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Abstract
Plants interact with each other via a multitude of processes
among which belowground communication facilitated by
specialized metabolites plays an important but overlooked role.
Until now, the exact targets, modes of action, and resulting
phenotypes that these metabolites induce in neighboring plants
have remained largely unknown. Moreover, positive interactions
driven by the release of root exudates are prevalent in both
natural field conditions and controlled laboratory environments.
In particular, intraspecific positive interactions suggest a geno-
typic recognition mechanism in addition to non-self perception in
plant roots. This review concentrates on recent discoveries
regarding how plants interact with one another through below-
ground signals in intra- and interspecific mixtures. Furthermore,
we elaborate on how an enhanced understanding of these in-
teractions can propel the field of agroecology forward.
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Introduction
The phenotypic effects of belowground molecular
communication events between plants were first

observed 2300 years ago by Theophrastus, a student of
Aristotle. Theophrastus noted that neighboring
www.sciencedirect.com
chickpea plants had growth inhibition effects on the
promiscuous focal plant, conditioning the soil in a way
that prevented subsequent cropping [1]. Allelopathy
was therefore defined as a negative phenotypic response
of the focal plant to the presence of specific neighbor

plant species secreting allelochemicals. Since then, the
range of possible phenotypes induced by neighboring
plants on focal plants has expanded significantly,
including positive effects defined as allelobiosis [2].
Positive plant-plant interaction effects encompass
higher land use efficiency and protein content in seeds
[3], decreased disease severity [4] and pesticide use [5],
and higher tolerance to drought stress [6] highlighting
plant-plant interactions as a tool toward a more sus-
tainable agriculture.

These various effects and other plant-plant interaction-
dependent phenotypes, such as changes in root place-
ment in intra- and interspecific interactions, indicate
that multiple mechanisms coexist to detect neighbor
roots. The detection of non-self roots can be defined as
the perception of another organism regardless of the
genetic distance [7], while genotypic recognition, a
subtype of non-self detection, was defined as the
recognition of roots of the same species but not the
same genotype, i.e., intraspecific interaction mediated
by a putative allorecognition mechanism [8]. Another

mechanism claimed as “kin recognition” was also re-
ported [9]. However, kin strictly refers to direct family
relationships (parent-offspring from a unique repro-
duction event) and the evidence supporting the exis-
tence of such a mechanism is limited [10e12], with
most studies focusing on distinguishing genetically close
from genetically distant individuals. Recent studies
provide mechanistic insights into non-self detection in
intra- and interspecific interactions, while the mecha-
nisms underlying genotypic recognition remain un-
known, as emphasized in this review.

Specific allelochemicals produced in above- and below-
ground organs by specialized metabolic pathways are
involved in non-self-induced effects [13]. The role of
above-ground specialized volatile metabolites in plant-
plant interactions is well-documented, including their
molecular mechanisms of action and their roles at the
ecological scale [14,15]. In contrast, the mechanisms
Current Opinion in Plant Biology 2024, 80:102547
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2 Physiology and metabolism 2024
controlling plant-plant interactions through below-
ground signals in root exudates are much less under-
stood, particularly in intraspecific interactions [13].
Recent studies indicate that the mechanisms are
numerous and complex. Root exudates refer to dynamic
and growth condition-specific [16] molecules produced
by the roots and released in the rhizosphere, where their
effects on the microbiome [17] and the turnover of soil

organic matter are well-described [18]. Root exudates
contain a plethora of potentially bioactive molecules
such as soluble and volatile specialized metabolites
(allelochemicals and hormones), peptides, DNA, RNA,
carbohydrates, and even cells defined as border cells
[19e21], and their roles in plant-plant interactions are
emerging. Here, exploring recent findings in both intra-
and interspecific plant-plant interactions, we propose
strategies to discover the exuded molecules involved in
genotypic recognition that could contribute to novel
biosolutions and breeding programs to accelerate agro-

ecological crop farming.
Allelobiosis, the neglected bright side of
allelochemical communication suggests
novel molecular mechanisms
While plant-plant interactions were initially described as
having negative effects, it is now clear that they can also
have positive outcomes. A comprehensive 50-year
interspecific plant community succession study
revealed that positive plant-plant interactions are
widespread in native plant communities and protect
native communities against exotic species invasion,
particularly in the early stages of plant-plant interactions
before competition for resources intensifies [22].
Additionally, in mixtures of species with low phyloge-

netic distance, the negative effects were less prominent
than in mixtures with high phylogenetic distance [23].
In crops, allelobiosis is also pervasive as reported in
maize intercroppings that enable higher land use effi-
ciency and seed protein content [3], and in intraspecific
rice and wheat mixtures where specific neighbor geno-
types induce decreased disease severity in specific focal
genotypes [24]. Thus, the studies highlighted above
demonstrate that plant-plant interactions can produce
allelobiotic effects, a less understood phenomenon in
comparison to allelopathy. Both allelopathy and allelo-

biosis coexist in nature and are achieved through the
release of specialized metabolites by neighboring plants,
inducing either negative or positive effects on focal
phenotypes, respectively [25]. A major question in the
field of research on plant-plant interactions is to identify
and understand the molecular mechanisms underlying
positive effects.

Several external factors can affect allelochemical effects.
Soil chemistry strongly impacts the direction of alle-

lochemical effects. Notably, benzoxazinoids-
conditioned soil with maize can either promote [26] or
Current Opinion in Plant Biology 2024, 80:102547
suppress [27] the growth of specific wheat varieties
relative to soil chemistry. Moreover, recent studies
indicate other unknown mechanisms working together
with allelochemical communication. Native plant mix-
tures exuding less flavonoids and strigolactones than
invasive mixtures recruited fewer mutualistic soil mi-
crobes while developing positive effects, suggesting
allelobiosis does not depend on the soil microbiome

[28]. In rice, allelopathic cultivar mixtures with close
genetic proximity produced fewer allelochemicals than
more genetically distant allelopathic cultivar mixtures.
Yet, they inhibited the growth of multiple neighboring
weeds to a greater extent without significantly altering
the soil microbiome [29], again minimizing the role of
the microbiome and indicating that in addition to soil
chemistry, mixture effects might hinge on a genotypic
recognition mechanism.

In line with that, a genome-wide association study

(GWAS) has uncovered a neighbor QTL (quantitative
trait loci) associated with modulation of disease severity
in a focal plant genotype. To achieve that, the authors
quantified disease severity on a single focal plant ge-
notype in binary mixture with w250 distinct rice ge-
notypes. Importantly, changes in gene expression were
observed in the focal rice genotype based on the
neighbor haplotype at the identified QTL [30]. In
addition, decreased disease severity in wheat intraspe-
cific mixtures depended on the genotypic identity of the
neighbor [24]. Decreased disease severity remained in

sterilized soil or when artificially separating above-
ground infected or healthy organs, but not when
preventing physical/chemical contact between the root
systems [31]. The evidence described above together
with older studies shows that roots detect and respond
to neighbors via allelochemicals, and can take into ac-
count the genetic distance through an allorecognition
mechanism likely occurring at the root tip [8] where
specialized metabolites [32] and border cells [33]
are produced.

Since belowground metabolites involved in plant-plant

interactions are so far generic as exposed below
(Figure 1), and because specialized metabolites di-
versity is quantitative rather than qualitative at the
intraspecific level [34], it seems unlikely that a single
one can mediate intraspecific interaction. Moreover, a
recent meta-analysis assessing the impact of allelopathic
plants and exudates on the performances of focal plants
showed that the predominant negative effects were
variable and less pronounced in plant-plant co-culture
conditions compared to single molecule treatments.
This indicates that effects of single allelochemicals can

not be extrapolated to co-culture-induced effects [23].
We thus propose that the cocktail of molecules
contained in exudates could be causative of intra- and
interspecific plant-plant interactions, including signals
displaying the genetic distance such as peptides and
www.sciencedirect.com
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Figure 1

Identified cues, targets, and responses involved in plant-plant interactions. The left panel displays molecules identified as neighbor cues. Cognate
host targets are shown when demonstrated. However, no targets have been identified yet for flavonoids, loliolides, and DNA. The right panel schematizes
focal plant responses. Created with BioRender.com under agreement #BC26KGYHP0.
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DNA. Collectively, these studies indicate that
numerous mechanisms play a role in belowground plant-
plant interactions, among which the impact of a geno-
typic recognition mechanism might have been masked
by confounding factors.
Mechanisms of allelochemical-mediated
plant-plant interactions
To date, allelochemicals mechanistically involved in
belowground plant-plant interactions are composed by
three distinct scaffolds: phenolics, indole-containing
rings, and terpenes. Derived from the shikimic acid
pathway, phenolic acids, flavonoids and benzoxazinoids
mediate interspecific plant-plant interactions. Two
recent studies highlighted the phenolic ring as a regu-
lator of plant-plant interactions. In the first publication
[35], novel phenolic acid receptors were searched based

on the evidence that some of them such as salicylic acid
induce phase-separated RNA bodies that regulate
translation in animals and plants. Salicylic acid and other
phenolic acids interacted with contrasting affinities to
the RNA binding protein and translational regulator
www.sciencedirect.com
RBP47 in vitro, and induced global translational shut-
down and root growth inhibition in vivo (Figure 1). By
using allelopathic or non-allelopathic rice varieties in co-
culture with wild-type or rbp47 mutant Arabidopsis
plants, seedling emergence was affected by allelopathic
rice in comparison to non-allelopathics. In comparison,
emergence rate inhibition was not observed in the rbp47
mutant, although this could be due to germination de-
fects of the mutant itself. However, decomposed straws
of allelopathic or non-allelopathic rice induced RNA
granule formation in Arabidopsis roots but the trans-

lational activity within root cells was not reported.
Although some evidence supports the role of neighbor
phenolic acids in the translational regulation of focal
plants, the mechanism remains to be formally demon-
strated in co-culture conditions [35] (Figure 1). A
second independent study involved a phenolic acid-
related metabolite in belowground plant-plant in-
teractions. Using an elegant bioassay-guided exudate
fractionation of Vicia faba infested with an aphid herbi-
vore, the study shows that the non-protein amino acid L-
DOPA triggered a systemic signal in uninfested V. faba
neighbor plants leading to volatile organic compound
Current Opinion in Plant Biology 2024, 80:102547
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emission that attracted a parasitoid of the aphid herbi-
vore [36]. The potential binding of L-DOPA to RBP47
remains to be tested.

Benzoxazinoids are synthesized by specific grasses such
as maize, wheat, and a few dicots [37], and were initially
considered as herbicides and herbivore deterrents. They
are structurally analogous to well-described inhibitors of
histone deacetylases and indeed inhibit growth and
genome-wide deacetylation ofH3K27 when exogenously

applied on Arabidopsis seedlings in vitro [38] (Figure 1).
At the same time, benzoxazinoids shape the maize root
microbiota that in turn modulate plant defense re-
sponses [39e41]. In addition, maize-peanut intercrop-
ping performances rely on the recruitment of
siderophore-synthetizing Pseudomonas sp., which
improved peanut iron nutrition while the contribution of
maize-secreted benzoxazinoids in this process was not
reported [42] although they act as phytosiderophores in
the soil [27]. Positive effects of maize-conditioned soils
were observed on wheat yield as compared to soil

conditioned with a benzoxazinoid-depleted maize
mutant line in field conditions [26]. In this specific
context, the soil microbiota signature was equivalent in
both soils, suggesting that increased wheat yield was
independent of the rootmicrobiota [26]. Yet, the relative
contributions of chromatin regulation and the micro-
biome remain to be assessed in maize intercroppings.

In tomato-potatoonion intercropping, potatoonion-
secreted taxifolin induced global quantitative changes
in tomato root exudates. These changes were associated

with the recruitment of Bacillus sp. in the soil that were
required to reduce Verticillium wilt disease, either by
direct antagonism or indirectly by priming tomato de-
fenses [43]. Although some mechanisms remain to be
elucidated in this tomato-potatoonion intercrop, the
study by Zhou et al. has suggested that roots of healthy
plants communicate to “cry for help” against a disease-
causing fungus (Figure 1). Another study highlighted
that higher amounts of flavonoids were observed in le-
gumes when intercropped with durum wheat supporting
a dynamic regulatory role of flavonoids in plant-plant

interactions [44]. However, flavonoid transporters and
receptors are yet to be identified.

Loliolides derive from the carotenoid biosynthesis
pathway and are involved in interspecific interactions.
Loliolide biosynthesis is induced by biotic and abiotic
stress and induces jasmonic acid-related responses and
the biosynthesis of defense metabolites, but loliolide
targets remain unknown (Figure 1) [45]. In wheat-
Arabidopsis co-culture experiments, loliolides from
Arabidopsis induced benzoxazinoid accumulation in
wheat that in turn mediated the redistribution of auxin
receptors in Arabidopsis roots, expanding the role of

loliolide in regulating auxin metabolism
(Figure 1) [46].
Current Opinion in Plant Biology 2024, 80:102547
Strigolactones are ubiquitous hormones that derive from
carotenoids similar to loliolides and regulate parasitic
plant-plant interactions in specific soil chemical con-
texts [47]. Recently, strigolactones were involved in
neighbor root detection in pea and rice plants grown in
hydroponics and pure conditions. The authors showed
very elegantly that an intact strigolactone biosynthesis
pathway in the neighbor was required for shoot

branching regulation in focal plants. Likewise, intact
perception by the cognate strigolactone receptor was
required in focal plants for the regulation of shoot
branching [48,49] (Figure 1). Taken together, the
studies reviewed above show that chromatin and trans-
lational regulation are involved in plant-plant in-
teractions and that further work is needed to understand
how allelochemicals are exuded and perceived.
What else except specialized metabolites?
Exudates form an intricate matrix of biomolecules that
includes soluble and volatile metabolites, and DNA, to
which border cells add complexity [50]. Recent evidence
suggests that self-DNA can adversely affect plant growth
both in natural environments and controlled laboratory
settings, an effect not observed with non-self DNA [51].

Although it remains unclear how self-DNA could be
distinguished from non-self DNA, self-DNA induced
jasmonic acid-dependent defense responses and growth
inhibition [52] (Figure 1). Extracellular self-DNA also
plays a crucial role in forming amatrix essential for border
cell integrity at the root tip [50]. Single-cell RNA
sequencing analysis of wheat roots revealed the unique
transcriptomic signature of border cells [33]. A more
detailed exploration of the border cell transcriptome via
metabolic network enrichment analysis confirmed that
enzymes critical for the biosynthesis of phenolic acids,
flavonoids and volatiles [53,54]dwhich all play signifi-

cant roles in plant-plant interactionsdare expressed
(illustrated in Figure 2a). Moreover, gene ontology
analysis of biological processes revealed that the 100
most expressed genes in border cells belong to signaling-
related and xenobiotics export ontologies (Figure 2b).
This suggests that border cells could express missing
transporters and receptors responsible for export and/or
detection of the allelochemicals presented in Figure 1.
Considering these insights, we posit that delving into the
functional biology of border cells might uncover novel
mechanisms of plant-plant interactions that have yet to

be elucidated.
Perspectives
Allelochemicals are vital in how plants interact with one
another and hold a key to fostering sustainable agricul-

ture through the creation of natural products-based
biosolutions and the improvement of crop diversifica-
tion practices. We propose that there are still undis-
covered cues/signals in root exudates that act in addition
to allelochemical-dependent interplant communication,
www.sciencedirect.com
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Figure 2

Potential significance of border cells in plant-plant interaction functional studies. a, Arabidopsis orthologs of the 100 most highly expressed genes
in wheat border cells were analyzed using the AraCyc cellular overview tool. Biosynthesis genes were highlighted in red on the Arabidopsis specialized
metabolic map. b, The 100 most highly expressed genes in bread wheat border cells, as identified by scRNA-seq [33], were subjected to gene ontology
analysis using the Panther database with bread wheat genes as a background. Created with BioRender.com under agreement #ZX26KK8TMQ.
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particularly in intraspecific interactions. To identify
these elusive signals and their cognate receptors, we
propose a holistic approach that expands a bioassay-
guided identification approach of root allelochemicals
[36], as illustrated in Figure 3. Here, exudates are
collected from hydroponically grown plants (Figure 3a)

and then fractionated using chromatography
(Figure 3b). The effects of different exudate fractions
that change in mixtures on focal plant phenotypes are
studied to identify fractions potentially involved in
www.sciencedirect.com
plant-plant interactions (Figure 3c). Characterization of
exudates present in this fraction using mass spectrom-
etry and RNA sequencing could allow the identification
the causative molecules (Figure 3d). With sufficient
amounts of the validated fractions, a GWAS could be
performed to identify the loci involved in focal plant

responses to the tested exudate (Figure 3d). Although
allelobiosis has proven effective in the field, the lack of a
molecular framework has slowed the breeding of alle-
lobiotic varieties. The method proposed in Figure 3
Current Opinion in Plant Biology 2024, 80:102547
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Figure 3

Untargeted approaches for the identification of genotypic recognition signaling pathways. a. Mixtures are cultivated hydroponically to facilitate
easy access to root exudates and their dynamics [16]. b, The exudates from the mixtures of interest are fractionated using HPLC (High-Performance
Liquid Chromatography). c, The focal plant is exposed to exudate fractions based on qualitative and quantitative changes in the mixture when compared
to pure samples. The fraction showing effects on various phenotypes is selected for further characterization. d, The protein and metabolite content of
bioactive fractions are identified through untargeted mass spectrometry, and root RNA-seq data are used for candidate gene identification. High-priority
peptides, metabolites, or pathways can then be validated through reverse genetics. e, Validated molecules can be used to treat diversity panels and
compare the responses of individuals relative to mock treatment on relevant traits as identified in C. Genome-Wide Association Study can identify
genomic regions potentially containing receptor genes and other genes involved in signal perception. Created with BioRender.com under agreement
#UF26KGYFBB.
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could offer new genetic markers for breeding programs
and could advance our understanding on the cues that

enable plants to detect and respond to intraspecific
neighbors. In addition to gene/molecule-based ap-
proaches, trait-based approaches can also be used to
harness the positive effects in intra- and interspecific
mixtures [55,56]. In Arabidopsis intraspecific mixtures,
85% of focal biomass variation was explained by 11
neighbor loci enriched for genes involved in salicylic
acid-related processes [57], a prominent phenolic acid
in plant defense and plant-plant communication as
Current Opinion in Plant Biology 2024, 80:102547
highlighted here (Figures 1 and 2a). The potential
utility of allelochemicals goes beyond their utilization as

biological control agents. They can be targeted directly
through marker-assisted selection, incorporating both
functional and quantitative genetics, or indirectly
through trait-driven methods. However, to fully leverage
these approaches, a deeper comprehension of the dy-
namics behind allelochemical synthesis and plant-plant
interactions is needed. This understanding is crucial for
creating effective programs for selecting plant mixtures
that can sustain agroecosystems.
www.sciencedirect.com
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