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The effect of a political crisis on performance
of community forests and protected areas in
Madagascar

Rachel A. Neugarten 1,2 , Ranaivo A. Rasolofoson 3,4,
Christopher B. Barrett 5,6, Ghislain Vieilledent 7 & Amanda D. Rodewald 1,2

Understanding the effectiveness of conservation interventions during times of
political instability is important given how much of the world’s biodiversity is
concentrated in politically fragile nations. Here, we investigate the effect of a
political crisis on the relative performance of community managed forests
versus protected areas in terms of reducing deforestation in Madagascar, a
biodiversity hotspot. We use remotely sensed data and statistical matching
within an event study design to isolate the effect of the crisis and post-crisis
periodonperformance. Annual rates of deforestation accelerated at the endof
the crisis and were higher in community forests than in protected areas. After
controlling for differences in location and other confounding variables, we
find no difference in performance during the crisis, but community-managed
forests performed worse in post-crisis years. These findings suggest that, as a
political crisis subsides and deforestation pressures intensify, community-
based conservation may be less resilient than state protection.

Much of the world’s biodiversity is concentrated in nations with fragile
governance systems exposed to repeated political crises1 that can
threaten biodiversity2 and its associated benefits to people. Given
recurrent political instability and ongoing biodiversity declines in
many nations, there is an urgent need to identify which conservation
interventions are most resilient during times of crisis and post-crisis
recovery. Yet, there are no published studies of the relative perfor-
mance of different kinds of conservation interventions during a poli-
tical crisis. Here, we investigate how a political crisis affects the relative
performance of community-managed forests and protected areas
administered by Madagascar National Parks (MNP).

Community forest management (CFM) and government-
administered protected areas are among the most widespread con-
servation interventions around the globe. CFMhas been promoted as
an alternative to strict state-managed protected areas to avert
deforestation while also supporting the rights and interests of local

people3. Identifying the conditions under which community-based or
state management may be more effective at conserving biodiversity
remains a key research question4,5. In more remote areas, local peo-
ple may be better able to protect forests due to higher costs of
centralized monitoring and enforcement6. Alternatively, state man-
agement may be more effective at conserving biodiversity if local
institutions are weak or incentives for local conservation are
insufficient4.

From a conservation perspective, there is evidence that local
communities can conserve vulnerable ecosystemsbetter than the state
under certain biophysical, economic, cultural, or sociopolitical
conditions3,7. For example, community forests were found to be more
effective than state-managed protected areas in terms of reducing
deforestation in Peru8. Community forests were effective at reducing
deforestation relative to a counterfactual in India9 and Indonesia10 and
at reducing forest disturbance in Tanzania11. A systematic review found
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that decentralized systems of forest management reduce deforesta-
tion, on average, but the effects are small12.

Evaluating the performance of interventions requires eliminating
rival explanations for observed outcomes13. For example, many pro-
tected areas are established in remote areas or in areas that are
unsuitable for agriculture and therefore are unlikely to experience
deforestation even in the absence of protection14. This makes it chal-
lenging to isolate the effects of different conservation interventions
from other factors, such as remoteness. For example, multiple-use
protected areas in Bolivia, Costa Rica, Indonesia, Thailand, and Brazil
were found to be just as effective, or more effective, than strictly
protected areas at avoiding deforestation15,16. This was because
multiple-use areas are more likely to be located in areas with higher
deforestation pressures, such as closer to roads and cities, where even
modest reductions in deforestation were significant. Given differences
in accessibility and other confounding factors, evaluating the relative
performance of different interventions is challenging. This compro-
mises our ability to test assumptions and design impactful conserva-
tion strategies.

A growing number of studies attempt to define what would have
happened under a counterfactual scenario in an effort to isolate the
causal effects of conservation interventions8,15–17. A systematic review
of 68 such studies found that estimates of the effectiveness of

protected areas in terms of avoided deforestation were much smaller
when counterfactual methods were used compared to traditional
methods18. A second review of 82 counterfactual-based studies found
that protected areas were only moderately effective at reducing
deforestation, on average, since they are typically placed in areas with
lower pressures17. Other interventions, such as decentralized forest
management and Indigenous protected lands, had larger effects, but
the number of studies using counterfactual methods was very small
(three studies in each case). In Peru, for example, Indigenous terri-
tories and locally managed conservation concessions were more
effective than state-managed protected areas in terms of avoided
deforestation and degradation after controlling for confounding fac-
tors such as distance to roads and settlements8.

There have been very few counterfactual-based studies that
investigate the effectiveness of conservation interventions in times of
crisis. The few examples we identified focused on armed conflict. In
Nepal, local institutionswere able to organize and cooperate to reduce
forest fragmentation even during periods of violent conflict19. In
Colombia, large protected areas were more effective at reducing
deforestation during periods of conflict between the government and
guerilla fighters20. In Sierra Leone, armed conflict was linked to lower
rates of deforestation, but the performance of conservation inter-
ventions was not specifically analyzed21. Two studies from Rwanda
found that armed conflict led to increased deforestation22,23, but did
not control for potential confounding factors such as location or
climate-related variables.

Only a few counterfactual-based studies have assessed how
sociopolitical context can influence conservation performance.
Abman24 showed that deforestation rates were higher in less demo-
cratic nations that failed to control corruption or protect property
rights. In Indonesia, direct elections boosted the ability of protected
areas to prevent deforestation, but not forest fragmentation or fire25.
Elections were found to increase deforestation in Brazil26 and increase
forest fires in Madagascar27. Previous periods of political instability
have been associated with increased deforestation in Madagascar28.

Despite these advances, we know little about the relative effec-
tiveness of different conservation interventions during and after a
crisis. Here, we investigate how a political crisis affected the relative
performance of community-managed forests compared to more tra-
ditional protected areas. Our evaluation focused on forests within
Madagascar, a global biodiversity hotspot containing someof themost
unique and threatened species on the planet29. An estimated eighty
percent ofMadagascar’s people live under the extremepoverty rate of
USD $2.15/day and 40% of children under the age of 5 suffer from
stunting30. Due to these high levels of poverty and food insecurity,
much of the island’s population depends on natural resources,
including forests, for their livelihoods. The country lost 44% of its
natural forest cover over the period 1953–201431 due to logging for
timber, charcoal production, and clearing for subsistence agriculture.
A more recent analysis indicates that between 2000 and 2020, the
country lost 4.85 million hectares, or 25% of its remaining tree cover32.

Madagascar’s government, often with support from international
non-governmental organizations (NGOs), has attempted to slow
deforestation through the creation of protected areas. As of 2020, the
protected areas system included 110 sites encompassing 10.4% of
Madagascar’s land area (6.1 million hectares)33. From 1990 to 2010,
Madagascar’s protected areas were found to be effective at reducing
deforestation, on average, but performance varied across time and
space34. In northeastern Madagascar, for example, the establishment
of newprotected areas initially exacerbated ongoing deforestation but
later reduced forest loss35. Protected areas inMadagascar aremanaged
by different government agencies and NGOs. Here, we focused on 45
protected areas administered byMadagascar National Parks (MNP), an
organizationmandated by the government tomanage protected areas
(Fig. 1). MNP sites include some of Madagascar’s oldest protected

Fig. 1 | Map of Madagascar showing Community Forest Management areas
(CFM) established before 2005 (red outline), protected areas administered by
Madagascar National Parks (MNP) established before 2005 (blue outline).
Forest cover 2020 (dark gray), forest cover loss 2005–2020 (medium gray), and all
other land cover classes (grassland, shrubland, cropland, and urban) (light gray).
For CFM and protected areas established after 2005 (see Fig. S1).
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areas, which are managed primarily for biodiversity conservation, and
restrict most human activity other than recreation.

In the 1990s, the Madagascar government instituted legislation
that allowed for the creation of Community ForestManagement (CFM)
contracts36 (Fig. 1). Contracts are established between a local forest
management group (often supported by a non-governmental organi-
zation), the federal forest department, and in some cases, the local
government. The terms of CFM contracts vary, but they typically
prohibit forest clearing for agriculture while allowing local use of
renewable forest products for medicine, firewood, and food37. CFM
contracts are established for an initial 3-year period, and if all parties
agree that the site is being properly managed, the contract can be
renewed for a subsequent 10-year term. The first CFM contract was
established in 1999. By 2014, there were over 1000 CFM sites in
Madagascar encompassing more than 3.1 million hectares, or 15% of
the nation’s natural forests38. Previous research found that CFMhad no
detectable impact on deforestation, on average, between 2000 and
2010, but contracts that prohibited commercial use of forest products
did reduce deforestation39.

Madagascar has experienced repeated political crises since its
independence in 1960. The most recent and prolonged crisis took
place from 2009 to 2014, initiated by a global spike in rice prices, a
large, surreptitious land deal between the government and a South
Korean company, and frustration over corruption and oppressive
governance40,41. Social unrest and political pressure led then-President
Marc Ravalomanana to flee the country while an opponent, Andry
Rajoelina, took power. The international community condemned the
takeover as unconstitutional and reduced or eliminated foreign aid
and investment42, causing a severe economic crisis. The crisis dragged
on for years, with disastrous effects. In late 2013, democratic elections
were held, and the crisis officially ended in January 2014.

The political and associated economic crisis also impacted
Madagascar’s forests and biodiversity. There was a spike in illegal
logging of precious hardwoods such as rosewood43,44. Even within
protected areas, illegal and extralegal logging took place as a result of
the limited capacity of park staff and confusion caused by shifting
regulations, in some cases with government permission or even
cooperation44–46. Increased deforestation during the political crisis,
both inside and outside of protected areas, alarmed the international
conservation community, which was concerned about the potential
extinction of Madagascar’s unique wildlife, such as lemurs2.

At the same time, the crisis exacerbated pressures on commu-
nity forests. Combined with already high rates of poverty and food
insecurity, the crisis drove local people to clear forests to plant staple
crops and meet their basic needs. In northeastern Madagascar, for
example, agricultural expansion into forests increased during the
crisis period35. Political unrest can also result in deliberate forest
burning as a form of protest. There is evidence of excess forest fires
that coincide with Madagascar’s 2013 and 2018 presidential elec-
tions, for example27.

Given thatMadagascar’s forests faced concomitant pressure from
government dysfunction, political protest, and economic stress, we
explored the effect of the 2009 political crisis on the relative perfor-
mance of community forest management areas (CFM) and protected
areas administered by Madagascar National Parks (MNP) during and
after the crisis. Performance was defined as the ability to reduce
deforestation after controlling for differences in location and other
potentially confounding factors. Our study built upon prior work that
evaluated the overall effectiveness of protected areas 1990–201034 and
CFM 2000–201039, though without reference to political crisis. As
such, we had no clear a priori predictions of which type of area would
perform better amid the crisis. To provide a sufficient pre-crisis
baseline, we focused on 362 CFM sites established prior to 2005, as
well as 45 protected areas administered by MNP, which were all also
established prior to 2005 (Fig. 1).

To allow causal interpretation of our results, we used deforestation
data derived from remote sensing31,47 and a counterfactual approach
implemented through a combination of statistical matching and an
event study design. We combined two methodological approaches to
control for factors that can confound the estimated relative perfor-
mance of CFM andMNP. First, we used statistical matching48 to identify
forest areas within CFM and MNP that are similar across a range of
observedbiophysical and geographic confounding characteristics, such
as remoteness and suitability for agriculture. This allowed us tomake an
apples-to-apples comparison of similar forested sites within CFM and
MNP-protected areas, controlling for time-invariant confounding fac-
tors. Second, we conducted an event study analysis49 to control for all
relevant observed time-variant confounding factors, such as rice prices
and climate variables. The event study also allowed us to control for any
differences in deforestation trends in CFM and MNP in the pre-crisis
period to isolate the effect of the crisis. Additionally, an event study
design allowed us to examine the yearly variation in the effect of the
crisis on the relative performance of CFM compared to MNP. We also
explored the effects of spatial resolution on our results. Lastly, because
the impacts of the crisis on CFM performancemay vary as a function of
contextual variables, we explored the moderating effects of contextual
factors such as distance to cities, distance to roads, and population
density. In our study, the event was the onset of the crisis, and our
specific research question was, “What was the effect of the crisis and
post-crisis period on the relative performance of CFM and MNP in
terms of their ability to reduce deforestation?”

We found that during the crisis (2009–2013), CFM and MNP
performed similarly poorly, meaning both experienced increasing
deforestation. At the end of the crisis and for several subsequent years
(2014–2017), annual rates of deforestation accelerated, particularly
within CFM. During this post-crisis period, CFM performed sig-
nificantly worse than matched MNP areas, even after controlling for
time-invariant and time-variant confounding factors. Given the recur-
ring political and economic crises taking place in many countries, our
findings raise questions about the ability of both state- and
community-managed conservation mechanisms to withstand such
shocks. Community forests were especially vulnerable when defor-
estation pressures intensified, indicating that in Madagascar, such
areas may require external support if they are to achieve forest and
biodiversity conservation goals.

Results
Deforestation rates
Before, during, and after the crisis, annual deforestation rates were
approximately three times greater in CFM than in protected areas
administered by MNP (Table 1, Fig. 2). Notably, annual rates of defor-
estation accelerated immediately following the crisis, from 2014 to
2017, particularly in CFM (Fig. 2). To put these numbers in perspective,
during the study period (2005–2020) forest cover declined by 16.5%
nationally, from 9.7 million hectares (mha) in 2005 to 8.1mha in 2020
(Table S1, Fig. S2). During the same period, forest cover within MNP
declined by 6.5% (from 1.2mha in 2005 to 1.1mha in 2020) and forest
cover in CFM areas declined by 20.9% (from 487,900 ha in 2005 to
385,700ha in 2020).

Importantly, a simple comparison of deforestation rates does not
control for confounding variables that influence the likelihood that a
site is designated as a CFM or MNP and also affects forest loss. In
Madagascar, previous work has found that confounding variables
include distance from the nearest road, distance from the nearest vil-
lage, distance from the nearest urban center, distance from forest
edge, slope, elevation, and agricultural suitability because such factors
influence the type of designation as well as forest cover outcomes34,39.
Also, dynamic events such as climate extremes (droughts, floods,
cyclones) and price fluctuations (such as global rice prices and price
volatility)50 could differentially affect deforestation in CFM and MNP,
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which could bias results from a naïve comparison of deforestation
outcomes. Such naïve comparisons fail to account for the fact that
different types of sites experience very different levels of background
deforestation pressures18. Therefore, we conducted statistical match-
ing followed by an event study design to control both time-invariant
confounding variables (such as remoteness) and time-variant con-
founding variables (such as climate).

Match balance
Our units of analysis were 90mgrid cells that contained forest cover in
the baseline year (2005). Before matching, the CFM forest grid cells,
when compared toMNP forest grid cells, weremore accessible (closer
to cart tracks, roads, and villages) and had higher human population
density, on average (Fig. 3). They were also closer to the forest edge as
of 2005, lower in elevation, with lower slope, less annual precipitation,
and located in more arid vegetation zones, on average. Because of
these factors, forests within CFM would have had a higher probability
of being deforested, on average, than forests within MNP, in the
absence of effective protection. After matching, most of these differ-
enceswereeliminated (Fig. 3). Distance to urban centers and suitability
for rice cultivation were already very similar pre-matching (<0.1 stan-
dard deviations). In other words, after matching, matched forest grid
cells in MNP were very similar to typical CFM forest grid cells and
therefore provided a more useful apples-to-apples comparison. For
maps illustrating differences in CFM and MNP sample points before
and after matching (see Figs. S4 and S5). For results of alternative
matching procedures (see Fig. S6).

Event study
The event study results indicated that the political crisis affected the
performance of CFM andMNP. During the first four years of the crisis,

CFM and MNP performed similarly poorly, meaning both experienced
increasing deforestation (Fig. 4, Table 2, see also Table S2, Fig. S9).
(Note that the event study design linearly controls for differences in
pre-crisis trends (2005–2009) so 2010 is the first crisis year reported.)
CFM performed significantly worse than matched MNP areas during
the last year of the crisis and for several subsequent years (2014–2017)
(p < 0.05). The difference in the effect of CFM relative to MNP on
deforestation in the years 2014–2017 ranged from 1.7 ± 1.4% per year to
2.4 ± 1.0% per year. In other words, CFM had higher annual defor-
estation thanMNP in those years, even after controlling for differences
in location and other confounding variables. In the year immediately
preceding the crisis (2008), CFM contained 475,333 ha of forest
(Table S1). Thus CFM forests lost an estimated 8103 ± 6435 ha/year to
11,532 ± 9508 ha/yearmore tree cover than similar forests inMNP. This
is equivalent to a total of 36,483 ± 28,775 ha (51,047 ± 40,228 soccer
fields) for the 2014–2017 period. From 2018 to 2020, CFM continued
to performworse thanMNP, but the difference is no longer statistically
significant.

We clustered standard errors at the site level to address potential
spatial autocorrelation between observations within the same site51.
We also tested multilevel clustering of standard errors at the site and
region level. Multilevel clustering did not affect our point estimates
but rendered the observed differences in the years 2014–2017 mar-
ginally significant (p <0.1 instead of p <0.05).

Tests of heterogeneity of impacts and spatial resolution
Our results were consistent for the sub-set of CFM for which the
contracts were renewed, which we used as an indicator of the level of
CFM implementation on the ground. That is, we found no significant
difference in renewed CFM and matched areas within MNP during the
crisis years, and renewed CFM performed worse in the years immedi-
ately following the crisis (Table S3). Our results were also robust to the
spatial resolution of the input data at the two resolutionswe tested (90
and 270m). At a coarser spatial resolution, the observed difference in
performance in the post-crisis years had greater statistical significance
(p < 0.01) (Table S4).

We found that CFM further from urban centers performed better
than those closer to cities in the post-crisis period, and the difference
was statistically significant in 2015, 2016, and 2018 (Fig. S10, Table S5).
Thus, distance fromurbancenters, ameasureof remoteness, appeared
to influence the performance of CFM. Even in remote areas, however,
CFMwas less effective at reducing deforestation than similarly remote
MNP. We explored potential heterogeneity of effects using other
variables, including distance from roads, distance from villages,
population density, level of development, and security, but found no
consistent or significant effect of any of these variables (Tables S6–S8).

Discussion
A disproportionate share of the world’s biodiversity is concentrated in
nations that are highly vulnerable topolitical and economic shocks, yet
few studies have examined how conservation interventions perform
during and after crises. We found that, despite conservation efforts
that sought to protect forests during Madagascar’s recent political

Table 1 | Average annual deforestation rates before, during, and after the political crisis within CFM established before 2005,
protected areas administered by MNP, other protected and unprotected forest (which includes unprotected forests, CFM
established after 2005, and protected areas established after 2005 and/or administered by agencies other than MNP), and
total (which includes all categories)

Time period CFM MNP Other protected and unprotected forest Total

Forest cover in 2005 (sq km) 4879 12,063 79,746 96,689

Pre-crisis 2005–2009 (%) 0.7 0.2 0.6 0.7

Crisis 2010–2014 (%) 1.1 0.4 0.9 1.0

Post-crisis 2015–2020 (%) 2.0 0.7 1.2 1.3

0.0%

0.5%

1.0%

1.5%

2.0%
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Fig. 2 | Annual deforestation (as a percentage of 2000 forest cover) 2005–2020
in community forest management areas (CFM, red squares, protected areas
administeredbyMadagascarNational Parks (MNP, blue circles), and the rest of
the country (other forest, yellow triangles).Deforestation percentages are based
on baseline forest cover in 2000, the earliest year for which there is consistent
annual data. The crisis period (2009–2014) is shown in light blue shading.
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crisis, annual rates of deforestation accelerated at the end of the crisis
—a phenomenon that, to our knowledge, has not been reported pre-
viously. Understanding the cause of this post-crisis increase in defor-
estation is beyond the scope of this analysis, but we can provide some
theories that could be explored in future work. One possibility is that
we detected a lagged response to events that occurred during the
crisis. Funding for conservation declined precipitously during the
crisis2,52, and it took several years forfinancial support to be restored to
pre-crisis levels. Weak governance and increased corruption during
the crisis2,46 might have had lingering effects or becomemore severe in
the post-crisis period.

The years in which we observed an increase in deforestation also
roughly coincided with Madagascar’s post-crisis presidential elections
(December 2013, November 2018). Disputed elections can trigger
social unrest, and even peaceful transitions can usher in forest policy
change. In Brazil, for example, election cycles were found to trigger
deforestation26. The 2013 and 2018 Madagascar presidential elections
were associatedwith excess forestfires, whichmay indicate burning as
a form of political protest27. The relationship between deforestation
and political instability can be hard to untangle, however. Logging
precious hardwoods provided a source of cash for a wealthy elite
during the crisis46 and may have continued or increased in the post-
crisis era. At least one study speculates that the wealth created by
exploiting forest resources in Madagascar can be politically
destabilizing46, indicating that deforestation could contribute to a
crisis rather than the other way around.

Another possible explanation for the post-crisis deforestation
spike is that the return to political stability in the post-crisis period
might have initiated a change in forestry policy or triggered an
increase in economic activity, putting even more pressure on forests.
We found no evidence of a formal change in forestry policy during the
post-crisis era, however, per-capita GDP did not increase substantially
during 2014–201730.What drove the observedpost-crisis deforestation
spike therefore requires further study.

While overall deforestation dynamics during and after the crisis
are important, our focus herewas on conservationperformance. Given

the recurring political and economic crises taking place in many
countries, our findings raise questions about the ability of both state-
and community-managed conservationmechanisms towithstand such
shocks. Given how differently CFM and MNP are designated and
managed, the finding that there was no significant difference in their
performance during the crisis was unexpected. It seems that neither
form of forest protection was durable, likely due to a lack of capacity
and resources to enforce rules. Even at the best of times, protected
area managers in Madagascar struggle to implement regulations due
to limited budgets and lackof political support52. During the crisis, lack
of capacity and legal authority prevented park staff from controlling
illegal logging or agricultural expansion in national parks45. Commu-
nities were probably similarly ill-equipped to protect their forests
during the crisis years.

At the end of the crisis, community-managed forests performed
significantly worse than protected areas administered by MNP, with
annual deforestation rates 1.7–2.4 times higher, even after controlling
for differences in location and other confounding factors. The years in
which we observed a difference in performance (2014–2017) corre-
spond to the overall increase in deforestation across the country. In
other words, when deforestation pressures intensified, community-
managed forests proved more vulnerable than MNP-managed forests.
Poor performance of CFM was also described by Rasolofoson et al.39.
This is sobering, as community-based conservation is often promoted
as aneffective and equitable alternative to traditional, government-run
protected areas. It is likely that such differences reflect the lack of
capacity and resources of communities to protect forests. CFM
receives no centralized financial support in Madagascar, which may
have made them particularly vulnerable to the loss of conservation
funding during and after the crisis.

After 2017, CFM continued to perform worse than MNP, but the
differences were no longer statistically significant. That would be
consistent with differential rates of recovery among CFM, some of
which began to converge back towards MNP within a few years of the
crisis end, others of which continued to lag far behind. This makes
sense, given the heterogeneous management of CFM and relatively

Fig. 3 | Covariate balance between community forestmanagement areas (CFM)
and protected areas administered by Madagascar national parks (MNP) forest
grid cells, before (red circles) and after (blue triangles) geneticmatching. Black

dotted line indicates a standardized mean difference of 0.1 standard deviations.
Vegetation zone codes: 1 = Eastern humid forest; 2 =Western deciduous forest; and
3 = Southern deciduous spiny forest, so higher values indicate drier forest types.
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more homogeneous management of MNP-protected sites. We found
no significant effect of climate-related variables nor other time-variant
controls. Thus, it is unlikely that the difference in performance was
drivenby events such as adrought, a cyclone, or rice pricefluctuations.

The estimated difference in performance between CFM and MNP
in the post-crisis years may seem small (1.7–2.4%/year), but given that
CFMcontainednearly half amillion hectares of forest at the start of the
crisis, such a difference is ecologically meaningful. Also, our estimated
effect sizes are in line with other studies that use quasi-experimental
methods to estimate the effects of protected areas on avoided defor-
estation, which are typically under 5%, and often under 1%18.

In areas further from cities, CFM performed better but still not as
well as MNP. In more remote areas, community-based conservation
may be more effective due to lower costs of monitoring and enforce-
ment. Remote areas are also somewhat isolated from economic pres-
sures, which may incentivize forest clearing. Nonetheless, remote
MNP-administered sites still withstood deforestation pressures better,
so our results indicate that the type of designation a site receives is an
important determinant of performance. Previous research from a
subset of four sites indicates that CFM contracts that prohibited
commercial use performed better than CFMs that allowed such uses39.
For the vast majority of CFM, however, there is a lack of data on spe-
cific contract terms or their implementation. Our analysis therefore
focuses on de jure designation, as currently, there is no national-scale
data on the de facto management of CFM or MNP. Future research on
how CFM and MNP are managed in practice would expand our
understanding of how they interact with shocks suchas political crises.

In addition to protecting forests, CFM was designed to benefit
local communities. While increased deforestation is undesirable from
a conservation perspective, income from clearing forests may have
provided a safety net to local people during the post-crisis period.
Previous research indicated that CFM provides economic benefits to

households in close proximity to forests38. Alternatively, poor CFM
performance following the crisis might have been driven by incursions
to the forest by outside actors or resource capture by local elites. Past
work indicates that, in some communities, CFM contracts were unable
to prevent illegal logging by companies or migrant groups37. In such
cases, strengthening tenure security might contribute to improved
outcomes, both for forests and for local people53,54. Tenure security is
likely to be impacted by a political crisis, however, given that the state
may no longer enforce land tenure claims.

Table 2 | Results of event study model

Variable Estimate Standard
error

Statistic p-value

Year −7.79E−04 2.79E−04 −2.796 0.005**

2010 2.29E−03 1.19E−03 1.92 0.056.

2011 5.56E−03 1.77E−03 3.138 0.002**

2012 3.97E−03 1.29E−03 3.079 0.002**

2013 4.28E−03 1.65E-03 2.588 0.01*

2014 7.34E−03 2.33E−03 3.149 0.002**

2015 6.61E−03 2.30E−03 2.871 0.004**

2016 7.95E−03 2.68E−03 2.967 0.003**

2017 1.45E−02 5.12E−03 2.827 0.005**

2018 1.56E−02 6.28E−03 2.48 0.014*

2019 1.09E−02 3.49E−03 3.128 0.002**

2020 1.06E−02 5.27E−03 2.009 0.045*

Distance from for-
est edge

−5.32E−05 8.45E−06 −6.296 0***

Population density −5.21E−06 4.07E−05 −0.128 0.898

Average rice price −5.41E−09 3.57E−09 −1.514 0.131

Standard deviation
in rice price

2.16E−08 1.34E−08 1.615 0.107

Drought sever-
ity (–)

−3.46E−06 1.94E−06 −1.787 0.075.

Maximum
precipitation

5.20E−06 2.90E−06 1.792 0.074.

Maximum
temperature

−6.50E−05 8.04E−05 −0.808 0.42

Maximum
wind speed

−6.46E−06 1.22E−05 −0.53 0.597

CFM:Year −1.69E−03 1.15E−03 −1.477 0.141

CFM:2010 3.13E−03 2.53E−03 1.236 0.217

CFM:2011 1.22E−03 2.99E−03 0.407 0.684

CFM:2012 3.18E−03 3.56E−03 0.895 0.372

CFM:2013 7.28E−03 4.59E-03 1.587 0.113

CFM:2014 1.79E−02 5.94E−03 3.018 0.003**

CFM:2015 1.70E−02 6.91E−03 2.468 0.014*

CFM:2016 1.75E−02 7.84E−03 2.237 0.026*

CFM:2017 2.43E−02 1.02E−02 2.377 0.018*

CFM:2018 1.84E−02 1.15E−02 1.6 0.11

CFM:2019 1.45E−02 1.15E−02 1.256 0.21

CFM:2020 1.48E−02 1.33E−02 1.119 0.264

The event study is an ordinary least squares regression with the following variables: Dependent
variable: annual deforestation (percentage). Treatment variable: CFM (takes value 1 for CFM, 0
for MNP). Year: 2005–2020. Years post-crisis: 2010–2020. Time-variant covariates (all are
annual): distance from forest edge (meters), population density (people per square km), average
annual rice price converted to Madagascar currency (Ariary), standard deviation of rice price
converted to Madagascar currency (Ariary), drought severity (Palmer Drought Severity Index,
more extreme negative numbers indicate more severe drought), maximum precipitation (mm),
maximum temperature (°C), and maximum windspeed (m/s), an indicator of cyclone severity.
Individual fixed effects were included for each forest grid cell (n = 23,252), and standard errors
clustered at the level of sites (where each site is a unique CFM (n = 362) or MNP (n = 45)). The
coefficients of interest are the interactions between CFM and Years post-crisis. Significance
codes: ‘***’ 0.001; ‘**’ 0.01; ‘*’ 0.05; ‘.’ 0.1. Root mean squared error: 0.065427, adjusted R-
squared: 0.024156, within R-squared: 0.017623.
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Fig. 4 | Event study results. Effects of the political crisis on the performance of
community forest management areas (CFM, red squares) and protected areas
administered by Madagascar national parks (MNP, blue circles) in terms of
annual deforestation, after matching and controlling for time-variant covari-
ates. Estimates greater than zero indicate more deforestation (poor performance).
Y-axis values represent the estimated effect size of the political crisis on annual
deforestation (mean percent tree cover loss per year) from an ordinary least-
squares regression using an event study design with fixed effects for forest grid
cells, as described in Table 2. Error bars indicate 90% two-sided confidence inter-
vals. Our sample consists of 11,626 observations within CFM and 4244 unique
observations within MNP (matched observations). The difference between the red
and the blue points each year indicates differential effects of the crisis on CFM
relative to matched MNP areas. The event study analysis controls for trends in the
pre-crisis period (2005-2009), so the first data point represents the first crisis
year (2010).
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Our study design linearly controls for differences in pre-crisis
trends, all time-invariant confounding factors, and many time-variant
confounders (see the “Methods” section). Nonetheless, we cannot
completely rule out the effect of unobserved time-variant con-
founders. Remote sensing of forest cover has made considerable
advances in the past two decades but still has limitations, particularly
for detecting selective logging. A comparison of global and locally
calibrated forest cover change datasets in Masoala National Park in
northeastern Madagascar indicates that both datasets performed
reasonably well in detecting small slash-and-burn agriculture, but
neither did a good job of detecting selective logging55. Limitations in
remotely sensed data can bias estimates of causal impacts of con-
servation, particularly in areas with high cloud cover and steep
slopes56, which may affect our results in the humid eastern highland
forests of Madagascar. Because we used an event study design that
compared forest areas to themselves over time and exact matching
within each vegetation zone, however, we believe any such effects
would not change our qualitative conclusions.

Our analysis was somewhat complicated by issues of overlapping
designation. In some cases, sites that were designated as protected
areas by the government are partially or entirely managed by local
communities. The portions managed by local communities are inclu-
ded in our analysis as CFM. Overlapping areas where management of
the site is unclear were excluded from our analysis (see, for example,
Figs. S4 and S5).

Our results compare CFM to similar (matched) areas within MNP
and do not reflect the overall performance of protected areas admi-
nistered byMNP. CFM forests aremore accessible (closer to roads and
villages), lower in elevation, with lower slope, closer to forest edges,
and are otherwise different fromMNP. Ourmatched dataset, therefore
only includes forested areas ofMNP that are similarly accessible, lower
elevation, closer to the forest edge, and otherwise comparable to CFM
forests. Our results are thus representative of the performance of all
CFM forests (in the event of a crisis) relative to similar forests within
MNP but are not representative of MNP performance as a whole. Also,
while site-level estimates of CFM conservation performance would be
desirable, due to the small number of MNP (45) relative to CFM (362),
and systematic differences betweenMNP and CFM, it is not feasible to
find good matches at the site level. Hence, we identified forest grid
cells within CFM and MNP that had similar characteristics for our
analysis.

Conservation impact evaluations often use a difference-in-
differences (DiD) design39,57–59. Here, we use an event study design as
it has two advantages over a DiD: it linearly controls for differences in
pre-crisis trends, and it has the flexibility to detect the changing
impacts of the crisis over time. A DiD analysis would only estimate the
average post-crisis impacts and, thus, would impose the strong
assumption that all post-crisis impacts were equivalent over time60.
These advantages render our design more robust to the identification
assumption of parallel deforestation trends between CFM and MNP in
the absence of the crisis (although we also found evidence of parallel
trends in thepre-crisis period, see SupplementalMaterials S1, Table S9,
Fig. S11). Identification assumptions are not directly testable,
however13. In addition to linearly controlling for differences in pre-
crisis trends, our study design controls for all time-invariant con-
founding factors and a number of time-variant confounders. Our study
design also controls for any time-variant factors that influence defor-
estation outcomes equally in CFM and MNP. Nonetheless, we cannot
directly observe the counterfactual (what would have happened in the
absence of the crisis). Therefore, we cannot completely rule out the
effect of unobserved time-variant confounders. Furthermore, by
clustering standard errors at the site level, we have addressed possible
spatial autocorrelation between observations within the same site, but
this does not eliminate the possibility of spatial autocorrelation among
observations at different (nearby) sites51.

Future work would benefit from improved data availability,
includingmoredetailed informationonCFMcontract terms, howCFM
is managed in practice, and how CFM and MNP performance is influ-
enced by land tenure insecurity. Finally, our results represent only one
country and a single crisis, additional research on the performance of
different kinds of conservation interventions during times of political
instability is needed.

While recognizing the many challenges associated with isolating
causal effects of conservation interventions, our research indicates
that efforts to protect forests in Madagascar, especially community-
based efforts,were vulnerable to the crisis and post-crisis dynamics. As
such, improving the resilience of forest protection mechanisms to
political and economic shocks is needed to avoid losing tropical for-
ests during and after such crises. Recent research fromeight countries,
including Madagascar, indicates that social cohesion, recognition of
community rights, and support of national authorities are critical for
successful community forest conservation, especially when faced with
threats from economically and politically powerful external actors7. A
separate study of 643 CFM from 51 countries found that successful
ecological and socioeconomic outcomes were more likely for forests
with local tenure rights, co-management approaches, and smaller user
groups3. Lessons from these and similar studies suggest potential
pathways for improving CFM performance during and after crises,
such as strengthening social cohesion, reinforcing local tenure and use
rights, and increasing levels of support from government and non-
governmental conservation organizations.

Methods
Deforestation
The outcome variable of interest is deforestation in a given year31.
Deforestation is widely used tomeasure the environmental impacts of
conservation interventions (see Ribas et al.18 for a recent review). We
calculated deforestation as the change in forest cover (as a percentage
of each grid cell, 0–100%) in a given year (t), where positive values
indicate forest loss:

Deforestation = forest covert�1 � forest covert ð1Þ

To calculate deforestation, we started with forest cover data for
Madagascar for the year 200031, the first year in which high-resolution
(30m), standardized annual forest cover was available. The 2000
forest cover productwasproducedbasedon satellite imagery (Landsat
TMand ETM+)61 combinedwith a 2000 tree cover percentagemap47 to
fill gaps due to the presence of clouds31. We combined 2000 forest
cover with global 30m tree cover change estimates47 to generate an
annual time series from 2000 to 2020 (Fig. S2). The resulting defor-
estation data takes values 1 for deforestation and 0 for no deforesta-
tion in each 30mgrid cell. Tomatch the spatial resolution of our other
covariate data (90m), we aggregated the deforestation data to two
coarser spatial resolutions (90 and 270m), resulting in a percentage of
each 90 or 270m grid cell that was deforested in each year (0–100%).
The aggregation step was also done to convert a binary outcome
variable to a quasi-continuous variable which allowed us to perform
subsequent statistical analyses. We used annual deforestation (change
within a single year) as theoutcome variable as it is stationary (that is, it
does not get larger every year), and stationarity is assumed for the
statistical procedure we used in our time series analysis (event study).
We did not include forest regrowth in our analysis because there is
little evidence of natural forest regeneration in Madagascar due to
burning, soil erosion, and reduced seed bank following clearing; and
because the only available data on tree gain47 includes plantations, not
natural forest regrowth31. For this analysis, we focus on a pre-crisis
baseline (2005–2009), a crisis period (2010–2014), and a post-crisis
period (2015-2020).
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Sampling
To establish forest trends during a baseline (pre-crisis, 2005–2009)
period, we focus on 362 CFM sites established prior to 2005, and 45
protected areas administered by MNP also established prior to 2005.
We use 2005 as the baseline year as it provides a sufficient pre-crisis
baseline. The first seven CFM contracts were signed in 1999. After that,
the number of CFM sites established rose each year; in 2005, for
example, 111 CFM were established, bringing the total to 362. For
comparison sites, we focused on protected areas administered by
MNP, and excluded sites managed by other agencies or NGOs, to
evaluate a consistent form of protection. Sample and comparison
points were generated using the “create spatially balanced points” tool
in ArcMap62, which generates a random sample of points that roughly
represent the same proportion of the total study area63. Our CFM
sample consisted of 12,000 points within CFM areas with more than
0% forest cover as of 2005 (Fig. 5). Initially, a larger numberof potential
MNP comparison points was required to identify good matches (that
is, MNP forest grid cells that are similar, on average, to CFM forest grid
cells). We, therefore, initially generated a pool of 36,000 potential
sample points within MNP to use in the matching step described
below. For each sample and comparison point, we calculated 90m
raster values representing the outcome variable of interest (annual
deforestation 2005–2020, Fig. S2), time-invariant covariates used for
matching (Table 3, Fig. S3), and time-variant covariates used in the
event study analysis (Table 4, Fig. S7) using the terra R package64.

The degree to which CFM contract terms are implemented in
practice likely varies among sites. Unfortunately, consistent data on
implementation is not available for the majority of CFM sites. As
mentioned above, after an initial 3-year period, if all parties agree that
the CFM is being properly managed, the contract can be renewed for
an additional 10-year period37. Therefore, we used contract renewal as
an indicator that the CFM contracts were being implemented on the
ground and were not agreements on paper only. We repeated our
sampling within a sub-set of CFM contracts that were renewed. This
resulted in a separate set of 12,000 sample points from renewed CFM,
which were analyzed separately in subsequent steps (matching and
event study analysis). We refer to these separate sets of sample points
and results as “all CFM” and “renewed CFM.”We analyzed spatial data
using the “terra” package in R64, QGIS65, and ArcMap62. To test for the
effect of spatial resolution on our results66, we repeated all analyses at
two spatial resolutions: 90 and 270m. All data was projected in
WGS_1984_UTM_Zone_38S.

Statistical matching
The goal of statistical matching is to identify and control for observed
confounding factors48,67,68. In our case, these include variables that
influenced the likelihood that a sitewas designated asCFMorMNPand
also influenced theprobability of deforestation. Due to their difference
in number, size, and other characteristics, it is impossible to find good
site-level matches for individual CFM or MNP sites. Thus, we focus on
90m (and 270m) forest grid cells as the unit of analysis. Thematching
step allowed us to identify a matched sample which included a treat-
ment group (CFM forest grid cells) and a comparison group (matched
MNP forest grid cells that were statistically similar to the CFM grid
cells). This allowed us to perform an apples-to-apples comparison.

As variables for matching, we included data on factors that have
been shown to influence both the probability that a site is designated
as a CFM or MNP and also affect the likelihood of deforestation
(Table 3)39. Because protected areas administered by MNP include the
oldest protected areas in Madagascar and were established primarily
to shield biodiversity from human pressure. MNP are therefore, larger
and more contiguous and located in more remote, higher elevation
areas with fewer competing land uses69. CFM is a newer designation
and is intended formultiple uses. CFM therefore tend tobe smaller and
located in areas with higher human pressures39. Thus confounding

factors include suitability for rice agriculture70, elevation and slope71,
average annual precipitation 1970–200072, distance to forest edge in
2005 (calculated for this analysis), distance from roads, cart tracks,
villages, and urban centers39, population density in 200573, and vege-
tation zones39 as these variables influence both the type of designation
as well as deforestation outcomes. Because the goal of matching is to
identify variables that might have influenced the original probability
that a site was designated as CFM or MNP, all variables used in
matching were time-invariant (such as elevation and slope) or repre-
sented the first year in the study period (for example, population
density as of 2005), or earlier time periods (such as historic pre-
cipitation averages).

We conducted 1:1 geneticmatchingwith replacement. See Figs. S4
and S5 for examples of sample points before and after genetic
matching. Genetic matching is not a unique matching method, rather,
it identifies a method (such as propensity score matching or matching
basedonMahalanobis distance) that optimizes covariate balance74.We
used the MatchIt package in R75 and covariate balance was assessed
using the cobalt R package76. We also tested two alternative matching
methods, propensity score matching, and Mahalanobis distance
matching, but genetic matching led to better balance in the covariates
(Fig. S6).

Due to differences in biophysical and socioeconomic character-
istics in different regions of the country, we expected the political
crisis to have different impacts. Therefore, we conducted exact
matching within similar vegetation zones (eastern humid forests,
western dry deciduous forests, and southern dry spiny forests). Mat-
chedMNP points are not necessarilymatched to points in neighboring
CFM, however. The matching procedure resulted in the original set of
12,000 CFM points and 12,000 matched MNP points. In some cases,
CFM and MNP boundaries overlap due to overlapping designations or
ongoing negotiations between MNP and local communities. Sample
and comparison points in overlapping areas were excluded from the
analysis, resulting in a final set of 11,626 CFM and 11,626matchedMNP
points (Figs. S4 and S5). We performedmatching with replacement, so
not all the matched MNP points were unique; that is, the same MNP
sample point could have been matched with multiple CFM sample
points. Therefore, the matchedMNP sample consisted of 4244 unique
points. We addressed this pseudoreplication in our matched datasets
by clustering standard errors at the site level. Matchingwas performed
separately for the sample points from the renewedCFM sites, resulting
in a second matched dataset consisting of 11,886 renewed CFM and
11,886 matched MNP points. (Due to matching with replacement, the
matched MNP sample consisted of 3155 unique points.)

We considered comparing CFM and MNP performance to the
unprotected forest. However, by the time of the crisis and the post-
crisis period, there was very little forest that was not under some kind
of designation due to the expansion of Madagascar’s protected area
andCFMnetwork after 2005 (Fig. S1). Further, the forest that remained
unprotected would not serve as a good match for CFM or MNP forest
due to differences in location and other characteristics.

Event study
After matching, we conducted an event study analysis to investigate
the effect of the political crisis (the event), i.e. compare CFM andMNP
performance before, during, and after the political crisis. The goal of
the event study analysis is to control for all time-invariant and
observed time-variant confounding factors that may influence defor-
estation outcomes77 differently in CFM andMNP. We also performed a
two-period difference-in-differences (DiD) analysis, comparing the
pre-crisis period (2005–2009) and the crisis period (2010–2014) (see
Supplemental Materials S2, Table S10). We note that our event study
model is a more general form of a DiD model that provides two
advantages relative to DiD. It allows us to control for any differences in
deforestation trends in CFM and MNP in the pre-crisis period. And it
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Fig. 5 | Example of sampled areas in northeastern Madagascar including CFM
(black and red outlines), the sub-set of CFM that were renewed (red outline),
andMNP (blue outline).Overlapping CFM andMNP areaswere excluded from the
analysis. Map shows randomly sampled points fromCFM (red points) andmatched

forest grid cells within MNP (blue points). Forest cover in 2005 is shown in green.
The MNP shown here includes Marojejy National Park (upper right) and
Anjanaharibe-Sud National Park (lower left).

Table 3 | Baseline characteristics that are likely to affect both assignments to CFM vs MNP and rate of deforestation, used as
covariates in statistical matching

Covariate Units Spatial resolution Source

Suitability for irrigated rice 0 (unsuitable) or 1 (suitable) 90m Ramaharitra Tondrasoa 201270

Elevation m 90m Shuttle Radar Topography Mission (SRTM)
Digital Elevation Model71

Slope Percent 90m SRTM71

Annual average precipitation
(1970-2000)

mm/year 90m WorldClim 2.172

Distance to forest edge (2005) m 90m Vieilledent et al. (2018)31

Distance to a village (2005) m 90m Rasolofoson et al. (2015)39

Distance to anurban center (2005) m 90m Rasolofoson et al. (2015)39

Distance to a road (2005) m 90m Rasolofoson et al. (2015)39

Distance to a cart track (2005) m 90m Rasolofoson et al. (2015)39

Population density (2005) People/km2 90m WorldPop (2018)73

Vegetation type 1 = Eastern humid forest; 2 =Western deciduous forest;
3 = Southern deciduous spiny forest

NA (polygons) Rasolofoson et al. (2015)39
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allows us to explore the yearly variation of the relative performance of
CFM and protected areas (instead of only two time periods, pre- and
post-crisis, in the case of a DiD). Thus, we focus on the event study
here; results of the DiD are included in the Supplemental Materials. In
both the DiD and event study analysis, we controlled for annual rice
prices and rice price volatility50, annual climate variables such as
maximum precipitation, drought severity, and maximum wind speed
(an indicator of cyclones)27, annual population density39, and annual
distance to forest edge (Table 4, Fig. S7). All variables were spatially
explicit (Fig S7) and were included on an annual basis for the years
2005–2020. We also controlled for each year so as to capture any
other time-variant factors that could influencedeforestationoutcomes
between years, but that would be common to all forest grid cells in the
study. In addition to their potential for influencing deforestation out-
comes, the selection of covariates was also influenced by data avail-
ability, as our study design requires data that are both temporally and
spatially comprehensive (that is, available annually from 2005 to 2020
and for both CFM and MNP).

If deforestation in CFM was significantly different than defor-
estation in matched areas within MNP during the political crisis, after
controlling for time-variant factors (such as rice prices or drought
severity), we could attribute the difference to the interacting effect of
the treatment (CFM vs. MNP designation) and the political crisis. For
the event study analysis, we used an OLS regression with interaction
terms representing the year (2005–2020), years post-crisis, and fixed
effects for each spatial unit, using the fixest package in R78. Our event
study model takes the form:

Y it =β1CFMi + τ1yeart + τ2yeartCFMi + γYearsPostCrisist
+ δCFMiYearsPostCrisist +ψXit +μi + εit

ð2Þ

where Yit is forest cover loss (percentage) in each forest grid cell i in
year t (t = 2005–2020); CFM= 1 if the grid cell falls within a CFM and
CFM=0 if it falls within anMNP; YearsPostCrisis = 0 for the crisis years
(2005–2009) and then 2010, 2011, and so on; Xit is a vector of time-
variant controls (Table 4); and εit is a random error term. We included
individual fixed effects for each forest grid cell (μi), and clustered
standard errors at the site level (where each site is a unique
CFM or MNP).

The unit of analysis was forest grid cells. To explore the potential
effect of spatial resolution on our results66, the analysis was conducted
at two different spatial resolutions (90 and 270m). The original forest
cover data is 30m resolution and takes values of 1 (forest) or 0 (no
forest). We aggregated this data to 90 and 270m resolution so that
each grid cell in each year contains forest cover as a percentage
(0–100%). In order to be able to detect change over time, we included
forested grid cells with at least some (greater than 0) forest cover in
the baseline year (2005). To control for the lack of independence of
forested grid cells within the same CFM orMNP site, we also clustered
standard errors at the site level. This step also addresses spatial
autocorrelation between observations within the same site51. We also
tested multilevel clustering of standard errors at the site and region
level (22 administrative regions). Multilevel clustering did not affect
our point estimates but rendered the observed differences in the years
2014–2017 marginally significant (p <0.1 instead of p <0.05).

Tests of heterogeneity of impacts and spatial resolution
Because the implementation of CFM is variable, we repeated the ana-
lysis for the sub-set of CFM for which the contracts were renewed, as
this is an indicator that the CFM contracts were recognized and
accepted by local communities and that implementation of CFM rules
on the ground is more likely. Because geographic and socioeconomic
context can influence both the effect of a political crisis and CFM
performance, we explored how CFM performance varies based on the
level of remoteness (measured as the distance from urban centers,
roads, and villages), and population density. To explore this, we
repeated the event study analysis, including all the same covariates
described above but adding additional interaction terms representing
each of these variables (Table 4).

We were also curious whether CFM performance might differ in
areas with higher levels of development, as communities in such areas
might be less dependent on forest resources. Similarly, wewondered if
areaswith higher levels ofmonitoring and enforcementmight perform
better. Therefore, we also ran the event study analysis with interaction
terms for an indicator related to the level of development (an index of
self-reported well-being indicators related to material assets) and an
indicator related to the level of security (a self-reported indicator
related to security conditions and risk of theft of property), both

Table 4 | Time-variant variables expected to differentially affect deforestation within CFM andMNP, included as covariates in
the event study analysis

Covariate (annual) Units Spatial resolution Source

Distance to forest edge m 90m Vielledent et al. (2018)31 updated to 2020; annual distance to
forest edge calculated using Google Earth Engine80

Population density People/km2 1 km WorldPop73

Maximum accumulated precipitation mm 5 km TerraClimate81

Maximum temperature °C 5 km TerraClimate81

Drought severity Palmer drought sever-
ity index

5 km TerraClimate81

Maximum wind speed m/s 5 km TerraClimate81

Average rice price Madagascar Ariary NA World Bank82

Standard deviation of rice price Madagascar Ariary NA World Bank82

Time-invariant covariates used as interaction terms

Distance to a road m 90m Rasolofoson et al. (2015)39

Distance to a village m 90m Rasolofoson et al. (2015)39

Distance to an urban center m 90m Rasolofoson et al. (2015)39

Population density in 2005 People/km2 1 km WorldPop73

Development level (index of material
assets) in 2007

0 (belowmedian) or 1 (above
median)

Fonkontany (adminis-
trative unit)

Wu Yang, Conservation International, based on Communes
Database83

Security conditions and risk of theft of
property in 2007

0 (belowmedian) or 1 (above
median)

Fonkontany Wu Yang, Conservation International, based on Communes
Database83

Interaction terms used to explore heterogeneity of impacts (see Supplemental Materials).
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measured at the level of fokontany (the smallest administrative unit
withinMadagascar) (Fig. S8). To explore the effect of spatial resolution
on our results66 we repeated all analyses at two spatial resolutions: 90
and 270m.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The forest cover, deforestation, time-invariant, and time-variant cov-
ariates data generated in this study have been deposited in the Zenodo
database under accession code https://doi.org/10.5281/zenodo.
8132923. Shapefile polygons for protected areas in Madagascar are
available from the World Database of Protected Areas: https://www.
protectedplanet.net/country/MDG. The Community Forest Manage-
ment areas polygon data are available under restricted access as this
was what was agreed with the communities when the data was col-
lected, access can be obtained upon reasonable request to Ranaivo
Rasolofoson [ranaivo (dot) rasolofoson (at) duke (dot) edu].

Code availability
Code used for this analysis can be found at: https://github.com/
raenb0/madagascar. Code has been published to Zenodo (DOI:
10.5281/zenodo.10825817)79.
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