively in Cameroun while
Nioro in Sahel in Senegal exhibited leached ferruginous soil. The inter-
action between all agroecological scenarios (climate, vegetation and soil)
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and spatial factors create a complex system of environments that affect
peanut plant growth and development, leading to a discrimination
among genotypes within and between environments. As previously re-
ported by chemical studies, seed composition is influenced by environ-
ment but also has a strong genetic component. The variation of oil
composition has been related to temperature (Harris and James, 1969),
planting date (Andersen and Gorbet, 2002), location and soil moisture
(Holaday and Pearson, 1974; Young et al., 1974), photoperiod (Dwivedi
et al., 2000), market grade (Mozingo et al., 1988) and genotype (Gimode
et al., 2020; Harch et al., 1995; Holaday and Pearson, 1974; Norden et al.,
1987; Worthington and Hammons, 1971). However, with multiple
environmental factors mentioned above, it is difficult to decipher factors
underlining variation in this study. Likewise, identifying suitable peanut
genotypes for global ecological zones remains a challenging task due to
the significant genotype variability across environments. Finally, the
African varieties studied in one environment added genetic variability to
the environmental one, resulting in a wide range of variability.

According to the spectra profiles and PCA plot, the genetic pattern of
interspecific population covers, remarkably half of the spectrum of the
core-collection, that turned out to be largest, as we expected. Interest-
ingly, we found specific genetic variation among interspecific genotypes
that was not subtle cover by the core-collection at the common Nioro
environment. Interspecific genotypes with positive value on the main
PCA axis were recorded as promising genotypes for quality traits. These
genotypes could be recommended for further breeding for developing
suitable varieties. In this respect, evaluation of the segregating inter-
specific population could further ease the discovery of QTL and valuable



F.C. Kassie et al. Oil Crop Science 9 (2024) 132–141
wild genes that contribute to improved seed quality.
A PLS-DA model was successful developed from seed spectra to

classify varieties and genotypes according to their genetic and environ-
mental origin. A robust prediction accuracy of 99.6% was achieved. The
confusion matrix achieved for the two environments, Nioro and Bafia
shows 100% of instances classified correctly with 100% at both sensi-
tivity and specificity. This confirm that their seed chemical composition
was very different from each other and from those of the other seed
samples. These results suggested that PLS-DA model could be used to
classify peanut genotypes depending on the combination of the genetic
and environment origins of seeds, which influence plant nutritional
properties. In further studies, the current model would be confronted to
wide others breeding populations in different environment to predict
genetic and environment origin and nutritional content of whole seeds.

Breeding programs need germplasm diversity with extreme values for
any nutritional trait. The magnitude of the genetic influence among va-
rieties and genotypes suggested that nutritional related traits were
amenable to improvement through intra and interspecific breeding.
Nowadays, the availability of NIR data, might accelerate the utilization of
germplasm and genetic diversity both in breeding programs. The
observed genotypic variations and their variability across environments
have deep implications for breeding programs. It seems feasible to ach-
ieve a fruitful goal in breeding on the basis of seed composition, because
both the environmental effects found in the different locations and the
genetic effects of the different varieties and interspecific derivatives in-
fluence the seed chemical compounds. Interestingly, even if the core-
collection turned out to be the widest, a huge, specific and subtle ge-
netic variation was found among interspecific genotypes, that was not
covered by the 300 varieties. This offers the possibility of discovering
new sources of diverse nutritional polymorphisms from wild derivatives.
As early reported, three introgression lines with elevated Oleic/Linoleic
profiles were found using chemical survey of 77 interspecific lines
(Gimode et al., 2020). Interspecific hybridization has recently played an
important role in accessing useful alleles from the wild (Favero et al.,
2006; Mallikarjuna et al., 2011b; Simpson, 2001). We recorded varieties
and interspecific lines with favorable spectra profiles. Thus, those po-
tential chemotypes, with favorable chemical profiles could be further
evaluated and promoted as a valuable genetic material to develop suit-
able varieties. Moreover, the comprehension of the genetic and envi-
ronments determinants of nutritional traits might help in marker-assisted
selection, accelerating the breeding of superior varieties tailored for
specific environments and end-user demands.

5. Conclusion

The present study was carried out to investigate the potential of NIR
coupled with chemometric to rapidly assess peanut germplasm from
whole seed of a core-collection and an interspecific population, field-
evaluated in 3 environments. This paper describes the NIR inputs to
control breeding populations and assess germplasm variability, as we
expected before the genetic studies. A wide variability of seed com-
pounds was observed in the given germplasm, within and between en-
vironments, as revealed by spectra and multivariate analysis. A PLS-DA
model was developed with a strong classification accuracy, aiming to
properly predict each whole seed sample according to environment.
These results indicate that NIR coupled with chemometric seem useful to
accurately assess and distinguish intact-seed within different environ-
ments, that would ease further prediction of intact-seed nutritional
content and utilization of germplasm in breeding programs.
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