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1LIRMM, Univ Montpellier, CNRS, Montpellier, France, 2IGMM, Univ Montpellier, CNRS, Montpellier, France, 3IPSIM, CNRS, INRAE,

Institut Agro, Univ Montpellier, 34060, France, 4IMAG, Univ Montpellier, CNRS, Montpellier, France and 5Université
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Abstract

Motivations: Gene Regulatory Networks (GRNs) are traditionally inferred from gene expression profiles monitoring a
specific condition or treatment. In the last decade, integrative strategies have successfully emerged to guide GRN inference
from gene expression with complementary prior data. However, datasets used as prior information and validation gold
standards are often related and limited to a subset of genes. This lack of complete and independent evaluation calls for
new criteria to robustly estimate the optimal intensity of prior data integration in the inference process.
Results: We address this issue for two regression-based GRN inference models, a weighted Random Forest (weigthedRF)
and a generalized linear model estimated under a weighted LASSO penalty with stability selection (weightedLASSO).
These approaches are applied to data from the root response to nitrate induction in Arabidopsis thaliana. For each
gene, we measure how the integration of transcription factor binding motifs influences model prediction. We propose
a new approach, DIOgene, that uses model prediction error and a simulated null hypothesis in order to optimize data
integration strength in a hypothesis-driven, gene-specific manner. This integration scheme reveals a strong diversity of
optimal integration intensities between genes, and offers good performance in minimizing prediction error as well as
retrieving experimental interactions. Experimental results show that DIOgene compares favorably against state-of-the-
art approaches and allows to recover master regulators of nitrate induction.
Availability and implementation The R code and notebooks demonstrating the use of the proposed approaches are
available in the repository https://github.com/OceaneCsn/integrative_GRN_N_induction

Key words: Integrative regression-based Gene Regulatory Network inference, data integration optimization, simulated
null hypothesis, weighted Random Forests, weighted LASSO, Arabidopsis thaliana

Introduction

Gene Regulatory Networks (GRNs) inference has the objective

of describing the relationships between genes in the context

of transcription, which can provide invaluable insight into

environmental adaptation or developmental processes in living

organisms. To reconstruct these networks, statistical GRN

inference methods usually leverage high-throughput genomics.

A well established input is transcriptomic data, as it provides

genome-wide measures of gene expression and has become

increasingly available. Regression-based techniques for GRN

inference are a popular class of methods, that have shown great

performances in benchmarks like DREAM (Marbach et al.,

2012a). They rely on the assumption that the expression of

regulator genes can be used to predict the expression of their

target genes in a set of relevant experimental conditions. Once

regression models are fit, they allow the extraction of the

influence of each regulator over each target gene, and the

strongest regulator-target gene pairs are assembled to form a

final sparse GRN. Regression-based inference algorithms mainly

differ in their choice of regression function to link the expression

of a target gene to the expression of its regulators. For example,

TIGRESS (Haury et al., 2012), MEN (Greenfield et al., 2013)

or The INFERELATOR (Skok-Gibbs et al., 2022) techniques

implement linear and often regularized models for this task,

while GENIE3 (Huynh-Thu et al., 2010) and inspired works

(Geurts et al., 2018; Petralia et al., 2015; Cirrone et al., 2020;

Cassan et al., 2021) model non-linear relations via Random

Forests (RFs) or, more broadly, ensembles of trees.

Given the under-determined nature of GRN inference

from expression alone, using additional sources of data

can guide the choice between several regulators explaining

expression data equally well. Complementary omics have

already been used in addition to gene expression to enhance
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GRN inference, such as TF binding experiments (mostly

ChIP-Seq) or Transcription Factor Binding Motifs (TFBM)

(Kundaje et al., 2007; Marbach et al., 2012b; Aibar et al.,

2017; Clercq et al., 2021; Qin et al., 2014; Cirrone et al.,

2020; Skok-Gibbs et al., 2022), knock-outs and protein-protein

interactions (Petralia et al., 2015) or chromatin accessibility

(Clercq et al., 2021; Miraldi et al., 2019).

In a linear context, prior information can be integrated

during the estimation of regularized models by modulating

the penalty strength for each TF with a weighted version

of the LASSO (Tibshirani, 1996; Bergersen et al., 2011) or

its variations (e.g. the ElasticNet (Zou and Hastie, 2005))

(Christley et al., 2009; Greenfield et al., 2013; Miraldi et al.,

2019; Skok-Gibbs et al., 2022), or by making use of a

Bayesian prior (Greenfield et al., 2013; Siahpirani and Roy,

2017; Skok-Gibbs et al., 2022). In this framework, the strength

chosen for the penalty is an important feature of the

method. An in-depth study introducing the method MEN

(Greenfield et al., 2013), a weighted ElasticNet, explored a

resolutive range of data integration strengths and then choose

an integration strength maximizing effective data integration.

More recently, the mLASSO-StARS approach (Miraldi et al.,

2019) was introduced to select a small subset of robust

regulators for each target gene in oriented GRN inference by

adapting the StARS approach (Liu et al., 2010) for the LASSO,

while integrating prior complementary data. In that work, the

integrated priors were TFBMs in accessible chromatin. Three

values of prior reinforcement were investigated, and the one

that maximised the area under the precision and recall curve

against a CHIP-Seq gold standard was selected.

Regarding non-linear regression, iRafNet (Petralia et al.,

2015) proposed a Random Forest (RF) based procedure. It

consists in weighting the random sub-sampling of regulators

during trees elongation, so that regulators supported by prior

knowledge are more likely to get chosen at decision nodes. In

the iRafNet method, the weights controlling the contribution of

prior data to expression are provided by a predefined function,

specific to each type of prior, but without specific tuning. This

strategy was further adapted to time series expression data in

OutPredict (Cirrone et al., 2020), a dynamic extension of both

GENIE3 (Geurts et al., 2018) and iRafNet (Petralia et al.,

2015).

Existing integrative regression models thus have a great

potential to predict GRNs from several types of prior

complementary omics. However, the extent to which prior

complementary data should contribute to inferred GRN models

relatively to gene expression data remains difficult to estimate,

especially when prior data is noisy, incomplete or when

it contradicts gene expression data. Yet, fine tuning the

contribution of prior information to gene expression data was

rarely explored in past works. When it was, the choice of prior

integration strength relied on a gold standard that is either

identical to the integrated prior like in MEN (Greenfield et al.,

2013), or of a related nature (in the mLASSO-StARS paper, the

prior information of TFBMs is necessarily correlated to ChIP-

seq validation data (Miraldi et al., 2019)). This highlights the

need for a more robust and independent calibration of prior

data integration strength. In fact, while the integrated prior

data is gene-specific in nature, the strength or importance

with which it should contribute to GRN inference has not

been tuned specifically for each target gene by previous

approaches (Siahpirani and Roy, 2017; Greenfield et al., 2013;

Petralia et al., 2015; Miraldi et al., 2019; Cirrone et al., 2020;

Skok-Gibbs et al., 2022). This is especially important because

prior knowledge is not always relevant to the condition at

hand, and this relevance can vary from gene to gene. For

the same reason, gold standard data like known regulator-gene

interactions may also be irrelevant and should be avoided when

choosing the importance of prior data.

To address these limitations, we propose a new optimization

scheme, DIOgene (Data Integration Optimization for gene

networks), which is based on gene-specific measures of effective

data integration, gene expression prediction accuracy, and

a simulated null hypothesis. The aforementioned fallibility

of TF-target gold standards and their proximity with prior

data made us prefer, as a tuning and evaluation metric, the

accuracy of regression models in their supervised prediction

task (the MSE). This metric has the advantage, unlike many

gold standards, to be specific to the conditions and cell lines

used for transcriptome collection, and can be measured for all

genes. More generally, any causal model should be predictive,

which is why we closely monitor the prediction performance of

regression models for GRN tuning and evaluation (Shen et al.,

2024).

Moreover, in order to represent the most common methods

in the field of integrative GRN inference, we illustrate our

results using a weightedLASSO and weightedRF model, that

are unified re-implementation of existing algorithms both

in the linear and non-linear cases (Bergersen et al., 2011;

Greenfield et al., 2013; Miraldi et al., 2019; Petralia et al.,

2015; Skok-Gibbs et al., 2022). We optimize their level of

data integration with DIOgene to model the transcriptomic

response to nitrate induction in the roots of Arabidopsis

thaliana (Varala et al., 2018) using TFBMs in target gene

promoters as prior information. Our results, when compared to

existing algorithms, illustrate that a gene-specific modulation

of data integration can be more profitable than enforcing

data integration in an indiscriminate fashion. With this case

study, we hope to open a reflection about data integration and

evaluation practices in the field.

Material and Methods

Expression, prior and validation datasets
As a case study for GRN inference, we chose the transcriptomic

root response to nitrate induction in the model plant

Arabidopsis thaliana (Varala et al., 2018). This dynamic

response was already well characterized, and used in

other previous developments to chart regulatory networks

(Varala et al., 2018; Brooks et al., 2019; Cirrone et al., 2020).

Continuing efforts to uncover these regulatory mechanisms is

of great agricultural interest, as nitrate is the main source of

nitrogen used by most plants. Gene expression was measured in

seedling roots at 0, 5, 20, 30, 45, 60, 90, and 120 minutes after

nitrate or control treatments (N = 45 samples). We selected

differentially expressed genes responding to nitrate induction in

time by testing the interaction terms between nitrate treatment

and time modelled as natural splines (Supplementary Methods

A, Figure S1a). These nitrate-responsive genes and regulators

are taken as input for GRN inference (Tables S1 and S2).

TFBMs, encoded by Position Weight Matrices (PWMs), were

retrieved from the JASPAR (Castro-Mondragon et al., 2021)

and Plant Cistrome (O’Malley et al., 2016) databases and

searched in Arabidopsis promoters to serve as prior information

for GRN inference (Supplementary Methods A, Figure S1b-

c). Finally, we also leveraged the in-vitro binding events from

DAP-Seq experiments as a partial and condition-agnostic gold
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standard to evaluate the predicted GRNs edges a posteriori

(O’Malley et al., 2016). Like any other gold standard, DAP-

seq data has certain technical limitations, but compared to

alternative approaches (e.g. ChIP-seq), it can be more easily

scaled to a larger number of TFs (Bartlett et al., 2017).

Integrative GRN models
To address both the linear and non-linear cases, we

adapted from existing algorithms (Bergersen et al., 2011;

Greenfield et al., 2013; Miraldi et al., 2019; Petralia et al.,

2015; Skok-Gibbs et al., 2022) two integrative regression-

based GRN inference procedures for this study, namely

weightedLASSO and weightedRF. These two approaches use

the expression levels of regulator genes to predict the expression

of target genes, but with additional modelling that prioritises

the use of regulators with a TFBM in the target gene promoter

during model estimation.

The TFBM information is encoded in a prior matrix Π that

gives a prior value Πr,t ∈ [0, 1] for each regulator-target gene

pair (r, t):

Πr,t =

{ 0 : if the motif of r is not in the promoter of t

1 : if the motif of r is in the promoter of t
1
2 : if the motif of r is unknown

(1)

Throughout this study, a parameter α is used to tune data

integration strength: its value ∈ [0, 1] controls the contribution

of TFBM information to expression data. At α = 0, no

TFBM information is used for selecting the regulators, i.e.

expression alone is used, while at α = 1, only regulators

possessing a TFBM in the target gene can be used in the

regression model. Briefly, this is done by reducing the penalty

strength of TFBM-supported TFs in weightedLASSO and by

weighting the random sampling of variables in favor of TFBM-

supported TFs in the regression trees elongation of weightedRF.

The definition of the weights for integrating TFBM prior

information Πr,t for a given α, as well as the estimation

procedures for weightedLASSO and weightedRF, are detailed

in Supplementary Methods B and C, and illustrated in Figures

S2a-c.

Gene-specific optimisation of α (DIOgene)
Choosing the value of α is instrumental: it reflects strong

modelling assumptions and has tangible impacts on inferred

GRNs. In order to measure the direct consequence of

modulating data integration through α, we introduce the

notion of Effective Data Integration (EDI), that reflects the

importance of TFBM-supported regulators in the predictions

of a regression model. Here, the importance of a regulator is

estimated by the classical “mean decrease accuracy” approach

proposed by Friedman (Breiman, 2001), which is measured

by the model performance loss when the expression of this

regulator is shuffled (Supplementary Methods D and E). For

a target gene t, regulators are ranked by increasing values of

importance, and the EDI is the average position in this ranking

of TFBM-supported regulators, i.e the regulators for which

Πr,t = 1.

EDItα =
ΣΠr,t=1Rank(Importancertα)

#Πr,t=1

(2)

EDI is close to 1 (resp. R, the total number of regulators)

when all regulators with a motif have low (resp. high)

importance. We expect that increasing α will increase the

importance values of TFBM-supported regulators, and thus

increase EDI. For the occasional target genes with no TFBMs

in their promoter (10 out of the 1426 nitrate-responsive genes),

EDI cannot be computed and no data integration is done in

DIOgene, i.e their α value is automatically set to 0.

Given that enforcing data integration interferes with model

estimation based solely on error minimization, a loss of

prediction accuracy can also be expected from increasing EDI.

The foundation of DIOgene is that we should integrate prior

TFBMs information only when it does not induce a major

deterioration of prediction performance, which is measured

by the model Mean Square Error (MSE) on unseen samples

(Supplementary Methods D).

In order to define what is an acceptable loss of MSE, we

create a synthetic null hypothesis that provides a reference for

comparison. In this simulated null dataset, we break the link

between gene expression and TFBM information by randomly

unmatching the expression profiles between regulators. A

regulator then keeps its correct TFBMs, but is attributed the

wrong expression profile. In such a synthetic baseline, there

is theoretically no joint information to be learned from the

combination of expression and TFBMs, and increasing data

integration strength can only provide uninformative TF-target

gene interactions.

In order to identify the appropriate amount of TFBMs

knowledge to inform GRN inference, we propose that the

optimal value of α for target gene t (hereafter denoted as

αt,opt), is chosen where true prediction error is most reduced

as compared to the error committed under the simulated null

hypothesis (H0). This corresponds to a level of data integration

where TFBM incorporation in the model provides a sufficient

improvement of prediction over the error expected under H0.

Formally, the normalized difference in MSE between true and

randomized datasets for a value of α is measured by the Student

statistic

Ttα =
µMSE(EDItα) − µMSE0

(EDItα)
√

σMSE(EDItα)2+σMSE0
(EDItα)2

N

(3)

with µMSE(EDItα) the mean MSE at EDItα, σMSE(EDItα)

the standard deviation of MSE at EDItα, µMSE0
(EDItα) the

mean MSE on the null dataset interpolated at EDItα, and

σMSE0
(EDItα) the standard deviation of MSE on the null

dataset interpolated at EDItα. N is the number of repetitions

of weightedLASSO or weightedRF performed in order to

estimate the MSE and its dispersion for each value of α, on the

true and shuffled datasets. In weightedLASSO, variability stems

from the cross-validation partitionings used to optimize the

LASSO regularization parameter, and from the bootstrapping

layer we introduced to improve stability (Supplementary

Methods B). In weightedRF, variation classically stems from

the random sampling of TFs at each node of the trees, and from

the bootstrapped sample used to grow each tree. Additionally,

the variation observed on the shuffled dataset is due to the

different permutations representing H0. For each value of α,

the Student statistics Ttα are then compared to a Student

distribution of 2N − 2 degrees of freedom, and provide a list

of (FDR-adjusted) p-values ptα. αt,opt is then the value of α

that minimizes ptα on the condition that at least one value of

α provides an adjusted p-value lower than 5%:

αt,opt =











0 if min
α∈[0,1]

(ptα) > 0.05

argmin
α∈[0,1]

(ptα) otherwise.
(4)
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4 Cassan et al.

When the minimum p-value is greater than 5%, we consider

that no level of data integration is appropriate and αt,opt is set

to 0.

GRN construction and evaluation
Once the values of αt,opt have been selected, a regression model

is learned for each target gene. All these models constitute

a complete GRN, with many regulators per target gene. To

measure the quality of this complete GRN, we relied on the

median MSE computed on all target genes (Supplementary

Method D). Studies of known GRNs usually report low values

of edge density, typically between 0.001 and 0.1 (Leclerc,

2008; Koutrouli et al., 2020; Campos and Freyre-González,

2019; Hayes et al., 2013). A classical strategy in GRN inference

is therefore to select the most important edges satisfying a

biologically relevant user-specified network density. This is

done in DIOgene by selecting only the most important pairs

of regulator-target genes based on the importance metric (the

mean decrease accuracy, Supplementary Methods E). Density is

defined as D = E
Etotal

, with E being the number of edges in the

inferred network, and Etotal = R(T−1) being the total number

of edges in a complete oriented GRN containing R regulators

and T genes (Cassan et al., 2021). The number of top-ranked

edges to select in order to satisfy a density D is thus

E = ⌊DR(T − 1)⌋. (5)

Once a sparse GRN of the chosen density has been built, it

can be compared to a gold standard network (in our case DAP-

Seq data) based on precision and recall metrics. Let us consider

G as a set of experimentally observed regulatory interactions

(gold standard) restricted to interactions involving genes given

as input for GRN inference. E is the set of inferred interactions

restricted to TFs studied in the gold standard. The other

inferred interactions can neither be confirmed nor falsified and

are thus not taken into account here. Precision (the fraction of

edges in E present in G) is defined as |E∩G|
|E| while recall (the

fraction of edges in G retrieved by E) is defined as |E∩G|
|G| ..

Results

Optimal TFBMs integration strength differs strongly
between target genes
We ran weightedRF (100 repetitions) and weightedLASSO

(50 repetitions) for global values of α, ranging from

0 to 1 with a step of 0.1. First, we confirm that

both weightedRF and weightedLASSO effectively incorporate

TFBM information during their estimation, attributing higher

importance measures to TFBM-supported variables as α

increases. This is supported by EDI curves smoothly increasing

with α (see the gene examples on Figure 1a and S3 (left

column), and the global picture on Figure S4a). When applying

a density threshold to build sparse GRNs, we also observe

that increasing α leads to the selection of edges with more

and more TFBM support. At α = 1, which is the maximal

level of data integration, TFBM support equals 1. This means

that inferred GRNs are restricted to interactions supported by

a TFBM (Figure S4b).

An overview of the MSE profiles depending on α for

all nitrate-responsive genes reveals a lot of diversity in how

model performance can be driven by data integration strength,

foreshadowing the usefulness of a gene-level procedure (see

the gene example on Figure 1b and S3 (middle column),

and the global picture on Figure 2a). We thus applied

DIOgene to optimize TFBM integration in weightedLASSO and

weightedRF at the target gene level (Equations 3 and 4). This

confirmed that depending on the target genes, enforcing data

integration has different effects on the predictive capabilities

of the regression models, both in absolute error and relatively

to the simulated null hypothesis (see 4 examples on Figure

1c-f). Very interestingly, for several genes like AT5G48970,

enforcing data integration leads to a reduced MSE on test

samples (Figure 1c). This illustrates that data integration can

effectively guide the choice of variables toward more robust

and meaningful regulators, allowing the model to better predict

target gene expression in unseen conditions. In this case, data

integration can often be pushed to its maximal intensity, given

that the maximal divergence from the simulated null data occur

at αt,opt = 1. For several other target genes, for example

AT5G60670 (Figure 1d), the strongest improvement over the

randomized baseline is achieved for an intermediate value of

α (0.5 in Figure 1d). For genes like AT3G20320, there is

no reduction of MSE induced by data integration, however

DIOgene sets αt,opt to 1 because the MSE increase remains

low in comparison to the randomized baseline (Figure 1e).

Finally, the MSE of target genes can be increased by TFBM

incorporation in the same proportion as in the simulated null

data, like for instance AT1G30270, where αt,opt is set to 0 by

our procedure (Figure 1f).

The application of DIOgene to all nitrate-responsive target

genes led to one αt,opt value per target gene. Among the

1,426 input target genes, the number of genes for which TFBM

information is integrated to expression, i.e αt,opt > 0, was 939

for weightedLASSO, and 773 for weightedRF. The distribution

of αt,opt for the 1,426 nitrate-responsive genes reveals that,

similarly for the two models, there is also a large pool of genes

that do not benefit from data integration according to our

criterion (487 and 653 for weightedLASSO and weightedRF,

respectively, Figure 2b). This suggests that data integration

can often lead to a significant deterioration of model predictive

capabilities as compared to a permuted control: in this case,

DIOgene leverages gene expression alone.

DIOgene provides a good trade-off between MSE and
prior integration, and outperforms state-of-the-art
approaches
In order to evaluate the added value of tuning TFBM

contributions in a gene-specific manner with DIOgene, we

compared the global properties of GRNs optimized by DIOgene

to GRNs inferred with a parameter α identical for all genes as

in previous approaches (Greenfield et al., 2013; Petralia et al.,

2015; Miraldi et al., 2019; Skok-Gibbs et al., 2022). We used

for this weightedLASSO and weightedRF, as well as the

methods mLASSO-StARS (Miraldi et al., 2019) and iRafNet

(Petralia et al., 2015) estimated for three global integration

strengths α (0, 0.5 and 1) (see Supplementary Methods F

and G). Additionally, we included an ElasticNet version of

weightedLASSO, weightedEN, that bears strong similarities

with the existing MEN algorithm (Greenfield et al., 2013)

(Supplementary Methods H). All sparse GRNs were built with

a target density of 0.005, resulting in a total of 1,432 edges.

First, the median MSE of GRNs optimized with a global

α displays a marked increase as the contribution of TFBMs

is reinforced in weightedRF and weightedLASSO (Figure 3a),

but also in mLASSO-Stars and iRafNet (Figures 3b, S5a-

b). This is in agreement with the previous observation that,

Page 4 of 13Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btae415/7698029 by IN

R
A-JO

U
Y-J.M

. user on 26 June 2024



Optimizing data integration improves Gene Regulatory Network inference in Arabidopsis thaliana 5

100

150

200

0.00 0.25 0.50 0.75 1.00

α

E
D
I

AT5G48970
a

0.06

0.08

0.10

0.00 0.25 0.50 0.75 1.00

α

M
S
E

dataset shuffled trueData

AT5G48970
b

0.05

0.06

0.07

0.08

0.09

90 110 130 150 170 190

EDI

M
S
E

AT5G48970
c

0.24

0.27

0.30

0.33

0.36

100 120 140 160

EDI

M
S
E

AT5G60670
d

0.05

0.06

0.07

0.08

0.09

0.10

100 125 150 175

EDI

M
S
E

AT3G20320
e

0.05

0.06

0.07

0.08

100 125 150 175

EDI

M
S
E

AT1G30270
f

Fig. 1. Gene-specific data integration with DIOgene is tuned by monitoring model performance variation relatively to a synthetic null

hypothesis. For the target gene AT5G48970 : a. the EDI depending on α, b the MSE depending on α, c. the MSE depending on EDI (from panels a

and b). The proposed gene-specific αt,opt (vertical blue line) is the value for which the MSE is most reduced as compared to the randomized baseline

(Equations 3 and 4). d,e,f : the MSE depending on EDI for three other gene examples, representing different scenarios of data integration and thus

different values of αt,opt. The trends are shown for weightedRF on true data (green) and shuffled datasets where TF expression profiles were randomly

unmatched from their motif (grey). For each value of α, 100 models were run and the standard deviation around the mean is represented. The MSE is

normalized by the variance of the target gene expression. Similar scenarios emerge in the linear model weightedLASSO (Figure S3).

for a significant number of target genes, TFBMs deteriorate

model predictions (Figure 2a). Second, reinforcing TFBMs

contribution in GRN models equally for all genes increases

both precision and recall against DAP-Seq interactions (Figures

3c, S5c-d, S6a-b). Noteworthily, both weightedLASSO and

weightedRF display a strong increase in precision with a global

α, especially between α = 0 and α = 0.1, and weightedRF

demonstrates a clear advantage over weightedLASSO, with a

precision exceeding 0.4. Both models outperform the precision

of the prior PWMs network for α > 0, indicating that

using expression data to choose relevant links from TFBM-

supported interactions helps predicting TF binding in an in-

vitro context. Recall values between the linear and non-linear

models are similar. Thus, in GRNs inferred by weightedLASSO,

weightedRF, and their closest competitors mLASSO-StARS

and iRafNet, increasing data integration strength globally

improves precision and recall (Figure 3c) but necessarily comes

with a deterioration of model predictions of the target gene

expression (Figures 3a and 3b).

In contrast, gene-specific optimization of α with DIOgene

can improve at the same time the prediction of target gene

expression and the retrieval of DAP-Seq interactions. In

fact, for both the linear and non-linear case, it provides a

median MSE lower than any median MSE obtained with a

global α, for comparable models inferred by weightedLASSO,

weightedRF, mLASSO-StARS and iRafNet (Figures 3a and

3b). At the same time, GRNs obtained with DIOgene achieve

near-optimal precision and recall, as compared to global α

curves (Figure 3c). In this context, we actually argue that it

is desirable to tolerate sub-obtimal precision and recall results

while prioritizing low MSE. In addition to the drawbacks of

gold standards presented in the Introduction, we observed that

precision and recall also increase with α in shuffled datasets,

where the wrong expression profiles are attributed to the

TF (Figures S6a-b, shuffled datasets). This illustrates that

precision and recall can be increased simply by enforcing data

integration, even when gene expression data is uninformative.

We thus think that, in the context of this study and similar

ones, these statistics are unfit to properly tune the amount of a

complementary omic source to incorporate into GRN inference.

In summary, DIOgene improves upon existing algorithms by

allowing TFBMs integration to increase the retrieval of binding

events, but without degrading the prediction of gene expression.

DIOgene improves upon a naive MSE minimization
Finally, we evaluated the benefit of optimising the MSE

divergence from a shuffled baseline as proposed in DIOgene over

a simpler approach that would minimize the MSE directly. First

note that MSE minimization can be an appropriate criterion

in cases where integrating prior information reliably improves

model accuracy (which is the case here for certain target genes),

but this may not always be the case with noisy or incomplete

priors. DIOgene and the minimal MSE approach agree on
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Fig. 2. Gene-specific tuning of TFBM integration in the 1,426

nitrate-responsive target genes with DIOgene leads to diverse

MSE behaviors and integration intensities. a. Scaled MSE (z-score)

in weightedLASSO and weightedRF on true data depending on α for two

types of genes: target genes with αt,opt = 0 (grey) and target genes with

αt,opt > 0 (green). b. Distribution of αt,opt values for the 1,426 nitrate-

responsive target genes in weightedLASSO and weightedRF.

setting α > 0 for a large group of genes (793 and 657 for

weightedLASSO and weightedRF, respectively). They also both

set α = 0 for 250 and 571 genes. Thus, our scheme and the

minimal MSE approach perform data integration on globally

similar sets of target genes. In contrast, some target genes are

set to α = 0 by DIOgene but not by the minimal MSE (273

and 82): these genes reach a minimal MSE for α > 0, but do

not diverge sufficiently from the synthetic null hypothesis, and

are thus removed from the data integration set by DIOgene

(Figure S7a). On the contrary, other target genes are set to

α > 0 by DIOgene and to α = 0 by the minimal MSE (146

and 116). These genes typically display an increasing MSE,

but this increase is statistically lower than that of the shuffled

control (Figure 1e). Finally, we focused on the sets of genes

for which we specifically integrate TFBMs in one approach but

not the other, and computed precision and recall curves of the

corresponding sub-networks. At a small and expected MSE cost

(Figure S7b), the results showed better precision and recall

performance (Figures S7c-d) for the sets of genes considered for
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Fig. 3. Gene-specific integration of TFBMs to gene expression

with DIOgene optimises model performance and outperforms

linear and non-linear state-of-the-art approaches. a. Median MSE

of the nitrate-responsive genes, for weightedLASSO and weightedRF on

a resolutive range of global integration strengths α, and on DIOgene’s

optimization of α. b. Median MSE of the nitrate responsive genes for

mLASSO-StARS (Miraldi et al., 2019) and iRafNet (Petralia et al., 2015)

at three global values of α and using DIOgene applied to weightedLASSO

or weightedRF. For linear models (left), we use a restricted median

MSE, achieved by models learned using only the three most important

regulators per target genes. This provides MSE estimates at comparable

sparsity levels (see Supplementary Methods I). c. Precision as a function

of recall in the inferred GRNs (1,432 edges, density = 0.005) against

DAP-Seq interactions (O’Malley et al., 2016), for a resolutive range of

global α values and for DIOgene. Precision and recall achieved by

existing algorithms, mLASSO-Stars (Miraldi et al., 2019) and iRafNet

(Petralia et al., 2015), are overlaid in darker green for three global values

of α (0,0.5 and 1). The precision of the prior TFBMs network of nitrate-

responsive genes (31956 edges, density = 0.32) is shown in orange.

data integration by DIOgene as compared to those considered

for data integration by the minimal MSE.

DIOgene improves the modelling of nitrate signalling
Finally, we assessed the ability of the inferred GRNs to model

nitrate induction pathways in Arabidopsis roots by comparing

them to state of the art knowledge about this well documented

response (Bellegarde et al., 2017; Vidal et al., 2020). In order

to identify the regulators predicted as important players in

nitrate response by our models, we ranked regulators by

out-degree in the inferred GRN. This was done for both

weightedLASSO and weightedRF, either in GRNs inferred with

a global value of α = 0, α = 1, or with DIOgene’s αt,opt

(Figure S8a). A first observation is that, regardless of the

chosen model or data integration strategy, the 25 TFs with

highest out-degree contain previously known master regulators
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of nitrate response. This includes DIV1 (Cheng et al., 2021),

TGA1 and TGA4 (Alvarez et al., 2014), as well as the homologs

HHO2 and HHO3, belonging to the NIGT family and identified

as repressing the expression of crucial nitrate transport

genes (Kiba et al., 2018; Safi et al., 2021). Interestingly, we

also uncover VRN1 and CRF4 as connectivity hubs in all

inferred GRNs. These regulators were respectively proposed as

candidate and validated actors in nitrate signalling pathways

in the studies that generated the transcriptomic data used here

(Varala et al., 2018; Brooks et al., 2019). Overall, whole-GRN

measures of gene connectivity showed that genes involved in the

regulation of nitrate pathways, nitrate uptake, transport and

metabolism (Table S3) have a significantly higher total degree

than other genes, in both globally optimized (at α = 0 and

α = 1) and gene-specifically optimized GRNs (Figure S8b).

On another hand, we noticed that gene-specific calibration

of data integration uniquely retrieves important regulators of

nitrate nutrition that were not present in the 25 most connected

TF of the inferred GRNs with a global α (α = 0 or α =

1). In the case of weightedLASSO, only the proposed gene-

specific data integration strategy retrieves NLP7, which has

been intensively documented as one of the main orchestrator of

the early nitrate response (Marchive et al., 2013; Alvarez et al.,

2020). This is also the case of PHL1, a TF involved in the links

between nitrate and phosphate signalling via NIGT-mediated

regulations (Ueda et al., 2020). In the case of weightedRF,

the proposed gene-specific optimization of data integration

enabled the identification of ABF2, a TF recently defined for

its role in the endodermal response to nitrate in Arabidopsis

(Contreras-López et al., 2022). It also put forward new TFs

as original candidates for nitrate response regulation. This

includes HHO6, a member of the NIGT family not yet

characterized for its role in the response to nitrate (Kiba et al.,

2018; Safi et al., 2021), but also BZIP53, a TF involved in the

regulation of several facets of metabolism (Garg et al., 2019).

Thus, this analysis reveals that this method of inference, via

the optimization of data integration in a gene-specific manner,

not only recovers the information previously reported in the

literature, but also brings to light new factors likely to be

involved in this response.

Discussion

The helpfulness of data integration is very often taken as

granted in systems biology. Our work shows that it can in fact

have very diverse effects on the modelling of gene expression,

and that TFBMs incorporation can be at the expense of

model predictive capabilities for a significant number of target

genes. We thus propose to replace bulk data integration by

a finely tuned hypothesis-driven data integration, calibrated

individually for each target gene. Our optimisation scheme,

DIOgene, leverages TFBMs in a way that their joint use

with gene expression improves the target gene expression

prediction over a simulated null hypothesis. In our plant

biology case study, GRNs inferred with this approach preserve

an optimal predictive performance on gene expression, while

exhibiting near optimal precision and recall against DAP-Seq.

Such an outcome cannot be obtained through a global, non-

specific tuning of α, as illustrated by our benchmarks against

existing algorithms (Greenfield et al., 2013; Petralia et al.,

2015; Miraldi et al., 2019) and our unified re-implementations

weightedLASSO and weightedRF. Moreover, such conclusions

hold for both the linear and non-linear regression cases, showing

some general applicability of our scheme to the most common

models in the field. Overall, 567 target genes have αt,opt >

0 in both weightedLASSO and weightedRF. This significant

intersection indicates that the two models mostly agree on a

group of genes for which data integration is beneficial, even

though specificities remain (Figure S9a). Although not in

the scope of this paper, exploring these differences and the

structure of the corresponding GRNs would be a great way

to test the impact of linearity and parametric assumptions

in the modelling of multi-omics GRNs. The reason why

some target genes do not benefit from TFBMs integration

could stem from various factors, either technical or biological.

Mining the consensual lists of genes for which α = 0 or

α > 0 in both models revealed few differences regarding gene

expression, function, sequence and structure characteristics

(Figure S9b). Even though certain genes do not take advantage

of TFBM data integration, they might in fact benefit from

the integration of another form of complementary data. Thus,

trying to incorporate several other types of prior data and then

comparing the lists of genes not benefiting from these integrated

priors could be helpful. Further work would be needed to

formulate hypotheses about the potential underlying regulatory

mechanisms, and also to assess the role of other forms

of regulations like post-transcriptional and post-translational

modifications in these results.

Several limitations of this study should be reminded to

the reader. First of all, as in all works inferring GRNs

from expression data, the expression of the regulators is

taken as a proxy for their activity. This assumption is

not always valid, which motivated the estimation of TF

activities in other studies, typically leveraging motifs or binding

experiments combined to gene expression (Li et al., 2014;

Arrieta-Ortiz et al., 2015; Skok-Gibbs et al., 2022). Our form

of data integration, where TFBM-supported regulators have

a stronger contribution in the estimated model, is another

way to move away from this limitation. Even though this is

a step toward more causality, challenges remain. For instance,

strong levels of correlation in the input data are still hindering

accurate GRN inference, as a lot of pairs of regulators have

correlated expression profiles. When two TFs have a correlated

expression profile, TFBM information can be used to select

the relevant one. However, TFBM information is not always

helpful in this task: sometimes the PWMs of both TFs are

unknown, or their PWMs represent roughly the same motif.

As a consequence, identifying the meaningful regulator is not

always guaranteed. Correlation between variables also impacts

the design of simulated null datasets, such as the one we

propose, as the simulated null data may sometimes partly

resemble the original data only by chance. Bringing more

diverse expression profiles into the simulated datasets could

be envisioned. The lack of a PWM for a significant number

of TFs is also a problem, amplified in non-model organisms.

This limitation should be further reduced as PWMs databases

are enriched and maintained by the community in the years

to come, or as new computational methods are developed

to predict binding affinities directly from DNA and protein

sequences (Barissi et al., 2022). In the TFBMs prior, we can

also note the high chance of false positives when scanning

PWMs, and the questionable biological relevance of ubiquitous

TFBMs with low complexity in the promoters of target genes

(Figure S1c). Similarly, non canonical binding events can

be driven by features like DNA shape, structure or repeat

sequences (Samee, 2023), that are not directly modelled in our

approach. From a computational perspective, the computing
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time in DIOgene could be reduced in several ways. This includes

running specific analyses to estimate the minimal number of

repetitions needed to properly assess the MSE and EDI curves,

or using a dedicated procedure for pooling genes with similar

MSE curves prior to estimating α, so that fewer repetitions per

genes are needed. Another way to reduce the number repetitions

would be to keep identical bootstrap samples between the true

data and our simulations of H0, thus taking advantage of the

statistical power offered by paired comparison tests.

In addition to the aforementioned perspectives, the

application of the proposed data integration strategy to other

complex organisms is a promising lead. In this work, TFBMs

influencing gene expression were assumed to be located in

the promoter regions of their target genes because very few

distal regulations have been reported in Arabidopsis, and

are still poorly understood (Lin et al., 2021). In organisms

where regulation by distant enhancers is well documented

and responsible for tissue-specificity (Andersson et al., 2014;

Kamal et al., 2023), delineating enhancer regions may be

achieved through the use of additional molecular layers such

as chromatin accessibility, chromatin contacts, or eQTLs.

Enhancers and promoters could then be scanned for TFBMs,

linked to their target genes and further guide GRN inference.

In our case study, we favored the use of model prediction

performance as a quality metric because it is a condition

specific metric available for all target genes and orthogonal

to the integrated TFBMs priors, which is often not the case

of current experimental gold standards. Our results indicate

that instead of directly minimizing prediction error as a

function of TFBMs contribution, the comparison to a shuffled

baseline improved inferred GRNs (Figure S7). In essence,

any inference method where data integration is tuned by a

parameter could be optimized based on such a simulated null

dataset. As a general guideline, we believe that both the

monitored quality metric and the simulated baseline should

be carefully designed in order to test a clear and relevant

hypothesis for the problem at hand. Even more generally, the

concept of synthetic null datasets for in silico negative controls

is gaining interest in genomic analyses. For example, scDEED

(Xia et al., 2024), clusterDE (Song et al., 2023a) or scDesign3

(Song et al., 2023b), are examples of procedures enhancing

statistical pipelines for single-cell data analysis via the use of

randomized null hypotheses, which are likely to enhance rigor

and causal discoveries in the field.

Data and code availability

The RNA-Seq data for the response to nitrate induction was

downloaded from the GEO accession GSE97500. The PWMs

used to build the TFBM dataset were retrieved from JASPAR

and the Plant Cistrome Database. To identify Arabidopsis

TSSs and promoter regions, we relied on the TAIR10 GFF3 file.

The regulators of Arabidopsis used for GRN inference are the

union between PlnTFDB and AtTFDB. All results can be

reproduced with the code available in the github repository:
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Gene-specific data integration with DIOgene is tuned by monitoring model performance variation 
relatively to a synthetic null hypothesis. For the target gene AT5G48970 : a. the EDI depending on α, b 

the MSE depending on α, c the MSE depending on EDI (from panels a and b). The proposed gene-
specific  αt,opt (vertical blue line) is the value for which the MSE is most reduced as compared to the 

randomized baseline (Equations 3 and 4). d,e,f : the MSE depending on EDI for three other gene examples, 
representing different scenarios of data integration and thus different values of αt,opt. The trends are shown 

for weightedRF on true data (green) and shuffled datasets where TF expression profiles were randomly 
unmatched from their motif (grey). For each value of α, 100 models were run and the standard deviation 
around the mean is represented. The MSE is normalized by the variance of the target gene expression. 

Similar scenarios emerge in the linear model weightedLASSO (Figure S3). 
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Gene-specific tuning of TFBM integration in the 1,426 nitrate-responsive target genes with 
DIOgene leads to diverse MSE behaviors and integration intensities. a. Scaled MSE (z-score) in 
weightedLASSO and weightedRF on true data depending on α for two types of genes: target genes with 
αt,opt = 0 (grey) and target genes with αt,opt > 0  (green). b. Distribution of αt,opt values for the 1,426 

nitrate-responsive target genes in weightedLASSO and weightedRF. 
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Gene-specific integration of TFBMs to gene expression with DIOgene optimises model 
performance and outperforms linear and non-linear state-of-the-art approaches. a. Median MSE of 
the nitrate-responsive genes, for weightedLASSO and weightedRF on a resolutive range of global integration 

strengths α, and on DIOgene's optimization of α. b. Median MSE of the nitrate responsive genes for 
mLASSO-StARS and iRafNet at three global values of α and using DIOgene applied to weightedLASSO or 
weightedRF. For linear models (left), we use a restricted median MSE, achieved by models learned using 
only the three most important regulators per target genes. This provides MSE estimates at comparable 
sparsity levels (see Supplementary Methods I). c. Precision as a function of recall in the inferred GRNs 

(1,432 edges, density = 0.005) against DAP-Seq interactions, for a resolutive range of global α values and 
for DIOgene. Precision and recall achieved by existing algorithms, mLASSO-Stars and iRafNet, are overlaid 

in darker green for three global values of α (0,0.5 and 1). The precision of the prior TFBMs network of 
nitrate-responsive genes (31956 edges, density = 0.32) is shown in orange. 
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