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Engineering multi-degrading bacterial communities to bioremediate soils 
contaminated with pesticides residues 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Pesticides persist in soil and cause 
increasingly documented ecological 
damages. 

• We present a bioremediation protocol 
via modifications of two bacterial 
communities. 

• We transposed statistical tools from 
genomic selection to microbial ecology. 

• Using coalescence, we successfully built 
multi-degrading bacterial communities. 

• We efficiently transfered the degrading 
capacities towards the receiving soil.  

A R T I C L E  I N F O   
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A B S T R A C T   

Parallel to the important use of pesticides in conventional agriculture there is a growing interest for green 
technologies to clear contaminated soil from pesticides and their degradation products. Bioaugmentation i. e. the 
inoculation of degrading micro-organisms in polluted soil, is a promising method still in needs of further de
velopments. Specifically, improvements in the understanding of how degrading microorganisms must overcome 
abiotic filters and interact with the autochthonous microbial communities are needed in order to efficiently 
design bioremediation strategies. Here we designed a protocol aiming at studying the degradation of two her
bicides, glyphosate (GLY) and isoproturon (IPU), via experimental modifications of two source bacterial com
munities. We used statistical methods stemming from genomic prediction to link community composition to 
herbicides degradation potentials. Our approach proved to be efficient with correlation estimates over 0.8 - 
between model predictions and measured pesticide degradation values. Multi-degrading bacterial communities 
were obtained by coalescing bacterial communities with high GLY or IPU degradation ability based on their 
community-level properties. Finally, we evaluated the efficiency of constructed multi-degrading communities to 
remove pesticide contamination in a different soil. While results are less clear in the case of GLY, we showed an 
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efficient transfer of degrading capacities towards the receiving soil even at relatively low inoculation levels in the 
case of IPU. Altogether, we developed an innovative protocol for building multi-degrading simplified bacterial 
communities with the help of genomic prediction tools and coalescence, and proved their efficiency in a 
contaminated soil.   

1. Introduction 

Pesticides are still widely used in conventional agriculture to main
tain high yield by controlling pests among which broadleaf weeds 
competing with the crops [1]. Yet their persistence in soil and their 
transfer to water resources cause ecological damages that are increas
ingly documented [2]. Indeed, pesticides or their degradation metabo
lites can have negative effects on animals and microorganisms which in 
turns affect ecosystem functions and services [3,4]. 

Recurrent pesticides exposure can lead to the selection of degrading 
populations among soil bacterial community that are able to use pesti
cides as nutrient and energy source for their growth [5]. Pesticide 
biodegradation by soil microorganisms has been amply documented and 
represents a precious baseline to develop bioremediation strategies of 
polluted ecosystems [6,7]. Classically, bioaugmentation strategies relies 
on the isolation of specific degrading strain(s) by enrichment in a se
lective medium supplemented with the pesticide as sole carbon or ni
trogen source. This process is time consuming and assumes that the 
degrading bacteria can survive and grow in laboratory conditions, which 
is known to be the case for only a small fraction of all microorganisms 
[8]. Besides isolation, multiple studies showed that bioaugmentation 
with pure degrading strains or simple bacterial consortia turned out to 
be inefficient in field-scale experiments, due to establishment and sur
vival problems of microbial inocula or to an in situ decline of their 
degrading activities [9,10]. 

In order to overcome these limitations, we propose to adopt the 
vision of quantitative geneticists who try to introgress a genomic region 
into a given genetic background to select a phenotype of interest. By 
doing so, pesticide-degrading bacteria are seen as the alleles responsible 
for the phenotype of interest i. e. pesticide biodegradation, that need to 
be introgressed into a contaminated soil microbial community, corre
sponding to the genetic background to improve. Hence, the microbial 
community matches the plant or animal individual as the experimental 
unit. Therefore, we transposed tools from genomic selection used by 
quantitative geneticists to microbial ecology with a bioremediation 
perspective. 

Statistical methods used in genomic selection result from a mix of 
two historical approaches: the Best Linear Unbiased Predictor approach 
(BLUP), blind to genetic trait determinism, uses kinship level between 
individuals to derive the proportion of expected shared alleles and 
guides choice for individuals to cross [11,12]. The second approach, 
akin to the QTL approach is based on genomic markers to identify re
gions implied in the expression of phenotypes of interest [13]. The 
emergence of NGS (Next Generation Sequencing) opened the possibility 
to precisely estimate shared alleles between individuals, allowing the 
use of BLUP type models based on the realised, instead of expected, 
kinship matrix. We can then use individual genotype as a proxy to 
predict the genetic value. Correspondingly, one could develop a pre
diction model for microbial community "phenotype" (community func
tion) from their "genotype", which consists of its specific composition 
determined by sequencing of taxonomic markers (e.g. 16 S rDNA 
amplicon). Such an approach, linking community composition to a 
community function, has not yet been explored in the context of mi
crobial community engineering. 

To test the relevance of this original approach, we focused our 
research on two herbicides: Glyphosate (GLY) and Isoproturon (IPU) and 
experimentally obtained a cohort of microbial communities degrading 
these two xenobiotics. After extraction of degrading communities, one 
for each of the two herbicides, serial dilutions coupled with a range of 

biocidal treatments were performed in order to obtain compositional 
variants. Importantly, they were inoculated in the recipient soil previ
ously sterilized, as a mean to select degrading bacteria able to grow in 
this specific environmental niche [14]. Indeed, environmental filtering 
by pH, soil structure, organic matter proportion, is thought to be a major 
cause for the inefficiency of strain bioaugmentation [15]. For each of the 
compositional variant, degrading capacity was measured by radio
respirometry and 16 S rDNA sequencing were undertaken, allowing us 
to explore the links between the pesticide-degrading function and the 
bacterial community composition at the Operational Taxonomic Unit 
(OTU) level. We used statistical methods routinely used in genomic 
prediction, focusing on two models derived from linear regression, 
Ridge Regression (RR) and LASSO, as well as a nonlinear 
machine-learning method: Random Forest (RF) [16]. We then investi
gated the explanatory power of the models and looked at highlighted 
OTUs. To go further, coalescence of GLY and IPU degrading commu
nities, specifically chosen based on their intrinsic properties such as 
diversity levels, degrading capacities and relative abundance of OTUs of 
interest, was performed in order to explore the compatibility of 
degrading communities. The multi-degrading communities were finally 
inoculated in a recipient inhabited soil to evaluate the efficiency of the 
proposed protocol to bioremediate a pesticide contaminated soil. 

2. Materials and methods 

2.1. Soil sampling 

We collected three different soils based on their potential to degrade 
two herbicides, glyphosate (GLY) and isoproturon (IPU). One soil was 
collected from Noiron-sous-Gevrey (France, 47◦11′36.38"N, 
5◦4′55.44"E) for its potential to degrade GLY, likely due to recurrent use 
of this herbicide. It contains 42% silt, 42% clay and 15% sand and shows 
a pH of 8.04, as well as 25.37 g/kg organic carbon and 2.15 g/kg ni
trogen. A second was collected from the Epoisses INRAE experimental 
farm (Bretenière, France, 47◦30′22.18"N, 4◦10′26.46"E) for its potential 
to degrade IPU which is due to long term exposure to this compound. 
Soil properties were as follows: 51.9% silt, 41% clay, and 6.2% sand, pH 
7.2, and organic carbon and nitrogen content 15.5 g/kg and 1.4 g/kg dry 
soil, respectively. A third soil was collected from the CEREEP Ecotron 
Research Station (Saint-Pierre-lès-Nemours, France, geographic co
ordinates: 48◦16′58.9"N, 2◦40′19"E) and displayed a poor degradation 
potential for both herbicides. This last soil is a cambisol with moor 
composed of 19% silt, 6.98% clay, 74.1% sand, and with 14.7 g/kg 
organic C; 1.19 g/kg N; pH of 5.22. All three soils were sieved at 4 mm, 
and a sufficient amount of the Ecotron soil was sterilised by γ steri
lisation (2 times 35 kGy in Conservatome, Dagneux, France). The 
Noiron-sous-Gevrey and Epoisses soils were pre-incubated for 30 days in 
300 g microcosms in triplicates with their attributed herbicide (GLY and 
IPU, respectively at days 1 and 15 according to their agronomical dose, i. 
e. 3 mg/kg equivalent dry mass (edm) for GLY and 2 mg/kg edm for 
IPU). 

2.2. Glyphosate and Isoproturon mineralisation potentials 

Mineralisation ability of the two herbicides were measured on 15 g 
edm soil samples that were adjusted to the same moisture level (70% of 
water holding capacity (WHC) of the soil). Solutions of 14C-ring labelled 
IPU and 14C-GLY (on C-P bond) were obtained at a concentration 
reaching 1 667 Bq radioactivity per dose (400 µl of herbicide solution 
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added to the samples at agronomical dose). All samples were then placed 
in closed jars along with 10 ml water in an open container to maintain 
humidity and 5 ml sodium hydroxide NaOH at 0,2 M to trap emitted 
14CO2. The jars were put in the dark at room temperature (20 ◦C) for 42 
days. The NaOH containers were regularly replaced for temporal as
sessments of emitted 14CO2 with addition of 10 ml scintillation fluid 
(ACSII, Amersham) and measures on a Beckman scintillation counter. 
For each herbicide, the mineralisation potential was expressed as the 
cumulative percentage of 14CO2 evolved from the initially added 14C- 
pesticide over time. 

2.3. Microbial community variants construction 

For each herbicide-degrading soil microbial community, composi
tional variants were obtained by coupling serial dilutions with biocidal 
treatments, as described in Romdhane et al., 2021 [17]. Each soil 
community was first extracted by blending 33 g edm of soil with 60 ml 
sterile distilled water, then diluted 10 times with sterile 0.9% NaCl so
lution to get the 100 dilutions. 10− 1, 10− 2 and 10− 3 dilutions were 
retrieved by 10 times serial-dilutions. For each dilution level, we applied 
9 different biocidal treatments (see Table 1 for more details) in tripli
cates and kept untreated samples as controls. This experimental pro
cedure led to a total of 120 community suspensions (= 4 dilutions x 10 
treatments x 3 replicates) per herbicide-degrading community. A vol
ume of 10.5 ml from each suspension was inoculated into 50 g dry 
sterilized Ecotron soil in plasma flasks closed with sterile cotton lids, 
with addition of 2 ml of the adequate herbicide solution to reach the 
agronomical dose in order to facilitate the establishment of the 
degrading community. All microcosms were kept for 43 days in the dark 
at room temperature (20 ◦C) and moisture was adjusted to vary between 
50% to 70% of WHC by addition of sterile water. After 43 days, 250 mg 
edm of soil was collected for each microcosm to assess microbial com
munity composition using 16 S rDNA sequencing, 5 g to determine 
relative humidity and 15 g to assess herbicide mineralisation potentials. 

2.4. Assessment of microbial community composition and diversity 

DNA was extracted from 250 mg edm for the 246 samples (composi
tional variants and original soils) using the DNeasy PowerSoil-htp 96 well 
DNA isolation kit (Qiagen, Hilden, Germany). Generation of amplicons for 
Illumina MiSeq sequencing was done according to a two steps PCR pro
tocol as follows: i) amplification in duplicates of the V3-V4 hyper-variable 
region of the bacterial 16 s rRNA with fusing primers U341F (5′- 
CCTACGGGRSGCAGCAG-3′) and 805 R (5′-GACTACCAGGGTATCTAAT- 
3′), and, to allow the subsequent addition of multiplexing index-sequences, 
overhang adapters (forward:TCGTCGGCAGCGTCAGATGTGTATAAGA
GACAG, adapter: GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG). 
PCR cycles started at 98 ◦C for 30 s, then 55 ◦C for 30 s and 72 ◦C for 30 s 
and a final extension for 10 min at 72 ◦C, ii) pooling of duplicates and 
amplification with unique pairs of tag per sample, at PCR cycles starting 
with 8 ◦C for 3 min followed by 98 ◦C for 30 s, 55 ◦C for 30 s, 72 ◦C for 30 s 
and a final extension for 10 min at 72 ◦C. 2% agarose gel were prepared to 

visually verify amplicon sizes, and we noted two samples (both from the 
GLY compositional variants) without amplicons that were taken out for 
downstream analyses. All samples were then cleaned with SequalPrep 
Normalization plate kit 96-well (Invitrogen, Carlsbad, CA, USA), pooled 
and sequenced on MiSeq (Illumina, 2 ×250 bp) using the MiSeq reagent 
kit v2 (500 cycles). 

The sequence data were analysed using an in house developed 
Jupyter Notebook [18] streaming together different bioinformatics 
tools. Briefly, R1 and R2 sequences were assembled using PEAR [19] 
with default settings. Further quality checks were conducted using the 
QIIME pipeline [20] and short sequences were removed (< 400 bp). 
Reference-based and de novo chimera detection, as well as clustering in 
OTUs were performed using VSEARCH [21] and the adequate reference 
databases (SILVA’s representative set of sequences). The identity 
thresholds were set at 94% based on replicate sequencing of a bacterial 
mock community containing 40 bacterial species. Representative se
quences for each OTU were aligned using MAFFT [22] and a 16 S 
phylogenetic tree was constructed using FastTree [23]. Taxonomy was 
assigned using BLAST [24] and the SILVA reference database v138 [ref 
25]. Diversity metrics, that is, Faith’s Phylogenetic Diversity (PD) [26], 
richness (observed species) and evenness (Simpson’s reciprocal index), 
describing the structure of microbial communities were calculated based 
on rarefied OTU tables (10 000 sequences per sample). UniFrac distance 
matrices [27] were also computed to detect global variations in the 
composition of microbial communities. OTUs showing low abundance 
were discarded with a threshold of 210 counts across the compositional 
variants, to avoid artefactual association of rare OTUs with degradation 
potential and to lower the number of parameters (OTUs) to be estimated, 
from 5145 to 1316. In addition, one GLY compositional variant had a 
read depth below 5000 and was then removed for downstream analyses 
(mean of count per community around 16,700). 

2.5. Co-occurrence networks and visualisation of OTU predictors 

Bacterial co-occurrence networks were constructed based on filtered 
OTU count data (1316 OTUs) over the 240 samples degrading commu
nities using a sparse multivariate Poisson log-normal (PLN) network 
model with a latent Gaussian layer and an observed Poisson layer using 
the R package PLNmodels v0.11.04 [ref. 28,29]. The best model was 
selected using a Stability Approach to Regularisation Selection [30]. 
Phylogenetic relationships between OTU predictors were visualized 
using the Interactive Tree of Life webservice [31]. 

2.6. Predicting herbicide mineralisation potential from microbial 
community composition 

We derived the principle of predicting herbicide mineralisation po
tential from the bacterial community composition from the same logic as 
used in genomic prediction, where a model is trained to predict 
phenotype on the basis of the genotype of individuals as assessed 
through numerous molecular markers. Here we trained models to pre
dict herbicide degradation based on the composition of bacterial 

Table 1 
Biocidal treatments applied on herbicide-degrading communities.  

Treatment Abbreviation Modality 

Ciprofloxacin (antibiotic) Cipro 5 h incubation at25◦C with ciprofloxacin at 66 µg/ml 
Ramoplanin (antibiotic) Ramo 5 h incubation at 25 ◦C with ramoplanin at 70 µg/ml 
pH2 pH2 2 h incubation at 25 ◦C with 730 µl acid malic 1 M then 3 washes 
pH11 pH11 2 h incubation at 25 ◦C with 370 µl ammoniac 20% 1 M then 3 washes 
Oxidant 1 – strong Ox1 1 h incubation at 25 ◦C with 730 µl H202 0,98 M 
Oxidant 2 – mild Ox2 1 h incubation at 25 ◦C with 295 µl H202 0,98 M 
Heat shock HS 0 ◦C for 5 min; 70 ◦C for 15 min; 0 ◦C for 5 min 
UV UV 2 h exposition to UVC light 
Freeze-thaw FT 6 x (− 80 ◦C for 15 min; 30 ◦C for 15 min) 
Control CT /  
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communities. All the following analyses are based on three statistical 
methods used in genomic prediction: Ridge Regression (RR), LASSO and 
Random Forest (RF). The first 2 methods build a regression model based 
on the relative composition in OTUs of the compositional variants over 
the function performed by their community. This leads to dealing with a 
high number of parameters to be estimated (the effect of each of the ~ 
1316 OTUs, namely) compared to the number of experimental samples 
(120 compositional variants per herbicide-degrading community). In 
this so-called large p small n setting, using a regular linear regression 
(Ordinary Least-Square) would lead to inflated variance of the estimates. 
To alleviate this problem, penalized regression methods use various 
penalty functions to shrink all estimates (Ridge Regression) and/or 
perform variable selection (in the case of LASSO). Here we used a 
Bayesian implementation of these 2 penalized regression methods with 
prior distribution of bacterial species or OTU effects chosen as a 
Gaussian Distribution for Bayesian Ridge Regression (BRR) and a Lap
lace distribution for Bayesian LASSO (BL). They were run using the R 
package BGLR v1.1.0 [ref. 32]. The third method, Random Forest, is an 
ensemble method based on building decision trees to determine the 
importance of the OTUs by partitioning them depending on their counts 
in relation with the measured community function [33]. This method 
uses a combination of tree predictors and has the advantage of not hy
pothesizing additive effects of the OTUs and can thus be powerful in 
non-additive situations. The R package RandomForest v4.7–1.1 [ref. 34] 
was used for the following analysis, with parameters: number of trees of 
500, node size of 5 and tested variables at each split of 1000. 

Prior to any analysis, OTUs counts were corrected for sequencing 
depth (data/community sum * max of all community sum) then centered 
and reduced. Based on the mineralisation curves (see Supp. Fig. 1), we 
estimated 3 measurable curve parameters that where further considered 
as our community phenotypes: the total cumulative mineralisation after 
42 days (Total), mineralisation value at the time point at which the 
variance across samples of the cumulative mineralisation potential is 
maximised (HighVar) and the slope of the linear regression of the cu
mulative mineralisation potential over the first 10 days (Slope). This last 
parameter approximates the mineralisation potential rate. Note that for 
GLY, HighVar is estimated at day 42, and is therefore equivalent to 
Total. On the opposite, for IPU, HighVar landed on day 13. To assess the 

prediction potential of these 3 statistical methods, we used a cross- 
validation scheme using 4/5 of the data to train the models, and the 
remaining 1/5 of the data to test its accuracy. The process was repeated 
8 times, redrawing the sets each time. The metric we used to assess the 
accuracy of prediction was the Pearson correlation between predicted 
and measured herbicide mineralisation potential. 

2.7. Mixing herbicide-degrading compositional variants 

We created artificial microbial communities by mixing GLY- 
degrading with IPU-degrading compositional variants. The modalities 
used to create these communities were driven by different hypotheses 
leading to six scenarios based on community structure or degrading 
features (Fig. 1): i) measured mineralisation rate for the herbicide they 
were selected for, ii) diversity of the compositional variants, iii) pre
dicted mineralisation potential rate of the other herbicide and iv) 
abundance of OTUs detected as having positive or negative associations 
with the measured mineralisation rate. For each scenario, 5 IPU- 
degrading communities and 5 GLY-degrading communities were 
selected and mixed by random pairing (see Supplementary Materials for 
scenarios details). 

For community mixing, 2.5 g of each parental community was added 
in 50 g sterilised dry Ecotron soil. 

All microcosms were then watered up to 70% of soil water holding 
capacity and boosted by the addition of an agronomical dose of both IPU 
and GLY, closed with sterile cotton lids and incubated for 45 days. The 
resulting 30 microcosms were then sampled, and the GLY and IPU 
mineralisation potential of the resulting microbial communities were 
then assessed using radiorespirometry. 

2.8. Coalescence of the herbicide multi-degrading communities into the 
original non-degrading soil 

We selected the 5 best communities derived from the mixing of 
compositional variants based on their efficient IPU mineralisation and 
their improved GLY mineralisation compared to their parents. 4 levels of 
inoculations were prepared for each of these communities, reaching 50 g 
edm of soil in each microcosm. Inoculations were handled by mixing 

Fig. 1. Graphical representation of criterion for selection of IPU and GLY communities to be mixed, under 6 scenarios. Crosses represent the mixing between IPU and 
GLY communities. Scenarios in panel A are based on communities’ characteristics: measured pesticide mineralisation rate (mine), phylogenetic diversity (Div Phylo) 
and predicted mineralisation by BL model for Slope (predicted mine). In Panel B, community choice is based on OTUs estimates (BL model for slope phenotype). 
Coloured dots (red for positive and blue for negative estimates) are the OTUs taken in account for the community choice, Scenario OTUMinMax maximizes the 
abundance of OTUs with high estimates and minimizes OTUs with low estimates while OTUMax maximizes the product of abundance of high estimates OTUs and 
their estimates. 
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0.1 g, 0.5 g, 1 g or 5 g (corresponding respectively to 0.2%, 1%, 2% and 
10% mixing-ratio) of soil of the best communities with the original, non- 
sterilised Ecotron soil, with addition of 2 ml of both herbicide solutions 
to reach the agronomical dose, in order to facilitate the establishment of 
the degrading communities and mimic an herbicide contamination. IPU 
and GLY mineralisation potential of the coalesced communities were 
then assessed by radiorespirometry. 

3. Results 

3.1. Evaluation of the GLY and IPU mineralisation potential of the three 
selected soils 

Mineralisation potentials of IPU and GLY differed greatly between 
soils, with the Ecotron soil showing the lowest potential for both pesti
cides (Supp. Fig. 2). IPU is far better mineralised in Epoisses (27.3% 
± 1.4) soil as compared to the two other soils (6.5% ± 0.04 for Ecotron 
and 14.7% ± 0.2 for Noiron). The Noiron soil exhibits the highest GLY 
mineralization (30.0% ± 0.6), although the difference with the other 
soils is less striking than it is with IPU (17.9% ± 0.1 for Ecotron and 
21.6% ± 0.5 for Epoisses). 

3.2. GLY and IPU-degrading compositional variants 

We coupled serial dilutions with different biocidal treatments to 
construct compositional variants of GLY-degrading bacterial commu
nities from Noiron soil and IPU-degrading ones from Epoisses soil 
(Table 1). Principal coordinates analysis of the weighted Unifrac dis
tance matrix revealed a continuous variation in composition across both 

IPU and GLY communities (Supp. Fig. 3). Compositional variants are 
significantly different from the original communities found in IPU and 
GLY degrading soils. This indicates that community manipulation was 
successful to construct compositional variants for both GLY and IPU 
original communities. 

We then evaluated mineralisation potential for both GLY and IPU- 
degrading compositional variants. Concerning GLY communities, the 
overall temporal dynamics of GLY mineralisation curves were similar 
between the different treatments with a slow saturation yielding in a 
cumulative mineralisation after 42 days ranging between 12.3% and 
40.4% of 14C-IPU initially added to microcosms. Moreover, we found a 
strong and significant impact of soil suspension dilution on GLY min
eralisation potential, with a marked decreased GLY mineralisation in the 
more diluted soil suspensions (Fig. 2 A & C). Specific treatments (HS, 
Ox1, pH11) displayed a stronger reduction of total mineralisation 
compared to the control microcosms (Fig. 2 C). Furthermore, we noted 
that none of the compositional variants reached the total mineralisation 
potential of the original Noiron soil. This points out an overall decline 
either due to the experimental manipulation of soil suspensions or to 
differences in physico-chemical properties of the receiving soil (steril
ized Ecotron soil), both potentially affecting GLY mineralisation 
capacities. 

Regarding IPU communities, three distinct dynamics can be identi
fied: i) some microcosms displayed IPU mineralisation kinetics with a 
rapid start reaching a plateau in about 15 days with a high final cu
mulative mineralisation (around 50% to 60%, even higher than the 
original Epoisses soil that only reached 36%), ii) some microcosms dis
played kinetics with a lag phase of about 10 days followed by an increase 
of mineralisation rate up to reaching a plateau at the end of the 

Fig. 2. Kinetics of mineralisation and cumulative mineralisation of GLY and IPU. Potential of GLY mineralization of communities derived from Noiron soil (A & C) 
and of IPU mineralization from Epoisses soil (B & D). Lines for kinetics (A & B) and bars for cumulative total (C & D) correspond to one condition of treatments and 
dilutions with error bars as standard error of the mean (n = 3). Dashed lines are for original soil community, dotted and dashed for original soil communities after 30 
days pesticide incubation. Biocidal treatments are listed in Table 1. 
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experiment, with a total cumulative mineralisation ranging between 
30% to 50% and iii) some microcosms displayed nearly no mineralisa
tion with cumulative mineralisation after 42 days below 4% (Fig. 2 B & 
D). The acidic treatment (pH2) had the strongest negative impact on IPU 
mineralisation, followed by the basic (pH11) and heat shock (HS) 
treatments. Interestingly, diluting soil suspensions did not have an effect 
on IPU mineralisation as observed for GLY communities. However, for 
some treatments (e.g. for Ox1, Ox2 and pH11 treatments) dilutions 
increased the variance between triplicates. 

3.3. Association between bacterial community composition and herbicide 
mineralisation potential 

The three aforementioned statistical methods (BRR, BL and RF) were 
applied to our set of community variants. Specifically, we used the 
normalized OTU table as the set of predictors, for which effects have to 
be estimated, and three parameters of herbicide mineralisation kinetics 
as the predicted variables: the Slope on the mineralisation curve over the 
first 10 days, the cumulative mineralisation (Total) and the percent of 
pesticides mineralisation at the time point where the variance is the 
highest (HighVar). Correlations between the actual and predicted vari
ables after cross-validation depicted in Fig. 3 are overall very high, often 
with correlation coefficient well above 0.75. Unsurprisingly, correla
tions on training data are close to 1 (higher than 0.95 for IPU commu
nities, and ranging from 0.89 to 0.98 for GLY) with very low variance. 
Looking at the prediction accuracy on testing sets, the values are also 
higher for IPU than for GLY, with the exception of the Total for which 
correlations went down from above 0.9 to 0.8–0.85. Prediction accuracy 
for GLY communities are comprised between 0.77 and 0.85 with no 
clear difference between the 3 predicted variables. We also did not 
detect any clear difference in the prediction accuracy of the different 
statistical methods. Even if RF yielded the highest correlation on the 
training set, its results on the testing set were in the same range as the 
two penalized regression methods. 

The capacity of the different methods to accurately predict miner
alisation parameters was further investigated by looking at OTUs with a 
strong effect on mineralisation, i. e. having a large estimated effect size, 
either positive or negative. Interestingly, detected OTUs by RF were 
overall largely different from the ones detected by BL and BRR for which 
28 OTUs were common over the 30 most important detected for Slope 
variable for both pesticides (Supp. Fig. 4). We therefore looked in more 
details at the taxonomy and the partial correlation patterns between 
OTUs detected by both BL and BRR models applied on the Slope and 

Total (Fig. 4). Overall, there are less negative than positive estimates, 
and their amplitudes are lower than positive ones. In addition, for the 
IPU communities, OTUs that are detected as having an effect on the 
Slope variable were also detected as important for the Total (19 out of 
27), which is not the case for the GLY communities (7 out of 26). Overall, 
the co-occurence analysis laid a large majority of positive and weak 
partial correlations with 2292 positive links against 63 negative ones. 
Across the OTUs detected as associated to the mineralization potential, 
Co-occurence pattern are particularly present between taxonomically 
close OTUs e.g. across Pseudomonas genus or Cytophagales. Interest
ingly, a recurrent pattern of taxonomically-related OTUs showing 
opposite estimates was detected for both herbicides (e.g. Actino
mycetales order in GLY and IPU, Pseudomonas genus, Sphingobacteriales 
and Bacilliales in IPU). Some of the selected OTUs are also important for 
degradation prediction by the RF method and even if they are not the 
ones with highest estimates (as determined by BL), they can be seen as 
robust because detected by all three methods. Moreover, 6 OTUs are 
shared by GLY and IPU linear prediction models, underlying either 
multi-degrading strains or more likely strains involved in the down
stream part of mineralisation pathways. They could also be facilitators 
of degrading strains, altering the abiotic conditions favourably (or 
unfavourably for Rhizobiales Balneimonas in the case of IPU). 

3.4. Mixing compositional variants and evaluating the GLY and IPU 
mineralisation potential of the resulting communities 

The next step consisted in mixing GLY with IPU compositional var
iants in order to construct multidegrading communities and inoculate 
them into the non-degrading sterile Ecotron soil. We tested six different 
mixing scenarios in order to detect which community characteristics 
could impact the degrading ability of resulting communities. Interest
ingly, only slight differences were found between the six tested scenarios 
when comparing the GLY and IPU mineralisation potential of the 
resulting communities compared to their parental ones (Fig. 5). These 
results indicate that no strong antagonism between bacterial pop
ulations associated with the degradation of IPU and GLY exists, but also 
that no overyielding of the mineralisation potential was detected. 
However, we observed that the choice of the phylogenetic diversity level 
of the parental communities impacted the mineralisation potential of the 
resulting communities. On the one hand, choosing parental IPU com
munities with low phylogenetic diversity led on average to lower IPU 
mineralisation potential in the resulting communities. On the other 
hand, choosing parental GLY communities with high phylogenetic 

Fig. 3. Prediction accuracy assessed by cross-validation on mineralisation data. 5-Fold CV with shuffling between 8 runs. Errors bars represent standard error of the 
mean for A) GLY mineralisation and B) IPU mineralisation. Phenotypes are mineralisation kinetic parameters as described in the Material and Methods section. 
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diversity resulted on average in communities with higher GLY miner
alisation potential (Fig. 5). 

3.5. Coalescence of the herbicide multi-degrading communities into a non- 
degrading soil 

Finally, we tested the efficiency of coalescing the resulting multi- 
degrading communities into the non-degrading non-sterile Ecotron soil 
by selecting the five best communities. We evaluated different inocu
lation ratios and results are contrasted, depending on the herbicide 
(Fig. 6). For GLY, non-inoculated control showed relatively high 

mineralisation ability averaging 21.7% after 42 days of incubation, 
attesting the mineralisation ability of the indigenous microbial com
munity. Furthermore, low inoculation ratios did not increase this po
tential and high inoculation ratios (5 g mixed in 50 g) produced only a 
slight increase in GLY mineralisation ability (mean of 24.9%). On the 
other hand, IPU mineralisation potential was quite low in the non- 
inoculated control (mean of 11.1%). It increased significantly and 
strongly in response to inoculation of even small quantities of multi- 
degrading communities (mean of 28.4% for 0.1 g, going up to 42% for 
1 g). 

Fig. 4. Taxonomic classification, importance and relationship between OTUs with highest predicted effect. Taxonomic classification ("order: genus" if known 
(otherwise "unknown")) of OTUs having highest estimators predicted by BL and BRR for the Slope phenotype for A) GLY and B) IPU. Green arrows link OTUs with 
significant co-occurrence pattern, determined by positive partial correlation. Dot size displays the effect size of positive (green) and negative (red) estimates. Checks 
indicate OTUs also detected for Total by BL and BRR, then "RF" indicates OTUs detected by RF method on Slope phenotype. 
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4. Discussion 

4.1. Environmental filtering and impact of diversity loss 

Environmental filtering refers to the process by which local abiotic 
conditions select organisms that are able to cope with the existing 
physico-chemical properties [14]. It is thought to be one of the main 
processes causing the inefficiency of in situ microbiome engineering [15, 
35,36]. Here, we chose to γ-sterilize the target environment, i. e. the 
environment in which bioremediation of a pollutant is targeted, and use 
it as a first screening for degrading microbial communities. After com
munity extraction, manipulation and inoculation of the target sterilized 

soil, we observed that herbicide mineralisation potential was kept at 
high levels and even exceeded the original soils mineralisation potential 
in the case of IPU (Fig. 2). The bacterial community structure of the 
manipulated GLY and IPU mineralising communities was drastically 
altered compared to the original soils from which they originated (Supp. 
Fig. 3), probably in relation with the sandier structure and the more 
acidic conditions of the target environment. This confirms the strong 
role of environmental filtering in shaping microbial communities, albeit 
without impairment of their functioning in our case. 

We combined serial dilution to biocidal treatments to create 
compositional variants of GLY and IPU mineralising bacterial commu
nities. Consistent with theory and previous studies [14,37], dilution had 
a strong impact on bacterial richness (Fig. 2), higher levels of dilution 
resulting in less diverse communities illustrating the loss of rare taxa. In 
the case of GLY, this decline in bacterial richness was associated with a 
decrease in the mineralisation capacity, underlining a relatively 
straightforward link between diversity and functioning often reported in 
the literature [38–40]. However, in the case of IPU degrading commu
nities, we did not observe such a relationship, suggesting that the IPU 
mineralisation function might be supported by a specific group of 
originally common OTUs, which might even have benefited either from 
the community manipulation or the target environment local conditions 
we subjected them to. This interpretation is supported by the general 
knowledge that IPU mineralization abilities is shared only among a 
small amount of bacteria genus [41], although experimental evidence is 
needed and could be the matter of further research. 

4.2. Predicting herbicides mineralisation potential from bacterial 
community composition 

The successful implementation of our prediction approach relied on 
our ability to generate a compositional continuum of communities 
varying in their capacity to degrade the pesticides. A strong level of 
structure in the composition of the communities following our treat
ments could be detrimental to the overall ability of the model to yield 
satisfactory predictions. The same restriction is faced in genomic pre
diction and regular updates with new data (phenotype-genotype infor
mation) are carried out to keep the model adjusted over time [42]. Our 
success in obtaining a continuous distribution of community variants 
notwithstanding, the transfer of genomic prediction tools on microbial 
function is challenged by two main differences in data: pre
sence/absence of alleles are replaced by a more continuous and poten
tially limitless count of OTUs, and the likely change in community 
composition over time compared to the fixed genetic information. This 
last point turned out to be particularly relevant in IPU case, with clearly 
superior predictions for starting mineralisation rate than final mineral
isation potential (Fig. 3). For future consideration, monitoring the 
change of degrading communities over time seems crucial for our ability 
to devise prediction models trained on data that are not too divorced 
from the data they try to predict. Despite all these potential pitfalls, our 
approach gave very satisfying preliminary results and is supported by 
promising results from machine learning methods tested on microbial 
communities to predict community function [43,44]. 

There was no clear distinction in prediction accuracy between the 
three statistical methods that we used (BL, BRR and RF). In parallel, and 
to get an idea of the intrinsic properties of microbial communities that 
could influence the statistical power of these methods, we used simu
lations of degrading capacities of an existing OTUs table postulating 
various "trait architecture" (i. e various ways for OTUs to contribute or 
not to the simulated phenotype). The results showed that predictions 
were better when the simulated phenotype was underlain by a few 
abundant OTUs (Supp. Informations). This type of architecture matches 
well what we observe for IPU degradation, which seems to be performed 
by a few specific OTUs [45], and consistent with the fact that our model 
gives a very high prediction accuracy. The case of GLY is different, with 
the degrading potential seemingly more spread out across OTUs, yet we 

Fig. 5. Cumulative mineralisation differences between original and coalesced 
communities depending on original communities’ properties. Mineralisation 
difference of total cumulative degradation (42 days, n = 5) for the 6 scenarios 
of community coalescence based on their properties. Stars show distributions 
with mean significantly different from 0. Mixing Scenarios are described in 
Materiel and Methods. 

Fig. 6. Cumulative mineralisation of GLY and IPU in pesticide spiked soil mi
crocosms inoculated with multi-degrading community. For each gradual inoc
ulation n = 5, from 0 (control) to 5 g of soil in 30 g of non-sterile soil. 
Cumulative mineralisation is showed after 42 days of incubation. 

S. Thieffry et al.                                                                                                                                                                                                                                 



Journal of Hazardous Materials 471 (2024) 134454

9

obtained reasonably accurate predictions there too. 

4.3. Identification of specific OTUs associated with herbicide 
mineralisation potential 

To validate the model predictions, we looked at OTUs with the 
highest and lowest predicted effect sizes and checked whether they were 
already identified in previous literature. Two Pseudomonas spp. strains 
are identified for their GLY degrading capacities, which matches 2 OTUs 
with positive estimates in our analysis [46,47]. On the opposite, two 
OTUs with negative estimate, Bacillus cereus and Flavobacterium sp., 
show isolated strains for their GLY degrading capacities [46,47]. These 
last apparently mixed results could be explained by a competition 
pattern related to phylogeny, pattern well known in microbial ecology 
[48]. Indeed, we noticed that phylogenetically close OTUs often turned 
out to have opposite effect on degradation function, suggesting that they 
might be in competition, with one bearing the degrading capacity and 
the other occupying a similar ecological niche. These non-degrading 
competitors would expand in absence of degrading OTUs, and there
fore be negatively correlated with pesticide mineralisation. This 
appealing hypothesis has yet to be tested for each pesticide. 

Concerning IPU, degrading strains are mostly found within the 
Sphingomonas genus [49,50], which matches our model prediction with 
two OTUs with positive estimates belonging to this taxon. The other 
OTUs with high prediction power have not yet been described as IPU 
degraders but are good candidates either directly involved in the 
degradation or facilitated by degrading OTUs. 

4.4. Evaluating the herbicide mineralisation potential of the mixed 
communities 

Increasing interest for community coalescence as a widespread mi
crobial ecological event and recent studies [51,52] prompted us to 
establish coalescence scenarios based on community-level properties. By 
doing so, our initial objective of building multi-degrading communities 
turned out to be a great success. All coalesced communities proved to be 
efficient at degrading both pesticides. However, among all tested com
munity properties, only the phylogenetic diversity was revealed as an 
important community feature to maintain high degradation capacities 
for both pesticides after coalescence. 

Moreover, we can hypothesize from our results that no strong an
tagonisms exist between IPU and GLY degrading community members, 
which is consistent with the chemical structure discrepancy between the 
two pesticides and their degrading pathways [45,46]. This suggest a 
modular coalescence in which input communities are preserved and 
only limited new interactions between communities are established, as 
opposed to chimeric coalescence showing numerous new interactions 
[51]. 

4.5. Coalescence of the herbicide multi-degrading communities into a non- 
degrading soil 

Introgression of the multi-degrading communities in an inhabited 
polluted soil resulted in contrasted outputs between the 2 pesticides. A 
clear transfer of IPU degradation capacity was observed, even at low 
inoculation levels. This success can be explained by the establishment of 
cohesive unit of co-selected taxa along the experiments for their use of 
IPU as substrate, a hypothesis supported by previous theoretical work 
[53]. Conversely, introgression of GLY degrading capacities gave mixed 
results, consistent with an already present degrading potential. Indige
nous community benefits of the priority effect [54], making it difficult 
for new taxa to establish. At high inoculation level though, degradation 
is enhanced, either demonstrating the importance of invasive pressure 
[15,55], or the additive relationship between species richness and 
community phenotype [40,52]. 

5. Conclusion 

Microbiome engineering is a promising approach for bioremediation 
purposes based on the bacterial capacities to degrade pollutants. We 
propose here an innovative and efficient strategy for building multi- 
degrading bacterial communities. Our approach is based on pre
dictions of the degradation potential of pesticides from microbial com
munity composition (with more than 80% efficiency). 

Using the coalescence framework, we succeeded in building multi- 
degrading communities that i) established efficiently in a contami
nated soil, ii) brought its IPU mineralisation potential up to 40%, while 
iii) at least, stabilizing its GLY mineralisation potential. We advocate for 
applying this approach to a vast range of pesticides which would allow 
identifying microbial key players involved in their degradation in soils. 
This would be the first step towards a rapid selection of pesticide multi- 
degrading microbial communities. 

Environmental implication 

Pesticides are still widely used in conventional agriculture yet their 
persistence in soil and their transfer to water cause increasingly docu
mented ecological damages. Bioremediation via the inoculation of 
degrading micro-organisms is a promising method still in needs of 
further developments. Here we designed a protocol aiming at studying 
the degradation of two herbicides, glyphosate (GLY) and isoproturon 
(IPU), via modifications of two source bacterial communities. Specif
ically, we transposed tools from genomic selection to microbial ecology 
with a bioremediation perspective. We built multi-degrading bacterial 
communities and evaluated their efficiency to remove pesticide 
contamination from a soil. 
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