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Viewpoints

Greenbeards in plants?

Summary

Greenbeards are selfish genetic elements that make their bearers

behave either altruistically towards individuals bearing similar

greenbeard copies or harmfully towards individuals bearing

different copies. They were first proposed by W. D. Hamilton over

50 yr ago, to illustrate that kin selection may operate at the level of

single genes. Examples of greenbeards have nowbeen reported in a

wide range of taxa, but they remain undocumented in plants. In this

paper, we discuss the theoretical likelihood of greenbeard existence

in plants. We then question why the greenbeard concept has never

been applied to plants and speculate on how hypothetical green-

beards could affect plant–plant interactions. Finally, we point to

different research directions to improve our knowledge of green-

beards in plants.

Greenbeard theory and empirical examples

In his foundational work, Hamilton demonstrated that genetic
relatedness between individuals is a key driver of social evolution
(Hamilton, 1964b). In particular, he showed that individuals need
to be related for altruism to evolve. However, Hamilton also
highlighted that individuals do not need to be related across their
entire genome. To illustrate this, he imagined a hypothetical gene
(or a cluster of tightly linked genes) with three functions: (1)
generating a signal that is perceivable to other organisms; (2)
perceiving this signal when present in other organisms; and (3)
adjusting social behaviour in such a way that altruism is directed
preferentially towards individuals from which the signal is
perceived (Hamilton, 1964a). He then showed that such genetic
elements would be favoured by natural selection whenever social
partners share similar copies, even if their relatedness is no greater
than expected by chance in the rest of their genome. This simple
thought experiment illustrates that altruism is a selfish behaviour
from the perspective of the genes. Dawkins later coined the term
‘greenbeard’ to illustrate Hamilton’s idea in a scenario where
altruistic individuals would bear a greenbeard and preferentially
direct altruism to other greenbeard bearers (Dawkins, 1976).

It is not clear whether Hamilton’s thought experiment was
intended to be a testable empirical prediction. In fact, greenbeards
were initially thought to entail a biologically unrealistic degree of
pleiotropy (Madgwick et al., 2019). Theoretical works also
suggested that, if greenbeards were to appear, there would be
multiple constraints on their maintenance. For example, several

types of greenbeards only have an advantage when they reach a
critical frequency in the population, which means that they will
only spread under restricted conditions, for example population
viscosity (Gardner & West, 2010). Greenbeards can also be easily
invaded by ‘falsebeards’, mutated copies, which do not engage in
the costly social behaviour, but benefit from it by expressing the
greenbeard signal (Dawkins, 1976, 1982; Gardner &West, 2010;
Biernaskie et al., 2013). Finally, if greenbeards do fixate, they are
likely to remain undetected because all individuals will behave in
the same way (Dawkins, 1982; Crozier, 1986; Rousset & Roze,
2007; Gardner & West, 2010).

Despite all these constraints, empirical research has reported an
increasing number of greenbeards over the last two decades (see
review in Madgwick et al., 2019; Fig. 1). The first greenbeard was
discovered in the fire ant Solenopsis invicta (Keller&Ross, 1998). In
this species, the greenbeard effect is associatedwith a supergene that
comprises two haplotypes: the Social b (Sb) and Social B (SB)
haplotypes. Workers bearing the Sb haplotype identify homo-
zygous SB/SB queens based on their cuticular chemical profile and
kill them before they can reproduce, favouring the Sb haplotype
(Zeng et al., 2022). Further greenbeard examples, mostly in
microorganisms, showcased the various ways a single genetic
element can selfishly increase its reproductive output using
interactions between individuals, which led to the identification
of four basic greenbeard types (Gardner &West, 2010; Madgwick
et al., 2019; Fig. 1).

The empirical literature on greenbeards has expanded the scope
of the initial thought experiment of Hamilton by showing that
greenbeard genes can evolve and operate in a wide range of taxa,
including animals, fungi, and prokaryotes. However, no green-
beard has been reported in plants. In this paper, we: (1) discuss the
theoretical likelihood of the existence of greenbeards in plants; (2)
propose explanations as to why greenbeards have not been reported
in plants; (3) speculate on the nature and mode of action of
hypothetical greenbeards in plants; and (4) suggest directions for
future studies on greenbeards in plants.

Are there theoretical limitations to the existence of
greenbeards in plants?

Greenbeards rely on interactions between individuals
(Hamilton, 1964a; Dawkins, 1976; Gardner & West, 2010).
Plants interact in many ways, particularly through resource
competition (e.g. competition for nutrients, water, or light;
Tilman, 2020). Plants can also interact through chemical
compounds released into the air or into the soil, which have
classically been associated with toxic effects (i.e. allelopathic
compounds; Hierro & Callaway, 2021). More indirectly, plants
can affect their neighbours by modifying the local abiotic or biotic
conditions (e.g. by changing the chemical or physical properties of
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the soil, or by acting as a physical barrier against pathogens;
Callaway, 1995). It is reasonable to think that at least some of these
effects can be controlled by one or few loci (e.g. genes involved in
the production of allelopathic compounds, or genes involved
in pathogen resistance). There are thus multiple ways through
which a gene in a focal plant can affect the fitness of its neighbours.
Moreover, because plants cannot move away from their neigh-
bours, the effect of any potential greenbeard (for either of the
helping or harming type, see Fig. 1) on the fitness of similar or
alternative gene copies is expected to be strong as it would
accumulate over the whole life of the organisms.

Greenbeards are based on a mechanism that detects allelic
similarity/dissimilarity at the greenbeard locus in other individuals,
such as the use of cuticular chemical profiles to distinguish the Sb
from the SB haplotype in the fire ant (Keller & Ross, 1998; Zeng
et al., 2022). Recently, multiple studies have reported differential
phenotypic responses of plants when exposed to kin vs non-kin
neighbours, which could be compatible with a genetic recognition
mechanism (but see the limitations of these studies in the next
section; Dudley & File, 2007; Karban et al., 2013; Crepy &
Casal, 2015;Torices et al., 2018). Even if such amechanism has not
been described so far, we know that plants have already evolved

Fig. 1 Greenbeard typology (redrawn from Gardner &West, 2010; Gardner, 2019 with permission). Theoretical extensions have generalized the concept of
greenbeards, accounting for the multiple ways through which a gene can increase the relative reproductive output of similar gene copies present in other
individuals (Gardner &West, 2010; Madgwick et al., 2019). Facultative helping, as initially proposed by Hamilton, is one type of greenbeard where carriers
express altruistic behaviour only towards other greenbeards carriers. A famous example is the aggregation behaviour displayed by the unicellular amoeba
Dictyostelium discoideum. When food runs out, individuals carrying the same allele at the csA gene can adhere to each other and form a single cooperative
fruiting body, excluding individuals bearing a different allele (Queller et al., 2003; a, typical fruiting bodies of D. discoideum; photo credit, A. Wild). The
helpingbehaviour can also be obligate,meaning that it is always expressed by the greenbeard carrier, but only other greenbeard carriers can benefit from it. For
example, the pathogenic bacteria Agrobacterium tumefaciens can infect plant tissues by inserting a plasmid into their root (tumour inducing (Ti) plasmid)
where it induces cell division and the synthesis of opines, an energy source that can only be used by bacteria carrying the sameplasmid (White&Winans, 2007;
b, a typical tumour induced by A. tumefaciens; photo credit, H. Aarnes). Instead of helping similar gene copies, greenbeards can also be harmful towards
alternative gene copies, which results in the same evolutionary outcome. In fact, the first greenbeard gene ever reported is based on such harmful behaviour
in the fire ant Solenopsis invicta (Keller & Ross, 1998). In this species, a supergene allows workers to identify queen genotypes based on their cuticular
chemical profiles and to eliminate the queens that do not share the same haplotype (c, S. invictaworkers attacking a surrogate queenmade of a paper dummy
soaked with cuticular extracts; photo credit, K. Ross). The harmful behaviour is facultative because it is only expressed towards alternative gene copies. As
with helping greenbeards, harmful greenbeards can be indiscriminate, in which case only non-greenbeard individuals are impacted by the harmful behaviour.
Bacteriocin genes typically operate as obligate harming greenbeards. These genes are expressed in most bacterial lineages where they produce a toxin
(bacteriocin), which only harms bacterial clones that lack the bacteriocin-producing gene (Riley &Wertz, 2002; d, filter paper discs soaked with regular
antibiotic (left), bacteriocin (right) and the two in combination (bottom) create inhibition zones within which bacteria cannot grow; photo credit, S. Bakkal &
M. Riley). This selective toxicity arises from tight linkage between the bacteriocin-producing gene and the gene encoding the toxin deactivator.
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genetic recognition mechanisms in the context of sexual reproduc-
tion. Self-incompatibility (SI) systems prevent self-fertilization
and inbreeding in c. 40% of flowering plant species. Self-
incompatibility is often mediated by a single genetic element (the
S locus, which encompasses several genes, notably a male and a
female determinant). In most SI systems, interactions between
pollen and stigma proteins that originate from the same Shaplotype
in the male and the female lead to the arrest of the growth of the
pollen tube and thus to the failure of fecundation (Fujii
et al., 2016). However, SI is not greenbeard-like since the effect is
within a single individual and because high relatedness at the SI
locus results in the absence of fertilization and, consequently, lower
fitness – the opposite of the greenbeard mechanism. However, SI
systems illustrate that plants already have evolutionarymechanisms
that enable genetic recognition at a single locus – a key feature of
greenbeard genes.

A necessary condition for themaintenance of the greenbeard effect
is that the locus controlling the fitness effect (‘behaviour locus’) and
the locus controlling the recognition mechanism (‘matching locus’)
are maintained in tight linkage disequilibrium and transmitted as a
singlemendelian unit (Rousset&Roze, 2007).Themultiplication of
supergene discoveries in recent years suggests that such strong
associationbetween co-segregating locimightnot beas uncommonas
previously thought, including in plants (e.g. Joron et al., 2011; Li
et al., 2016;Helleu et al., 2022). Inmany cases, co-segregation results
from chromosomal rearrangements that suppress recombination
between the different genes (Guti�errez-Valencia et al., 2021). For
example, the Sb haplotype of S. invicta results from three large
inversions (Yan et al., 2020), and the S locus in Primula vulgaris from
one insertion (Li et al., 2016). Such chromosomal rearrangements
could as well create a genetic association between a recognition locus
anda locus involved inplant–plant interactions, and, as such, be at the
origin of a greenbeard.

Why have greenbeards never been reported in plants?

Social evolution concepts were first applied to plants in the late 90s
when multiple empirical studies showed that kin selection could
affect plant–plant interactions in the wild (Goodnight, 1985;
Stevens et al., 1995; Kelly, 1996; Donohue, 2003). However, it is
not until recently that social evolution theories have really started to
percolate into plant sciences (Biedrzycki & Bais, 2010; Dudley
et al., 2013; Anten & Chen, 2021). Despite the recent multi-
plication of studies on kin selection and kin recognition in plants,
greenbeards have never been reported. The greenbeard concept has
not even been applied to plants. How can we explain this?

A primary and simple reason is that few people working with
plants are familiar with the field of social evolution. Despite recent
efforts to popularise social evolution concepts among plant
scientists (e.g. Dudley, 2015), a historical gap remains compared
with animals and microorganisms where researchers have largely
appropriated social evolution principles (West et al., 2021). This
historical gap has certainly contributed to limiting the diffusion of
the greenbeard concept among plant scientists.

Perhaps due to this recent appropriation of social evolution
concepts by plant scientists, the claim that plants can recognize the

genetic identity of their neighbours and change their phenotype
accordingly is still debated (e.g. Klemens, 2008;Till-Bottraud&de
Villemereuil, 2016; Pennisi, 2019). While many studies have
reported differential phenotypic responses according to neighbour
relatedness, the fitness consequences of these responses, when
reported, do not always align with theoretical expectations (i.e.
higher fitness in groups of kin vs groups of non-kin; Andalo
et al., 2001; Donohue, 2003; Milla et al., 2009; Stachowicz
et al., 2013). Moreover, even if some mechanisms involving, for
example chemical (Karban et al., 2013) or spectral cues (Crepy &
Casal, 2015), have been proposed to explain how plants could
detect neighbour relatedness, no recognition mechanism has been
described so far. Part of the confusion surrounding plant studies
also stems from the experimental designs used to test neighbour
recognition. In most experiments, individuals are typically grown
with ‘kin’ vs ‘non-kin’ neighbours (Dudley & File, 2007; Murphy
& Dudley, 2009; Biedrzycki et al., 2010; Bhatt et al., 2011; Fang
et al., 2013). First, these designs often explore a limited range of
extreme relatedness values. For example, many studies use either
clones or offspring obtained from highly selfing lineages as
neighbours in their ‘kin’ treatment, corresponding to a scenario
where r � 1. Consequently, the ‘kin’ treatment is actually closer to
a ‘self’ treatment, and self-recognition rather than kin recognition
can explain the results (Mazal et al., 2023). Second, these designs
have been shown tobe poorly adapted to test for genetic recognition
because confounding factors such as differences in competitive
ability between genotypes (Masclaux et al., 2010) or nonlinear
relationships between vegetative and reproductive biomass (Ehlers
&Bilde, 2019) can also result in a higher performance of kin groups
compared with non-kin groups. Given current debates and
challenges associated with social evolution in plants, it is not so
surprising that the idea of a greenbeard, that is a single genetic
element influencing plant–plant interactions for its own benefit,
has not yet become a realistic and testable biological hypothesis in
the eyes of most plant researchers.

How could greenbeards operate in plants?

A key difference between animals and plants, which is important in
relation to interactions between conspecifics, is that plants do not
move, so they cannot ‘choose’ with whom they interact, contrary to
animals. There is currently no clear hypothesis regarding the role of
motility and partner choice in the evolution of greenbeards. Recent
theoretical results have shown that the ability to encountermultiple
individuals before engaging in a social interaction is an important
trait to stabilize kin recognition (Scott et al., 2022). This may
suggest that greenbeards of the facultative type (i.e. where the
helping or harming phenotype is plastic) should be less likely to
evolve in plants. However, empirical results in microorganisms
show no clear relationship between motility and greenbeard types
(Madgwick et al., 2019).

The absence ofmotility does not seem to have been an obstacle to
the evolution of selfish genetic elements in plants. For example,
Pollen Killing (PK) genes cause hybrid incompatibilities and
segregation distortion in several species, including Arabidopsis
thaliana and rice (Oryza sativa; Ouyang & Zhang, 2013; Vaid &

New Phytologist (2024) 242: 870–877
www.newphytologist.com

� 2024 The Authors

New Phytologist� 2024 New Phytologist Foundation

ViewpointsForum

New
Phytologist872

 14698137, 2024, 3, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.19599 by C

ochrane France, W
iley O

nline L
ibrary on [24/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Laitinen, 2019). These genes operate following a typical poison-
antidotemodel (Yu et al., 2018; Simon et al., 2022; Fig. 2a): Before
the meiosis that precede pollen production, two genes in tight
linkage produce a long-lived poison and a short-lived antidote in
the cytoplasm of the mother cell (the microsporocyte). After
meiosis, the poison remains in all daughter cells (the microspores),
but not the antidote, leading to the death of the daughter cells that
do not bear the matching antidote allele. Because they ultimately

favour some gametes over others, PK genes are traditionally
classified as segregation distorters and gamete killers. However, in
most plant species, meiotic products are not gametes but
gametophytes that later produce the ‘real’ gametes through
additional mitoses and cellular rearrangements. In fact, pollen
grains can be seen as haploid individuals (male gametophytes) that
are released from the plants’ anthers, carry the male gametes, and
have an independent life cycle in which they express their own

Fig. 2 Illustration of four hypothetical greenbeards in plants. (a) A Pollen Killing (PK) system revisited as a greenbeard. Pollen Killing occurs in hybrid plants
during the meiosis that precedes pollen production. A PK factor composed of two genes in tight linkage produces both a poison and an antidote that
counteracts the poison in the microsporocyte. After meiosis, the poison remains in all daughters cells (the microspores), but not the antidote. Then, only the
cells thatpossess theantidoteallele are rescued,while theothersarekilled. SuchPKgeneshavebeen reported in rice (Yuet al., 2018)and inArabidopsis thaliana
(Simon et al., 2022). (b) A model of obligate harming greenbeard inspired by results fromMontazeaud et al. (2022). A single genetic element controls the
production of a toxic allelopathic compound (2) and a detoxification compound (1), as in a typical poison–antidote system. Neighbours who do not carry the
matching poison–antidote allele are negatively affected. (c) A model of obligate helping greenbeard inspired by Karban et al. (2013). A single genetic
element controls (1) theemissionof volatile organic compounds (VOCs) followingherbivory damage, (2) thedetectionofVOCsbyneighbouringplants, (3) the
production of plant defence compounds that decrease leaf palatability for herbivores. (d) A model of facultative helping greenbeard inspired by Crepy &
Casal (2015). A single genetic element controls (1) a modification of the light spectrum that is transmitted and/or reflected on neighbouring plants, (2) the
detection of this light modification in neighbouring plants, and (3) the horizontal leaf movement leading to reduced shading on the neighbour. In the four
examples, the different greenbeard functions are represented with different boxes corresponding to different genes in linkage. Theoretically, the different
functions could equally be achieved by a single pleiotropic gene.
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genes. From this perspective, PK genes could be qualified as
greenbeards because they harm non-matching alleles in other
individuals.

Similar poison–antidote systems could also mediate chemical
interactions between plants through soil exudates. In a recent study,
Montazeaud et al. (2022) found that mixtures of wheat varieties had
lower yield and were more diseased when the varieties had different
alleles at a single locus close to a gene involved in the synthesis of an
allelopathic compound. If allelopathic compound production and
detoxificationwere encoded by a single genetic element, as in a typical
poison–antidote model, the system could evolve as an obligate
harming greenbeard (Fig. 2b), analogous to the bacteriocin genes in
microorganisms (Riley & Wertz, 2002; Fig. 1d). In this scenario,
individuals carrying agiven allele at the greenbeard locusmayproduce
allelopathic compounds that harm individuals with different alleles
but not individuals with a matching allele.

The greenbeard model can also be applied to other types of
plant–plant interactions, such as volatile organic compound
(VOC)-mediated interactions. For example, Artemisia tridentata
exhibit reduced herbivore damage if they have previously been
exposed to VOCs emitted from other plants that were themselves
chewed by herbivores (Karban et al., 2006). Intriguingly, plants
exposed to VOCs from kin neighbours tend to show less herbivory
damage than plants exposed to VOCs from non-kin, which has
classically been interpreted as plants stimulating the defence of their
kin to help them anticipate herbivore attacks (Karban et al., 2013).
However, this result could also be interpreted as an obligate helping
greenbeard gene (or a cluster of genes in tight linkage) that would:
(1) produce the volatile signal; (2) receive the volatile signal; and (3)
stimulate plant defence against herbivores upon signal reception
(Fig. 2c). Interestingly, current models of VOC-mediated plant–
plant interactions suggest that the cellular and molecular pathways
of VOC receptionmirror those involved in VOC emission (Kessler
et al., 2023), supporting the notion that the same cluster of genes
could control both sides of the interaction.

Other results previously interpreted as kin recognition could also
be the manifestation of a single genetic elements acting like
greenbeards. In A. thaliana, some genotypes have been shown to
move their leaf away from their kin neighbours to reduce shading, a
phenotype that was not observed with non-kin (Crepy &
Casal, 2015). Evidence suggested that the recognition signal was
transmitted through light and detected by photoreceptors. Instead
of kin recognition, however, such pattern could be produced by a
greenbeard with three functions (Fig. 2d): (1) leaving a spectral
signature in the transmitted and reflected light; (2) perceiving such
signature in the incident light; and (3) inducing leaf movement
away from the neighbours upon signal perception.

These four examples illustrate that the greenbeard concept canbe
used to revisit existing results in the plant literature. The concept is
applicable to mechanisms that are already well-described at the
molecular level, such as PK genes, as well as to more intricate
mechanisms of kin interactions that have yet to be resolved.
Importantly, we are not claiming that these interactions are driven
by greenbeard genes; rather, we want to draw researchers’ attention
to the possibility that greenbeards may play a role in intraspecific
interactions between neighbouring plants. As with any novel

hypothesis, further research and experimentation will be essential
to test whether greenbeards also occur in plants.

Perspectives for greenbeard research in plants

Demonstrating the existence of greenbeards in plants would
broaden our vision of cooperation, highlighting the diverse ways in
which organisms, even without mobility, can influence the
reproductive success of their conspecifics. This discovery would
also challenge our traditional view of plant ecology by revealing the
intricate ways in which genetic elements shape plant–plant
interactions, affecting not only the individuals that carry them
but also the broader ecological dynamics of the population. Finally,
understanding how genetic elements shape plant–plant interac-
tions will be crucial for developing sustainable agricultural
practices. Similar to how gamete killers can impact plant breeding
by impeding hybridization between lineages, greenbeards could
potentially reduce crop performance in genetically diverse crop
stands, such as varietal mixtures. Controlling relatedness at
greenbeard loci could thus be another way to use kin selection
principles to achieve greater crop cooperation and higher yields
(Montazeaud et al., 2020; Biernaskie, 2022).

Several areas of plant sciences appear particularly promising for
greenbeard discoveries, as indicated by published studies wherein
relatedness between interacting plants was shown to affect the
outcome of plant–plant interactions (Table 1). Exploring the genes
and the molecular pathways involved in the different steps of these
interactions (emission, reception, and reaction to the signal) could be
a promising way to test whether these patterns could be manifesta-
tions of greenbeard genes. New greenbeards could also be identified
using competition experiments in which plants are exposed to
different conspecific neighbours. However, one important limitation
of current experimental approaches is that they do not allow the effect
of genome-wide relatedness to be distinguished from the effect of
relatedness at the level of a single locus. Instead of focussing on kin vs
non-kin neighbour comparisons, studies should be designed to test
the effect of relatedness locus-by-locus, for example using statistical
approaches already developed in agronomy (Montazeaud
et al., 2022), plant ecology (Wuest & Niklaus, 2018; Turner
et al., 2020; Sato et al., 2021), or animal behaviour (Avalos
et al., 2020). Ideally, experiments should mix genotypes from
different populations, which would allow the detection of green-
beards even when they have reached fixation within populations
(selfish genetic elements are often revealed in hybrids obtained from
crosses between different populations (�Agren & Clark, 2018)).
Because known cases of greenbeards generally involve several linked
genes, and such gene clusters are often maintained in linkage by
chromosomal rearrangements (Joron et al., 2011; Wang et al., 2013;
Li et al., 2016; Guti�errez-Valencia et al., 2022), it would also be
possible to identify greenbeards by searching for associations between
structural genomic variants and specific phenotypic traits involved in
plant–plant interactions.

The idea that a single genetic element can have a strong influence
on intraspecific interactions may seem overly simplistic and too
reductionist to many researchers in the plant community.
However, this idea is increasingly supported by empirical data
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(Wuest &Niklaus, 2018;McGale et al., 2020; Turner et al., 2020;
Barbour et al., 2022; Wuest et al., 2023). Moreover, there are
already multiple examples of single genetic elements influencing
social organization and collective behaviours in animals (Nelson
et al., 2007;Wang et al., 2013). The greenbeard concept provides a
theoretical foundation to explain how such genetic elements could
work and how they could evolve, and as such, represents a
promising (and unexplored) avenue to better understand the
genetic basis of plant–plant interactions (Subrahmaniam
et al., 2018; Becker et al., 2022).
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Table 1 Most promising areas of plant sciences for greenbeard discovery.

Research field

Studies reporting
greenbeard-compatible
results Follow up research questions for greenbeard investigation (apply to all research fields)

Pollen Killing Yu et al. (2018)
Simon et al. (2022)

Identification of candidate greenbeard genes
Which genes or gene clusters are responsible for the observed interactions?
Functional characterization of the candidate genes

What roles do the identified genes play in the emission, reception or response to signals
involved in plant–plant interactions?

Evolutionary dynamics of the greenbeard genes

Is there genetic variation within the species for the candidate signal (e.g. allelopathic
compounds, volatile compounds, and light signals)/at the candidate locus?

What is the origin and selection pressures that have shaped genetic diversity at the
greenbeard locus?

What are the costs and benefits associated with the greenbeard?
Ecological consequences of greenbeard interactions
What are the ecological consequences of greenbeard interactions in plant populations
(community dynamics, population structure, ecosystem functioning)?

Applied implications for agriculture

What are the consequences of greenbeard interactions for agricultural practices?
Canwecontrol/manipulate thegreenbeardmechanismtoenhancecropperformance, pest
resistance, and overall agricultural sustainability?

Allelopathy-mediated plant–plant
interactions

Montazeaud et al. (2022)

Volatile-mediated plant–plant
interactions

Karban et al. (2013)

Light and photoreceptor-
mediated plant–plant
interactions

Crepy & Casal (2015)
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