
HAL Id: hal-04623789
https://hal.inrae.fr/hal-04623789

Submitted on 25 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Combining short-term breath measurements to develop
methane prediction equations from cow milk

mid-infrared spectra
Solène Fresco, A. Vanlierde, Didier Boichard, Rachel Lefebvre, M. Gaborit, R.

Bore, Sebastien Fritz, N. Gengler, Pauline Martin

To cite this version:
Solène Fresco, A. Vanlierde, Didier Boichard, Rachel Lefebvre, M. Gaborit, et al.. Combining short-
term breath measurements to develop methane prediction equations from cow milk mid-infrared spec-
tra. Animal, 2024, 18 (7), pp.101200. �10.1016/j.animal.2024.101200�. �hal-04623789�

https://hal.inrae.fr/hal-04623789
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Animal 18 (2024) 101200
Contents lists available at ScienceDirect

Animal

The international journal of animal biosciences
Combining short-term breath measurements to develop methane
prediction equations from cow milk mid-infrared spectra
https://doi.org/10.1016/j.animal.2024.101200
1751-7311/� 2024 The Authors. Published by Elsevier B.V. on behalf of The Animal Consortium.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail address: solene.fresco@inrae.fr (S. Fresco).
S. Fresco a,b,⇑, A. Vanlierde c, D. Boichard b, R. Lefebvre b, M. Gaborit d, R. Bore e, S. Fritz a,b, N. Gengler f,
P. Martin b

a Eliance, 149 rue de Bercy, 75595 Paris cedex 12, France
bUniversité Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
cWalloon Agricultural Research Centre, Animal Production Unit, 5030 Gembloux, Belgium
d INRAE UE326 Domaine Expérimental du Pin, 61310 Exmes, France
e Institut de l’Élevage, 149 Rue de Bercy, 75012 Paris, France
f TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium

a r t i c l e i n f o a b s t r a c t
Article history:
Received 3 October 2023
Revised 11 May 2024
Accepted 14 May 2024
Available online 21 May 2024

Keywords:
Diurnal variation
GreenFeed system
Greenhouse gas emissions
Holstein dairy cow
Mitigation
Predicting methane (CH4) emission from milk mid-infrared (MIR) spectra provides large amounts of data
which is necessary for genomic selection. Recent prediction equations were developed using the
GreenFeed system, which required averaging multiple CH4measurements to obtain an accurate estimate,
resulting in large data loss when animals unfrequently visit the GreenFeed. This study aimed to deter-
mine if calibrating equations on CH4 emissions corrected for diurnal variations or modeled throughout
lactation would improve the accuracy of the predictions by reducing data loss compared with standard
averaging methods used with GreenFeed data. The calibration dataset included 1 822 spectra from 235
cows (Holstein, Montbéliarde, and Abondance), and the validation dataset included 104 spectra from
46 (Holstein and Montbéliarde). The predictive ability of the equations calibrated on MIR spectra only
was low to moderate (R2

v = 0.22–0.36, RMSE = 57–70 g/d). Equations using CH4 averages that had been
pre�corrected for diurnal variations tended to perform better, especially with respect to the error of predic-
tion. Furthermore, pre�correcting CH4 values allowed to use all the data available without requiring a min-
imum number of spot measures at the GreenFeed device for calculating averages. This study provides advice
for developing new prediction equations, in addition to a new set of equations based on a large and diverse
population.
� 2024 The Authors. Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Implications

Methane emissions from dairy cows can be predicted using
milk mid-infrared spectra. Recently developed prediction equa-
tions are calibrated on short-term breath measurements, requiring
the averaging of 20 measurements for accurate daily estimates per
cow. This results in data loss or imprecision. We developed equa-
tions indicating that precorrecting the individual methane mea-
surements for diurnal variation before averaging them over
2 weeks can limit data loss and improve predictive performance.
Some of them will soon be applied to milk spectra routinely col-
lected by the French milk recording companies to perform a geno-
mic evaluation aimed at reducing methane emissions from French
dairy cows.
Introduction

In the context of reducing greenhouse gas emissions, one major
mitigation strategy in the agricultural sector is decreasing methane
(CH4) emissions from cattle (Gerber et al., 2013). Several studies
have demonstrated the possibility of direct genetic selection
against CH4 emissions (Pickering et al., 2015; Pryce and Haile-
Mariam, 2020), which would complement improvements in cattle
nutrition and management (Beauchemin et al., 2022). However,
genetic selection against CH4 emissions requires large-scale phe-
notyping for this trait, which is challenging in several ways.

The methods that are largely considered the gold standards for
measuring individual CH4 emissions from cattle — respiration
chambers and sulfur hexafluoride tracer gas — are low throughput,
costly, and labor-intensive, and require technical skills to ensure
accurate measurements (Hammond et al., 2016; Tedeschi et al.,
2022). New direct phenotyping tools have been developed to
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estimate CH4 emissions from breath samples taken during milking
or feeding, such as the GreenFeed system (GF, C-Lock Inc., Rapid
City, SD, USA) and the ‘‘sniffer methods” (Garnsworthy et al.,
2019). They are medium throughput, but their large-scale deploy-
ment on commercial farms — as would be required for genetic pur-
poses — is hindered by cost, technical management, and medium
reliability (Hammond et al., 2016; Tedeschi et al., 2022). Conse-
quently, proxies have been proposed to more easily generate the
amount of data needed for genetic analysis of CH4 emissions
(Negussie et al., 2017; van Gastelen and Dijkstra, 2016). Based on
initial research by Dehareng et al. (2012), there is growing interest
in predicting CH4 emissions from milk mid-infrared (MIR) spectra
(Coppa et al., 2022; Denninger et al., 2020; McParland et al., 2023;
Vanlierde et al., 2018) which are routinely collected and already
stored in many practical settings.

Several equations have been developed to predict CH4 emis-
sions using reference measurements collected with gold-standard
methods (Dehareng et al., 2012; Shetty et al., 2017; Vanlierde
et al., 2015), but it is only recently that these equations have been
calibrated using measurements collected with GF and Sniffer
(Coppa et al., 2022; Liu et al., 2022) more suited to rapidly develop
larger and more diverse calibration populations. However, those
latter equations were calibrated using homogeneous calibration
populations – either in terms of breeds, feeding systems, living
conditions, or parity and lactation stage – and therefore may not
be applicable to spectra collected from cows not matching the cal-
ibration criteria.

Because GF measurements are short (a few minutes), one limi-
tation of using them to calibrate equations is their sensitivity to
feeding-related diurnal variations in CH4 emissions. As a result, a
single record is a poor proxy for daily CH4 emissions (Hristov
et al., 2015). This means that multiple measurements must be
associated with individual milk MIR spectra, and they are usually
averaged (Coppa et al., 2022; Denninger et al., 2020; Liu et al.,
2022), with the recommendation of a minimum of 20 measure-
ments per individual (Manafiazar et al., 2016). However, if a cow
rarely visits the GF, it can take a long time to reach 20 measure-
ments, which can lead to unequal recording periods for cows with
very different visit frequencies (Coppa et al., 2022) or to data loss
when averaging over fixed time periods.

In this study, we developed equations to predict CH4 emissions
from dairy cows based on GF measurements and milk MIR spectra
from a heterogeneous population. We included individuals from
three different breeds – Holstein, Montbéliarde, and Abondance –
living under different conditions, representing a total of five farms
and nine diets. The idea is to determine the best equation to apply
to the spectra routinely collected by the French milk recording in
order to develop a genomic evaluation of CH4 emissions. Therefore,
a specific aim of this study was to determine if considering the
diurnal variations of CH4 emissions or modeling GF data through-
out lactation with random regression models would improve the
accuracy of the predictions by reducing data loss compared with
the standard averaging method used with GF data.
Material and methods

Animals and diet

To establish the most robust prediction equations possible, the
experiment was designed to maximize the variability of CH4 emis-
sions in the dataset. To this end, data were obtained from nine
experiments carried out on five French experimental or commer-
cial farms, which will be divided into two groups to facilitate com-
prehension. In the first group, data were collected over a period of
3–5 weeks between September 2019 and October 2021. The cows
2

were of three different breeds: 29 Holstein, 112 Montbéliarde, and
18 Abondance. The cows were milked twice a day in milking par-
lors (at 0700 and 1600 h), and their parity ranged from 1 to 7. In
the second group, data were collected from 76 first- and second-
parity Holstein cows throughout lactation fromMarch 2021 to Jan-
uary 2022. Cows were milked using an automated milking system
(Lely Astronaut A4, Lely Holding, Maassluis, the Netherlands).
Overall, the diets in the experiments varied from high-forage to
high-energy diets (Supplementary Table S1). No dietary oil or
CH4-reducing additive was present in any of the diets.

Spectra collection

For cows in the first group, spectra were recorded once per cow
per week from samples composed of 50% evening milk and 50%
morning milk. Cows of the second group had free access to an auto-
matic milking system. Once a week, milk samples were collected at
each visit over a 24-hour period. One spectrum was obtained from
each milk sample using MIR spectroscopy. If multiple spectra were
recorded for the same cow during this 24-hour period, they were
averaged proportionally to the milk yield at each visit, to obtain
one final spectrum per cow per week.

Methane emission recording

Methane measurements were obtained using GF devices that
were freely available to cows. In the experiments of the first group,
cows were trained to visit the GF and staff ensured that they used
it, while this was not the case in the second group. The GF devices
were calibrated daily following the manufacturer’s instructions.
Low-energy pellets or concentrate were distributed to bait the
cows and ensure the proper head position in the bin. Following
Vanlierde et al. (2015), CH4 records of less than 150 g/d and greater
than 950 g/d were discarded (0.7% of the data), resulting in 41 194
individual CH4 measurements.

Methane variables to calibrate the prediction equations

Methane emissions recorded using the GF method are usually
averaged over several days to obtain an accurate estimate of the
true CH4 emission of the animal. These averages are then associ-
ated with milk MIR spectra to develop prediction equations. In this
study, we defined this approach as the reference. As these averages
are biased by the combination of the diurnal variations of CH4

emission (Hammond et al., 2016) and the frequency of visit to
the GF, we proposed new approaches trying to overcome these
weaknesses. First, we wanted to determine if correcting CH4 emis-
sions for diurnal variations before averaging would improve the
predictive ability of the equations. Second, we wanted to deter-
mine if modeling CH4 emission throughout lactation using all the
CH4 records would improve the quality of the reference CH4 asso-
ciated with the milk MIR spectra. Third, we wanted to determine if
using at least 20 CH4 measurements to calculate the average
(Manafiazar et al., 2016) was still recommended with the two
new approaches or if they allowed to estimate a CH4 emission
robust enough to use all the data available.

Reference approach: methane emission averaged over 1 or 2 weeks
In the first approach, simple averages were calculated over

either 7 days (1�week average) or over 13 ± 1 day(s) (2�week
average). These averages were calculated from raw CH4 measure-
ments taken before the day that MIR spectra were recorded (an-
other scenario was tested with averages centered on the day of
the spectrum recording, but no difference in prediction perfor-
mances was observed and this scenario is not presented).
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Methane emission precorrected for diurnal variations
Individual CH4 measurements were affected by the time of visit

to the GF. These variations were completely independent of the
MIR spectra. To reduce this noise, the CH4 measurements were
adjusted for these diurnal variations estimated within each farm
(yitjhf � Hhf , referred to as precorrected throughout the remainder
of this article) according to the following model:

yitjhf ¼ lþ DIMt þ Pj þ Hhf þ ai þ ei ð1Þ

where yitjhf is the measured raw CH4, l is the overall mean, DIMt is
the fixed effect of the week in milk, Pj is the fixed effect of parity (1,
2, or 3 + ), Hhf is the fixed effect of hour h on farm f, ai is the random
animal effect, and ei is the random residual effect term of yitjhf , nor-
mally distributed.
Methane emission modeled throughout lactation
Another approach consisted of modeling CH4 emissions with

random regression models using each visit to the GF. The base
model was the following:

yil ¼ lþ FIXEDþ
X2

n¼1

blncnðtÞ þ
X2

n¼1

aincnðtÞ þ ei ð2Þ

where yil is the CH4 performance of animal i; FIXED includes the
fixed effects of year � month of recording, year � season of calving,
breed, and experiment; bln is the nth fixed regression coefficient on
Days in Milk (DIM) within parity class l; cn is the nth coefficient of a
Legendre polynomial evaluated at DIM t; ain is the nth random
regression coefficient of animal i; and eijkl is the random residual
term, normally distributed.

Using the Blupf90 suite of programs (Misztal et al., 2002), three
models were developed based on Eq. (2): M1 used raw CH4 as yil;
M2 used pre–corrected CH4 as yil; and M3 used raw CH4 as yil
and included an additional fixed effect of the time of measurement
within the farm. Predictions were obtained by subtracting the
residuals (M1 and M2) or the residuals and the fixed effect of the
time of measurement within the farm (M3) to the phenotype.
Restriction to a minimum number of visits per week for considering
the data

To maximize the reliability of GF data, it is generally recom-
mended to combine at least 20 measurements per individual
(Manafiazar et al., 2016). However, this threshold would have
excluded most of the data for the 1-week calculation. We therefore
adapted these restrictions as follows: a minimum of 14 measure-
ments for 1�week CH4 averages and 20 measurements for 2�week
CH4 averages. We then calibrated equations using averages com-
Table 1
Distribution of the reference methane (CH4) variables (g/day) measured from dairy cows

Reference CH4 variables1 Unrestricted2

n Mean SD Min

Raw CH4

1-week 1 822 427 78 208
M1 1 822 412 67 211
M3 1 822 429 69 223
2-week 897 426 73 219

Precorrected CH4

1-week 1 822 410 74 200
M2 1 822 361 64 164
2-week 897 409 71 208

1 Methane measurements were used raw or pre–corrected for a farm-specific hour eff
across lactation using random regression models (M1 = raw CH4; M2 = pre–corrected C

2 Unrestricted models were calibrated using all data, whereas at least 14 or 20 measure

3

plying with this threshold (restricted models) or using all the aver-
ages available (unrestricted models).

In conclusion, prediction equations were developed from 14 ref-
erence CH4 variables. These variables included raw averages over 1
or 2 weeks, precorrected averages over 1 or 2 weeks, and three
methane variables modeled throughout the lactation, each of them
either restricted or unrestricted. Table 1 presents the distribution
of the 14 CH4 variables.
Spectral data treatment

To calibrate the equations, we used CH4 measurements
recorded between 5 and 305 DIM. To ensure that the cows would
have at least 7 days of CH4 measurement before each of their spec-
tra, only spectra collected from the 11th DIM were considered to
calibrate the equations on 1�week CH4 averages. Similarly, only
spectra collected from the 16th DIM were used to calibrate the
equations on 2-week CH4 averages.

Spectra were standardized according to the procedure
described in Grelet et al. (2017) to remove instrument interference.
Three spectral regions were considered for the calibration process
(968–1 577 cm�1, 1 720–1 809 cm�1, and 2 561–2 966 cm�1),
resulting in the selection of 289 data points, to which a first deriva-
tive was applied (Soyeurt et al., 2011). To make the prediction
equation coefficients lactation stage dependent, each wavenumber
of the spectra was multiplied by a constant, a linear, and a quadra-
tic modified Legendre polynomial factor defined for 5–365 DIM
(Gengler et al., 1999). This resulted in modified spectra counting
867 data points (289 data points for each constant, linear, and
quadratic part), which were used to develop the prediction equa-
tions using partial least square regression (Winisi software, Foss,
Hillerød, Denmark). A five-fold internal cross-validation procedure
was performed to test the performance of the models. The calibra-
tion and cross-validation accuracy of the models was evaluated
using values of R2 and SE.

The standardized Mahalanobis distance was calculated to esti-
mate spectral homogeneity. This value was calculated between
each spectrum and the mean of all spectra used for calibration
and was used to exclude outlier spectra.
Validation dataset

The validation dataset contained 104 spectra and the corre-
sponding 1�week and 2�week CH4 averages obtained from 46
cows, originating from three experiments. From this dataset, 64
spectra were taken under the same conditions as the second group,
from 22 primiparous Holstein cows between February and
September 2022. The other 40 spectra were from 24 cows (4 Hol-
used to calibrate the equations.

Restricted2

Max n Mean SD Min Max

671 1 035 438 79 216 640
637 1 035 421 71 217 637
645 1 035 439 74 233 645
626 694 432 76 219 626

649 1 035 420 76 205 629
553 1 035 367 67 171 553
616 694 414 73 208 616

ect, then were either combined by averaging them over one or 2 weeks or modeled
H4; and M3 = raw CH4 + fixed effect of the time of measurement within the farm).
ments were required to calibrate 1-week or 2-week restricted models, respectively.



Table 2
Descriptive statistics of methane emissions in g/day of dairy cows for calibration and validation sets. These data were used to compute and analyze raw methane averaged over
one week for individuals with a minimum of 14 measurements.

Type of model n Mean SD Min Max

Calibration population 26 069 440 123 150 943
Validation population 1 257 399 110 150 775
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stein and 20 Montbéliarde) in two different experiments from two
farms of the first group. There were no animals in common
between the calibration set and the validation set; furthermore,
the two sets were completely separated in time, with no overlap.
We retained spectra between 16 and 305 DIM, CH4 measurements
between 150 and 950 g/d, and CH4 averages calculated from at
least 20 individual visits. The same treatment was applied to the
validation spectra as for calibration spectra (selection of spectral
regions, application of a first derivative, and integration of DIM
information). We kept one spectrum every 2nd week to avoid over-
lapping CH4 averages. Calculations of the standardized Maha-
lanobis distance between each validation spectrum and the
spectra used for calibration did not reveal any outlier. The valida-
tion accuracy of the models was evaluated using values of R2 and
RMSE. Validation performances were nearly identical for both 1-
week or 2-week CH4 averages, so only the results from 2-week
CH4 averages are presented.
Results

Variability of spectra and methane emissions

Across all calibration experiments, the average value of raw CH4

emissions per visit was 440 g/d (from the 26 069 visits used to
compute restricted 1-week CH4 averages), with a SD of 123 g/d
(Table 2). The number of visits varied depending on how CH4

was calculated (e.g., 1-week or 2-week averages, restricted or
not), but the mean and SD were similar for all types of CH4 vari-
ables. When CH4 measurements were precorrected for farm-
specific diurnal variations (Fig. 1), the average amount of CH4 emit-
ted per visit was 428 g/d (from the 26 069 visits used to compute
restricted 1-week CH4 averages), with a SD of 114 g/d. Again, these
values were similar for all CH4 variables.

The frequency of visits to the GF units varied from 2.1 to 4.5 per
cow per day depending on the experiment; there were large differ-
ences between the first group and the second group, which had
average (SD) visit frequencies of 4.0 (1.4) and 2.1 (1.0), respec-
tively. Because of the low visit frequency in the second group,
Fig. 1. Farm-specific effect of time of day on methane emissions of dairy cows. Each
type of point and color represents a farm.

4

imposing restrictions based on the number of visits in a given per-
iod (i.e., excluding individuals who did not meet the minimum
number of visits) removed a considerable amount of data (58.8
and 34.6% for 1-week and 2-week CH4 averages, respectively).
The impact of the restriction was less notable for the first group,
in which the percentage of data removed varied from 0 to 33.3%
and from 0 to 25% for the 1-week and 2-week CH4 averages,
respectively.

Analysis of Mahalanobis distances revealed that the spectra
were homogeneously distributed around the centroid, with Mon-
tbéliarde spectra at the periphery (Fig. 2). To minimize data loss,
we computed 2-week CH4 averages over 13 ± 1 days instead of a
strict 14-day period; otherwise, 75% of the data would have been
removed due to the experimental designs.

For the validation set, the average CH4 emissions per visit were
399 g/d, with a SD of 110 g/d. Descriptive statistics of CH4 emis-
sions are shown in Table 2. The analysis of the standardized Maha-
Fig. 2. Principal component analysis of the 1 822 milk mid-infrared spectra. (A)
First and second dimensions, and (B) first and third dimensions, representing data
from Holstein ( ), Montbéliarde ( ), and Abondance ( ) cows.
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lanobis distance revealed that validation spectra were homoge-
neous with the calibration spectra.

Prediction of methane emissions from mid-infrared spectra

The calibration and validation performances of the 14 predic-
tive models developed for the different CH4 variables are shown
in Table 3. The equations had R2

cv values ranging from 0.30 to 0.45
and SEcv varying from 53 to 63 g/d. In calibration, restricted models
performed better than unrestricted models for all CH4 variables, and
pre�correction of CH4 measurements did not improve the perfor-
mance of the prediction equations. Generally, equations based on
modeled values of CH4 performed better than those based on aver-
aged CH4 with respect to both R2

CV and SECV, with M1 performing
better than M2 and M3.

For all validation models, R2
v ranged from 0.22 to 0.37 and RMSE

ranged from 57 to 70 g/d. Regardless of how CH4 was calculated,
restricted models performed worse in terms of R2 and RMSE than
unrestricted models, except for raw 2-week CH4 averages and pre-
corrected 1-week averages. Pre�correction of CH4 measures gener-
ally improved the performance of the prediction equations, except
for the equation that used modeled values of CH4 (M1, M2, and
M3), for which precorrection decreased R2

v while greatly improving
RMSE. Unrestricted precorrected equations performed better than
restricted raw equations when CH4 measurements were averaged
over 1 or 2 weeks.

Discussion

The objective of this study was to determine whether precor-
rection of individual CH4 measurements for diurnal variations or
modeling CH4 emissions throughout the lactation would allow to
improve the performance of the prediction equations. This
approach would avoid the high data loss resulting from the use
of averages calculated from a minimum number of individual mea-
surements (Manafiazar et al., 2016).

Methane emissions measured punctually by the GF system are
sensitive to the diurnal variation due to an animal’s feeding pattern
(Hammond et al., 2016). Indeed, they are highest after a meal and
decrease with time. In addition, a large measurement error is
expected due to the limited recording time – a few minutes – of
each measurement. To obtain a reliable estimation of daily CH4

emission, a common recommendation is to combine 20 punctual
measurements (Manafiazar et al., 2016), usually by averaging
them. This follows the hypothesis that errors are independent
between measurements and that the error variance is divided by
20. In addition, these 20 visits are better distributed throughout
Table 3
Calibration (cv) and validation (v) statistics of the prediction equations for the different m

Methane variables1 Unrestricted2

Calibration Validation

n R2
cv SEcv n R2

v

Raw CH4

1-week 1 822 0.35 63 104 0.36
M1 1 822 0.40 53 104 0.37
M3 1 822 0.31 53 104 0.27
2-week 897 0.34 60 104 0.24

Precorrected CH4

1-week 1 822 0.32 61 104 0.36
M2 1 822 0.38 53 104 0.31
2-week 897 0.30 59 104 0.36

1 Methane measurements were used raw or pre–corrected for a farm-specific hour ef
across lactation using random regression models (M1 = raw CH4; M2 = pre–corrected C

2 Unrestricted models were calibrated using all data, whereas at least 14 or 20 measure

5

the day and thus capture diurnal variations. We did observe that
restricting a minimum number of visits to average CH4 emissions
leads to improve the predictive ability of the equation calibrated
on 2-week CH4 values averages. However, applying this restriction
(minimum 20 visits to average CH4 over 2 weeks) resulted in a
large amount of data (22.6%) being excluded from the calibration
dataset. To preserve as much data and variability as possible, we
investigated other methods of combining GF data. First, we con-
firmed that using twice as many spectra by averaging CH4 mea-
surements averaged over 1 week – and restricting to at least 14
visits to compute the average – was not efficient, as we observed
an increased prediction error of this equation compared to the
equation calibrated on restricted 2-week averages. This could be
related to both overfitting by using spectra and CH4 averages
recorded at short intervals, or due to the loss of accuracy of the ref-
erence CH4 value for 1-week averages as the repeatability of GF
measurements increases over 2 weeks (Arbre et al., 2016;
Denninger et al., 2019).

A second proposal to increase the amount of data used to cali-
brate the equations was to model CH4 emissions throughout the
lactation using random regression models. Despite better R2

cv and
SEcv, the equation calibrated on modeled raw CH4 emissions had a
higher prediction error in validation than the restricted 2-week aver-
ages equation. Modeling may be smoothing out too much of the vari-
ation in CH4 relative to the spectra, which were not adjusted for the
animal effect.

A third proposal was to account for the diurnal variations of CH4

emissions, either by using precorrected individual measurements
(averaged or modeled) or by including a farm-specific hour effect
in the random regression model (M3). All three models showed
improved performance in validation compared to the raw 2-week
average models. In this study, using all available data was the best
solution when using precorrected data, as the unrestricted precor-
rected 2-week averages equation was the best model. We hypoth-
esized that by precorrecting the individual CH4 measurements for
the farm-specific diurnal variations, that are directly related to the
feeding pattern and not to the emissions of the animal itself
(Garnsworthy et al., 2012; Hammond et al., 2016), we removed a
significant proportion of the uninformative variability that
required the restriction to at least 20 measurements for averaging
over 2 weeks. Moreover, by using a spectrum every 2nd week, we
limit the bias associated with overfitting the model – by using one
spectrum per week that does not bring entirely new information –
which can be observed by the best performance of the M1, M2, and
M3 models in calibration but not in validation.

The 14 equations built from the different CH4 variables had val-
ues of R2

v ranging from 0.22 to 0.36 and RMSE ranging from 57 to
ethane (CH4) variables (SEcv and RMSE in g/day) in dairy cows.

Restricted2

Calibration Validation

RMSE n R2
cv SEcv n R2

v RMSE

68 1 035 0.41 61 104 0.25 69
68 1 035 0.45 55 104 0.28 70
63 1 035 0.33 55 104 0.22 66
69 694 0.38 60 104 0.28 63

69 1 035 0.37 60 104 0.26 61
59 1 035 0.40 55 104 0.26 61
57 694 0.38 57 104 0.28 61

fect, then were either combined by averaging them over 1 or 2 weeks or modeled
H4; and M3 = raw CH4 + fixed effect of the time of measurement within the farm).
ments were required to calibrate 1-week or 2-week restricted models, respectively.
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70 g/d. The R2
v of our equations was lower (maximum of 0.36) than

the value of 0.46 reported by Coppa et al. (2022), working with aver-
ages of 20 GF measurements, and the value of 0.47 reported by
Shadpour et al. (2022) working with weekly averages. It was also
lower than the value of 0.66 reported by McParland et al. (2023)
for weekly CH4 averages associated with an average of AM and PM
milk spectra. On the contrary, our equations performed better than
the one of Liu et al. (2022) (R2

v = 0.17) who did not include DIM in
their equation, which has been shown to improve the predictive
ability of equations (Coppa et al., 2022; Vanlierde et al., 2015). How-
ever, our average prediction error (64.6 g/d) is among the lowest in
the literature for comparable equations (Coppa et al., 2022; Liu et al.,
2022; and Shadpour et al., 2022). In particular, the restricted raw 2-
week model had a RMSE of 63 g/d, lower than the prediction errors
of 66.2 and 70 g/d for averages of at least 20 measurements reported
by Coppa et al. (2022) and Shadpour et al. (2022). Although
McParland et al. (2023) reported the lowest prediction error (41 g/
d), they calibrated their equation on less variable CH4 measure-
ments, with an SD of daily CH4 averages of 51 g/d while the SD ran-
ged from 74 to 91 g/d for daily or weekly averages in the other
studies, including ours (Coppa et al., 2022; Liu et al., 2022;
Shadpour et al., 2022). The unrestricted precorrected 2-week model
performed even better, with a prediction error of 57 g/d. The
restricted raw 1-week model had an RMSE of 69 g/d, lower than
the value of 73.7 g/d reported by Shadpour et al. (2022) for weekly
averages. These results seem to argue for more diversity in the cali-
bration population. This would allow the identification of a more
general relationship between CH4 emissions and MIR spectra and
lead to a more robust prediction equation when applied to new data.
Vanlierde et al. (2021) also found that the prediction equations were
more robust when calibrated on a diverse population using MIR
spectra and CH4 measurements from respiration chambers and sul-
fur hexafluoride tracer gas.

To obtain accurate predictions when prediction equations are
applied to new spectra, the calibration population should be as
diverse as possible. Although we would have liked our calibration
population to be larger and more diverse for our ambitious goal, it
was among the largest and most heterogeneous ones yet assem-
bled. Our calibration population covered a large range of variability
of the diets used on the French dairy farms but would benefit from
including pasture and fresh herbage diets, as CH4 emissions are
known to differ between grazing and non�grazing animals (Brito
et al., 2022; O’Neill et al., 2010). Our calibration population also
included several breeds, first because breed-specific equations
poorly predict methane emissions from other breeds � as we
found in this study when we tried to predict the CH4 emissions
of Montbéliarde and Abondance cows using an equation calibrated
only on Holstein data (results not shown) – and second because a
multibreed equation is more efficient and cost-effective in the
objective of implementing a CH4 genomic selection for multiple
breeds. Even if our equations have a lower R2 than the other equa-
tions reported in the literature (Coppa et al., 2022; Liu et al., 2022;
McParland et al., 2023; Shadpour et al., 2022), they have some of
the lowest prediction error. Nevertheless, a phenotype predicted
with a low accuracy is acceptable for genetic evaluation, as the
quantity of phenotypes (millions, in routine application in French
commercial farms) will dilute the imprecision of each individual
prediction and result in a highly accurate prediction of breeding
values.
Conclusion

The work conducted in this study was intended to shed light on
the best way to combine CH4 emissions measured using GF for use
in calibrating prediction equations. We found that precorrecting
6

individual GF measurements before averaging them over 2 weeks
compensated for the need for restriction to at least 20 measure-
ments. The equations could be improved by further increasing
the diversity of the calibration population, but the large-scale phe-
notyping required to establish an optimal calibration population is
time-consuming and expensive. In the short term, global projects
involving multiple research centers and their partners may be
the most efficient solution for collecting the data needed to
develop more accurate and robust prediction equations. Mean-
while, considering the growing interest to mitigate CH4 emissions,
the equations developed in this study will soon be applied to the
milk MIR spectra collected in France to provide a large population
required to implement a genomic selection of CH4 emissions.
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