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A B S T R A C T   

Agrilus planipennis, the emerald ash borer, is a species native to East Asia that was accidentally introduced to 
North America and Eastern Europe. In North America, it is responsible for tremendous damage. In Europe, its 
range has quickly expanded from the east where it was introduced in 2003, and it threatens the species of the 
genus Fraxinus. We developed an ensemble modelling approach to model the potential range of A. planipennis 
according to current climate conditions and four scenarios of climate change: SSP1–2.6, SSP2–4.5, SSP3–7.0 
SSP5–8.5 in the period 2041–2060. We used three algorithms; random forest, boosted regression trees and 
Bayesian additive regression trees with occurrence data from both native and invaded ranges. The results 
indicate that most of the European continent is climatically suitable for A. planipennis. In Western Europe, the 
northern limit of the range is located in the British Isles and southern Scandinavia. The projection of the models 
according to estimates of future climate conditions shows that climate suitability would mostly remain un
changed in 2041–2060. During that period, the potential range is expected to slightly shrink in the south, around 
the Mediterranean Basin, and expand at its northern limit. Our results confirm that A. planipennis is, and will 
remain, a major threat to forest and ornamental ash tree health across Europe.   

1. Introduction 

Agrilus planipennis, the emerald ash borer is a species native to East 
Asia (China, the Russian Far East, the Korean Peninsula and Japan) that 
was accidentally introduced to North America and Eastern Europe. It 
was detected in 2002 in the United States of America in the state of 
Michigan and quickly spread across eastern and central North America. 
In its native range, A. planipennis only causes limited damage in natural 
forests where native ash trees are resistant (Rebek et al., 2008). On the 
contrary, in North America, it causes considerable damage to all species 
of American ash trees both in urban areas and in forests (Sun et al., 
2024). Since its introduction to North America in the early 2000s, 
hundreds of millions of ash trees have been killed or felled, resulting in a 
cost exceeding ten billion dollars for tree protection, removal and 
replacement (Fantle-Lepczyk et al., 2022). In Europe, the emerald ash 
borer was reported for the first time in Moscow in 2003 (Orlova-
Bienkowskaja, 2013) and has now spread over 600 km to the north and 
over 1000 km to the south (Orlova-Bienkowskaja and Bieńkowski, 
2022a). The initial outbreaks of A. planipennis near Moscow were 

detected in the North American species F. pennsylvanica, which is 
commonly used as an ornamental in the cities of northeastern Europe. 
An outbreak was later recorded in the Moscow Region in 2014 (Musolin 
et al. 2017). The spread of the insect in Russia and Ukraine seems to be 
associated with the presence of these introduced species frequently 
planted along roads, but the European species F. excelsior, although rare 
in the region, has also been attacked (Meshkova et al., 2023). Agrilus 
planipennis host range is almost totally restricted to Fraxinus species: 
Chionanthus virginicus (Oleaceae), reported as an alternative host in the 
USA, is considered to be the only ascertained record in field conditions 
beyond that genus (Peterson and Cipollini, 2017). 

The risk of expansion of A. planipennis from Eastern Europe west
ward, or an introduction from either native or invasive ranges strongly 
depends on climate suitability. Several studies based on species distri
bution or phenological models have been published (Barker et al., 2023; 
Dang et al., 2021; Flø et al., 2015; Meshkova et al., 2023). The MaxEnt 
models proposed by Flø et al. (2015), Dang et al. (2021) and Meshkova 
et al. (2023) indicate that climatically suitable areas are limited to the 
vicinity of the areas infested by the time of their study i.e. Russia and 
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Ukraine, hence a fairly limited potential expansion. There is a strong 
contrast between these results and the consensual idea that 
A. planipennis threatens to spread largely in Europe (EFSA, 2020; Orlo
va-Bienkowskaja and Bieńkowski, 2022; Valenta et al., 2017) as well as 
with a recently published phenological model that indicates that large 
parts of Western Europe are highly climatically suitable for the emerald 
ash borer (Barker et al., 2023). The differences between these results can 
be explained in different ways, in particular by the use of different al
gorithms but also by the selection of different subsets of occurrence data 
during the calibration phase. There is no publication tackling the 
question of the impact of climate change on the potential distribution of 
A. planipennis in Europe, and this limits our capacity to improve our 
preparedness in important topics such as early warning capacity, man
agement strategies, risk evaluation and tree species selection for urban 
forests and urban greenings. 

Because of the contrasting results available in the literature and the 
absence of an evaluation of climate change impacts, we developed a set 
of Species Distribution Models (SDM) based on the most recent distri
butional data and three different algorithms. These models were used 
with projections from 11 global circulation models and four shared 
socio-economic scenarios to estimate the potential range of 
A. planipennis in Europe for the period 2041–2060. 

2. Materials and methods 

All statistical analyses, data management and graphics were done 
using the R environment for statistical computing and visualisation (R 
Core Team, 2023). 

2.1. Occurrence data 

We used the occurrences available from the GBIF database (GBIF. 
org, 2023 https://doi.org/10.15468/dl.y6yst6) and the datasets avail
able from Orlova-Bienkowskaja and Volkovitsh (2018) and Dang et al. 
(2021). 

2.2. Climate data 

Climate data were downloaded from the Worldclim database (htt 
ps://worldclim.org/) (Fick and Hijmans, 2017). We used climate data 
with a resolution of 2.5 min (≈22 km2 at the equator). Data associated 
with A. planipennis occurrences were separated into two groups ac
cording to the date of observation: before and after 2001. For these 
periods, we used the data available for 1970–2000 in WorldClim version 
2.1 (https://worldclim.org/data/worldclim21.html) and the historical 
monthly weather data for the period 2001–2018 (https://worldclim. 
org/data/monthlywth.html) respectively. In the latter case, we 
computed the average climate descriptors (hereafter referred to as 
bioclimatic variables) using the function “biovars” from the R package 
“dismo” (Hijmans et al., 2023). For future conditions, we considered the 
period 2041–2060 and used the datasets from 11 Global Circulation 
Models (hereafter GCM) listed in Table S1. Our analyses are based on the 
projections of these 11 GCM in the framework of 4 Shared Socioeco
nomic Pathways (SSPs) describing plausible greenhouse gas emissions 
scenarios according to different climate policies. These SSPs are referred 
to as sustainable development (SSP1), middle-of-the-road development 
(SSP2), regional rivalry (SSP3), and fossil-fuelled development (SSP5) 
(IPCC, 2023; Riahi et al., 2017). Details are provided in Table S2. 

2.3. Species distribution modelling 

2.3.1. Model algorithms 
We choose machine learning methods because of their ability to 

handle potentially complex linear and nonlinear connections between 
species distributional data and environmental descriptors (Hastie et al., 
2009; Merow et al., 2014), their tolerance to collinearity (Dormann 

et al., 2013) and their very good predictive performance (Elith et al., 
2006). Elith (2019) provided an overview of machine learning methods 
in the field of species distribution modelling. We used 3 different 
modelling algorithms: Random Forests (hereafter RF), Boosted Regres
sion Trees (hereafter BRT) and Bayesian Additive Regression Trees 
(hereafter BART). RF and BRT are frequently used in the field of SDM 
and are fully documented in Guisan et al. (2017) and Elith et al. (2008) 
while BART was introduced in ecology more recently and is presented in 
Carlson (2020). The RF model was calibrated using the R package 
“randomForest” (Liaw and Wiener, 2002). We used the step-wise se
lection method based on the averaged variable importance (Li et al., 
2016) to identify the most relevant climate descriptors to be included in 
the model using the R package “steprf” (Li, 2022). The node size and the 
number of explanatory variables sampled at each split were optimized 
using the R package “randomForestSRC” (Ishwaran and Kogalur, 2007). 
RF was calibrated using 1000 trees. We calibrated BRT following the 
working guide provided by Elith et al. (2008) and the R package “dismo” 
(Hijmans et al., 2023). The climate descriptors to be included in the 
model were selected using a step-wise procedure implemented in the 
function “gbm.simplify” (R package “dismo”) while the optimal number 
of trees to use was determined by the function “gbm.step” (package 
“dismo”). The BART model was calibrated using the R package “em
barcadero” (Carlson, 2020). The package provides a step-wise variable 
section procedure (function ”bart.step”) and we used 1000 trees (details 
in Carlson 2020). In each case, we used a number of pseudo-absences 
equal to the number of presence points (see below for details about 
the pseudo-absences creation). 

2.3.2. Candidate variable selection 
Temperature range and degree-day accumulation are considered to 

be the most important climate factors constraining A. planipennis 
geographic distribution (Valenta et al., 2017). We thus retained the 
following variables: the maximum temperature of the warmest month 
(referred to as bio5 in the Worldclim database), the minimum temper
ature of the coldest month (bio6), the mean temperature of the warmest 
quarter (bio10) and the mean temperature of the coldest quarter 
(bio11). These climate descriptors are correlated but the machine 
learning methods we used are relatively immune to collinearity (Dor
mann et al., 2013). The importance of the amount of heat (degree days) 
as a constraint shaping the distribution of insects, particularly in cold 
and temperate regions is well-known (Bale, 2002) and has been high
lighted in the case of the emerald ash borer (Orlova-Bienkowskaja and 
Bieńkowski, 2022b; Webb et al., 2021). We accounted for this important 
climatic constraint by adding the number of accumulated growing de
gree days in our set of predictive variables and we used a base tem
perature of 10 ◦C following Orlova-Bienkowskaja and Bieńkowski 
(2022b). The variable is hereafter referred to as GDD10. GDD10 was 
computed using the function “growingDegDays” of the R package 
“envirem” (Title and Bemmels, 2018). We computed the frequency of 
observed presences (FOPs; Halvorsen, 2013) or each candidate variable 
(bio5, bio6, bio10, bio11 and GDD10). FOPs depict the rate of observed 
occurrence in the function of the environmental descriptors. This 
graphic representation allowed us to discard variables displaying noisy 
or bimodal curves and thus ensures that only explanatory variables that 
could lead to ecologically realistic and meaningful response curves are 
retained. FOPs were computed using the R “MIAmaxent” (Vollering 
et al., 2019). 

2.3.3. Preprocessing of occurrence data 
We only considered the GBIF occurrence data points that were 

associated with valid spatial coordinates. The points associated with the 
following issues, “RECORDED_DATE_INVALID”, “IDENTI
FIED_DATE_INVALID”, “MODIFIED_DATE_INVALID” and “RECORD
ED_DATE_UNLIKELY” were discarded. This process led to 3090 
occurrence points. We additionally used the occurrence data available 
from Orlova-Bienkowskaja and Volkovitsh (2018) (108 points) and 
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Dang et al. (2021) (43 points). The date of observation spanned from 
1800 to 2023. 25 occurrences had no date and were discarded. The point 
associated with an observation dating back to 1800 was discarded 
because no climate data was available for that period. We subdivided the 
observation points into two groups based on the date of observation: 
before 2001 (35 observations) and after 2000 (3180 observations). 

The valid occurrences were thinned to a single point per unique 2.5 
min cell (Boria et al., 2014). We also removed the points falling outside 
the land surface. This number depends on the resolution of the climate 
data. This led to a total of 25 and 1888 occurrence data for the periods 
before and after 2001 respectively. The resulting dataset was submitted 
to geographical filtering to control for the possible sampling bias 
(Aiello-Lammens et al., 2015) using an arbitrary threshold of 10 km and 
the R package “spThin” (Aiello-Lammens et al., 2015). This led to 25 and 
1125 occurrence points for the periods before and after 2001 
respectively. 

We extracted the climate data corresponding to the occurrence 
points of each period and built a unique dataset which was analysed by a 
principal component analysis to perform environmental filtering and 
remove environmental redundancy between data points (Varela et al., 
2014). This led to a total of 924 occurrences representing 28.8 % of the 
initial pool of valid records. 

2.3.4. Pseudo-absences 
Because absence data were lacking, we calibrated our models using 

pseudo-absences (VanDerWal et al., 2009). Since the native range of 
A. planipennis is well known we could safely assume that the species is 
absent at the north and south of that area (Supplementary figure S1). In 
the Russian Far East, the species has been recorded in the southern part 
of the Khabarovsk Krai while its presence in Mongolia is doubtful (EPPO 
website https://gd.eppo.int/reporting/article-6465) but data are lack
ing (Orlova-Bienkowskaja and Volkovitsh, 2018). 

2.3.5. Model performance 
We computed the Area Under the Curve (AUC) of the receiver 

operating characteristic plot (Fielding and Bell, 1997) and the true skill 
statistic (TSS) (Allouche et al., 2006) using the valid occurrences that 
were discarded from the analysis at the step of geographic and envi
ronmental filtering (n = 989) and an equal number of pseudo-absences 
generated as explained above. In doing so we evaluated the performance 
of the models based on data that were not used in the calibration phase. 
The computation was done using the R package “dismo”. 

2.3.7. Ensemble modelling and committee averaging 
Each algorithm led to one projection of climate suitability for each 

climate dataset. For a given period (current or future) and in the case of 
future, for each SSP and GCM considered, we thus had 3 projections (one 
for each algorithm). Averaging model outputs in the form of probabili
ties might cause problems since these values are not always comparable 
(Guisan et al., 2017). We therefore combined the outputs of BART, BRT 
and RF by computing the community averaging (Guisan et al., 2017 p. 
336). The first step consisted of transforming the model outputs into 
binary (presence/absence) projections using the threshold that opti
mized the TSS statistics. We used the function “threshold” from the R 
package “dismo”. The resulting binary outputs were then averaged. The 
resulting committee averaging ranges from 0 % (all the models predict 
absence) to 100 % (all the models predict presence). It depicts the 
climate suitability and provides a picture of the agreement between 
models. In the case of projection according to one SSP, the average was 
computed for the 11 projections (one for each GCM) associated with 
each algorithm (11 x 3 = 33 projections). 

2.4. Assessing possible environmental novelty 

Caution is needed when interpreting the results of models projected 
in environmental conditions non-analogue to those used for the 

calibration because the results might be biologically meaningless (Elith 
et al., 2010). The Multivariate Environmental Similarity Surface (MESS) 
index has been introduced by Elith et al. (2010) to quantify environ
mental novelty. Areas, where at least one climate descriptor lies outside 
the range of the reference dataset, are associated with a negative MESS 
index value. Conversely, positive MESS index values indicate the 
absence of environmental novelty (extrapolation). We computed the 
MESS index for current and future climate conditions. For each SSP, we 
retained the minimum value amongst the MESS estimates corresponding 
to the 11 GCM. The computations were done using the function “mess” 
of the R package “dismo”. 

3. Results 

3.1. Climate variable selection 

The candidate climate variable (bio5, bio6, bio10, bio11 and 
GDD10) exhibited a bell-shaped FOP curve and were thus used in the 
step-wise selection procedure of each algorithm (Supplementary 
Figure S2). The step-wise variable selection procedure retained bio5, 
bio6, bio10, bio11 and gdd10 in the case of BART and bio6, bio10, bio11 
and gdd10 for both BRT and RF. 

3.2. Evaluation metrics 

The AUC and TSS values were >0.99 for all algorithms indicating 
very good performances. 

3.3. Current climate suitability and committee averaging 

The committee averaging for the models’ projections according to 
the current climate conditions (2001–2018) is shown in Fig. 1-A. The 
corresponding maps of raw and reclassified climate suitability stemming 
from each algorithm are given in Supplementary Figures S3 and S4. Most 
parts of Western Europe were climatically suitable for A. planipennis. The 
northern margins of that potential range corresponded to northern En
gland, Denmark, Southern Sweden, and Southern Finland. In the south, 
the limit corresponds to hot and dry climates mostly located in Southern 
Portugal and Spain. The committee averaging revealed some discrep
ancies between the projections of the 3 algorithms (Fig. 1A, Supple
mentary Figures S3 and S4). These disagreements occurred in the 
northern part of the potential range and illustrated the fact that each 
algorithm slightly differed in their consideration of the way the climate 
constraints the margin of the range. On the contrary, there was a very 
good agreement between the three models concerning climate suit
ability across most of the European continent. Interestingly, the MESS 
index indicated the absence of possible problems linked to environ
mental novelty i.e. extrapolation in Europe (Fig. 2) where the index was 
> 0. Fig. 2 shows that areas where the index was < 0 occurred in 
northern Russia in the region of Novaya Zemlya (Russia), in Iraq and 
southern Algeria (Sahara). The worldwide assessment is given in Sup
plementary Figure S5. 

3.4. Projection according to future climate scenarios 

The northern limit of the potential distribution shifted norward for 
the period 2041–2060 according to the results obtained for the different 
SSPs (Fig. 1 B-E). For example, the southern half of Finland became more 
suitable when the models were projected using data for SSP1–2.6 and 
the suitable area was larger when we considered scenarios leading to 
higher temperature increases (SSP5–8.5>SSP3–7.0>SSP2–4.5>SSP1– 
2.6). The southern limit changed according to currently suitable regions 
becoming unsuitable due to temperature increase. This is the case of 
Southern Portugal and Spain as well as the Balearic Islands (Spain), 
Sardinia and Sicilia (Italy) and some coastal regions around the Medi
terranean basin such as the Southeastern part of the Apulia region in 
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Italy. Apart from the Atlas Mountains, North Africa was unsuitable ac
cording to current conditions and this remained the case according to 
the 4 scenarios. The MESS index was positive everywhere in Europe as 
shown in Supplementary Figure 6. 

4. Discussion 

Our models provided estimates of the potential distribution of 
A. planipennis that differed from certain previously published models. 
For example, Flø et al. (2015) found that European climate suitability 
was restricted to an area centred around the infested areas in Russia at 
the time of the model calibration. Similarly, Dang et al. (2021) and 
Meshkova et al. (2023) reported limited suitable areas in Europe. Such 
discrepancies are not rare. For example, some models established by 
different authors for the spotted lanternfly Lycorma delicatula are very 
different (Jung et al., 2017; Wakie et al., 2020). The sources of di
vergences are multiple. The nature of the algorithm used to calibrate the 
models is very important and for A. planipennis, this has been highlighted 
by Sobek-Swant et al. (2012) who reported diverging results for the 

models MaxEnt and GARP. For that reason, it is generally advised to use 
different modelling algorithms and build ensemble models (Araujo and 
New, 2007). In the present study, we used three machine learning al
gorithms well-known for their good performances which provided 
consistent although not identical projections. The between-model dif
ferences provided a straightforward picture of uncertainty that occurred 
at the margin of the potential range which is areas of transition between 
suitable and unsuitable climates. These marginally suitable areas are 
differently accounted for by the three methods but the models were 
otherwise in very good accordance. Other differences with published 
models were that some models were calibrated with the native occur
rences only (Dang et al., 2021) or the occurrence from newly invaded 
areas in central Europe (Flø et al., 2015; Meshkova et al., 2023 but see 
Barker et al., 2023). To fully capture the species’ climatic niche, it is 
better not to restrict the amount of data used to calibrate the model. 
First, the native range might not be sampled with sufficient density and 
some features of the climate niche could be missed. In that case, datasets 
collected from invaded range(s) could provide this information. 
Although it has been advocated that most invasive species conserve their 

Fig. 1. Climate suitability for Agrilus planipennis. A. Climate suitability according to current climate conditions (2001–2018). B. Climate suitability according to the 
shared socioeconomic pathways SSP1–2.6 for the period 2041–2060. C. Climate suitability according to the shared socioeconomic pathways SSP2–4.5 for the period 
2041–2060. D. Climate suitability according to the shared socioeconomic pathways SSP3–7.0 for the period 2041–2060. E. Climate suitability according to the shared 
socioeconomic pathways SSP5–8.5 for the period 2041–2060. The maps depict the committee averaging expressed as the percentage of projections indicating suitable 
climate conditions (see text for details). Open circles indicate presence points. Projection: EPSG 4326. 
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climatic niche (Liu et al., 2020), niche shift can occur quickly (Wiens 
et al., 2019) and local adaptation should not be dismissed because ac
counting for such features could valuably improve the models 
(DeMarche et al., 2019; Hällfors et al., 2016). Although it is not possible 
to determine if niche shifts occurring during biological invasions are 
affecting the fundamental niche or simply convey differences in realized 
niches, they generate climate-related information that should be incor
porated into species distribution models (Broennimann and Guisan, 
2008). Accounting for invaded ranges is important because native areas 
are not always well-documented (Hierro et al., 2005). This is the case for 
A. planipennis (Orlova-Bienkowskaja and Volkovitsh, 2018) as it is for 

pests that remain discrete in their native range and are thus not inten
sively studied. When considering species distribution modelling of 
invasive species, certain native populations at the margin of the core 
range might be pre-adapted to peculiar climate or environmental con
ditions making them more prone to invasive success. Rey et al. (2012) 
provide a good example with the little fire ant Wasmannia auropunctata. 
It is obvious that if such populations were undersampled in the native 
range, not using the data from the invaded areas amounts to possibly 
missing important information and decreases the models’ ability to 
properly assess the potential range. Available models for A. planipennis 
also differ in their handling of climate descriptors which, as far as 

Fig. 2. Model extrapolation. The map depicts the Multivariate Environmental Similarity Surfaces (MESS) comparing current climate conditions in Europe to 
reference points used for model calibration. Analogous environments are shown in red (positive values) and novel environments are shown in blue (negative values). 
Projection EPSG 4326. 

Fig. 3. Distribution of Fraxinus species in Europe (data from Caudullo et al. 2017). Projection: EPSG 4326.  
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possible, should convey direct ecological constraints. In the present 
study, we limited the climate descriptors to variables with known direct 
impact on the emerald ash borer distribution e.g. minimum tempera
tures (Crosthwaite et al., 2011) or accumulated degree days (Orlova-
Bienkowskaja and Bieńkowski, 2022b). 

According to the present study, the European continent is clearly at 
risk of being widely invaded by A. planipennis, which confirms the results 
of several previous studies (EFSA, 2020; Valenta et al., 2017). The 
climate is suitable for A. planipennis and the potential hosts are widely 
distributed across the continent, either North American Fraxinus species 
(such as F. pennsylvanica) used for ornamental purposes (Orlova-
Bienkowskaja, 2014) or native species that are considered suitable hosts 
for A. planipennis (Caudullo et al., 2017; Meshkova et al., 2023) (Fig. 3). 
Although modelling studies yielded contrasted results (as discussed 
above), our conclusions are not surprising since A. planipennis is tolerant 
to very low winter temperatures (Crosthwaite et al., 2011) and is also 
distributed in temperate regions according to the Köppen-Geiger clas
sification (Beck et al. 2023) in North America and well as in China 
(Supplementary Figure 1 and 6). Since its first record in Moscow in 
2003, A. planipennis has quickly spread at an average speed of 50 km per 
year to the north and the south and its distribution has now exceeded the 
estimates of previously published models (Orlova-Bienkowskaja and 
Bieńkowski, 2022a) but other studies yielded lower dispersal rates 
ranging from 6.5 to 20 km (Musolin et al. 2017). Host connectivity and 
the highly suitable climate conditions indicated by our models are ex
pected to ease emerald ash borer spread across Europe. Our models 
indicated lower climate suitability in Northern England, Wales, Ireland, 
Scotland and some parts of Scandinavia, which is in line with the find
ings of Webb et al. (2021) and Orlova-Bienkowskaja and Bieńkowski 
(2022b). Because F. excelsior stands are present in these regions, they 
could become refugia if the emerald ash borer reached Western Europe. 
In that case, F. excelsior could nevertheless remain threatened by the ash 
dieback which is present in these regions (Carroll and Boa, 2024). 
Interestingly, Liang and Fei (2014) highlighted that a similar divergence 
between the invasive ranges of A. planipennis and the native ash species 
could increase due to climate change in North America. In the case of 
Western Europe, our results indicate that the current potential distri
bution of A. planipennis would not change markedly by 2041–2060. 
Suitable areas would expand in the north and shrink in the south but 
these changes are expected to remain limited. The larger the greenhouse 
gas emission and thus the increase of surface temperature, the larger the 
northern (southern) increase (decrease) in climate suitability. These 
results indicate that climatic conditions are, and will likely remain, 
suitable for A. planipennis across Europe in the coming decades, resulting 
in a significant risk of ecological and economic impacts. 

Although species distribution models depict the potential range of a 
species, they provide no information about the spatial dynamics of the 
possible expansion. For this purpose, various modelling approaches can 
be used such as spatially explicit mechanistic models (Lustig et al., 
2017). One very important question is to estimate the species spread. In 
the case of A. planipennis, the natural spread is limited to a few kilo
metres (Orlova-Bienkowskaja and Bieńkowski, 2018) but human-aided, 
long-distance dispersal can be much higher. Because it results from 
human transportation of infested ash material, a modelling approach 
such as the flexible spatiotemporal stochastic network model PoPS 
(Montgomery et al., 2023) could be very useful as it couples interna
tional trade network and ecological drivers of invasions such as climate 
suitability, host availability as well as propagule pressure. In a recent 
study, Barker et al. (2023) proposed a very promising approach to 
coupling phenology and climate suitability. The authors provide a 
model predicting the phenology of A. planipennis across the invaded and 
the native range. Such a tool is very interesting in terms of management 
because it indicates when and where actions could be realized. It should 
be noted that their model, like ours, predicts that most of western 
Europe is climatically suitable for A. planipennis. 
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Orlova-Bienkowskaja, M.J., Bieńkowski, A.O., 2022a. Low heat availability could limit 
the potential spread of the emerald ash borer to Northern Europe (prognosis based 
on growing degree days per year). Insects 13, 52. https://doi.org/10.3390/ 
insects13010052. 
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