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A B S T R A C T   

Introduction: Assessing repeatability and reproducibility in analytical chemistry is commonly based on parametric 
dispersion indicators, such as relative standard deviation and standard deviation, calculated for each detected 
variable using repeated measurements of Quality Control (QC) samples collected throughout the data acquisition 
sequence. However, their reliability strongly relies on the assumption of normality distribution. Knowing that 
analytical variability is conditional to many sources, the use of such parametric estimators is not always suitable. 
There is therefore a need for robust indicators of data quality independent of central values and any parametric 
assumption. 
Methods: Three specific indicators were developed: (i) intra-group dispersion, based on the median area of the 
convex hull of QC samples within an analytical batch; (ii) inter-group dispersion, defined as the gradient of the 
deviation between analytical batches; and (iii) dispersion index. Mathematical properties of these indicators, 
including positivity, stability, and translation invariance, were then evaluated using synthetic data under normal 
and non-normal distributions. Finally, the relevance of these indicators and the associated visualization methods 
were highlighted based on a metabolomics case study involving liquid chromatography coupled to mass spec
trometry measurements of the NIST SRM1950 reference material analyzed over more than one year within 
different projects. 
Results: The proposed indicators were shown to be translation invariant and always positive, while first in
vestigations performed on synthetic data revealed a high stability for multiplication. Moreover, their application 
to experimental data revealed specific behaviors depending on the characteristics of the signal associated with 
the different detected analytes, showing their ability to capture the variability observed either in parametric or 
non-parametric conditions. Moreover, this investigation showed different structures of sensitivity to analytical 
variability all along the data processing steps. The proposed indicators also allowed a visualization of the 
analytical drift in two dimensions, to facilitate result interpretation. 
Conclusion: These indicators open the way to a better and more robust assessment of repeatability and repro
ducibility but also to improvements of long-term data comparability involving suitability testing.   

1. Introduction 

In analytical chemistry, the measurement error of any analyte pre
sent in a sample can be divided into two components, namely random 
and systematic error [1]. In many application fields, the multiple sources 
of random error can be reduced through good laboratory practices, to 
the point that they are considered negligible in comparison to the bio
logical variability. Systematic errors, generally caused by drifting 

analytical systems, are usually evaluated using multiple measurements 
of samples, but cannot be determined with certainty without internal 
standards or certified reference materials. Analytical methods that do 
not involve absolute quantification, such as mass spectrometry-based 
(MS) untargeted metabolomics, may therefore suffer from this limita
tion [2]. 

Evaluating the variability of a measurement method is one of the key 
performance criteria required in analytical chemistry. In untargeted 
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metabolomics, recent guidelines were published to provide researchers 
with a framework to describe quality assessment and quality control 
procedures [3,4]. In routine practice, pool quality control (QC) samples 
are generally analyzed along the data acquisition sequence (also known 
as batch in some domains) to evaluate the system performance and assess 
within-study data quality. 

Many different approaches have been developed to evaluate the 
performance of liquid chromatography coupled to mass spectrometry 
(LC/MS) methods, but they have not yet been standardized [2,5]. From a 
formal point of view, any measurement procedure can be described as 
having either a constant absolute or a relative variation in the measuring 
interval. When the assessment is related to the measurement done over a 
short time period in the same experimental conditions (defined as within 
one analytical batch), the variation is related to the method’s ‘repeat
ability’. The ‘intermediate precision’ reflects the variability observed 
between different days of analysis using the same setting, while 
‘reproducibility’ is related to differences observed in different mea
surement conditions. The latter can be defined in the present case as 
occurring between analytical batches in the present case. The definitions 
of these concepts used in the present work, are based on the ones pro
posed by Kirwan et al. [4]. 

Assessing repeatability, intermediate precision and reproducibility is 
commonly based on standard deviation (SD) or on relative standard 
deviation (RSD) following the principle of the variance components. 
Although these dispersion indicators are well-known and widely used, 
they rely on a strong assumption of Gaussian distribution which is not 
always fulfilled in experimental conditions. Indeed, in untargeted 
metabolomics, linearity is evaluated using diluted QCs to filter out 
variables that do not follow dilution trend, using linear correlations. 
However, it should be noted that linear correlation cannot be used to 
evaluate some important characteristics of an analyte response function, 
such as the slope of the concentration-signal relationship. This is a 
further argument for the use of dispersion estimators that do not depend 
on the assumption of normal distribution. Consequently, a Gaussian 
error in analyte concentrations does not result in a Gaussian error in 
measured values. 

In practice, RSD is often used as the variation parameter to assess 
repeatability and reproducibility. Whether intra-assay or inter-assay, the 
RSD is calculated by considering the values across multiple samples 
within one or several batch (es) [6]. However, this intuitive approach 
does not account for the structure of the variance components in the case 
of inter-batches RSD estimates. It has also been noted that RSD is not a 
relevant index of measurement variability when the number of repli
cates varies across samples [7]. Both SD and RSD are based on the use of 
the mean, which is known to lack robustness. Moreover, knowing that 
overall measurement variability is built from the combined variations of 
many sources, RSD based on repeated measurements of QC samples 
cannot constitute reliable estimates in every experimental situation. To 
overcome the limitations of the RSD, some authors proposed alternative 
based on central value [2]. However, knowing that the central value is 
also affected by the variability, this work proposed a method indepen
dent of these parameters, bringing additional information on the vari
ability of the instrument response. In this context, the use of a bivariate 
dispersion indicator constitutes a relevant approach that could help to 
overcome the limitations linked to classical parameters. Bivariate 
dispersion, defined as the measure of spread or variability in two di
mensions, is a fundamental concept in statistics for analyzing relation
ships between two variables. It quantifies the degree to which data 
points deviate from the central tendency along both the horizontal and 
vertical axes on a scatter plot. Techniques like covariance and correla
tion coefficients aid in quantifying bivariate dispersion, providing in
sights into the strength and direction of the relationship between 
variables. In the present study, we developed three original indicators 
for a robust assessment of the repeatability and reproducibility of 
analytical measurements. 

2. Methods 

2.1. Notion of convex hull 

All the methods proposed here are based on the convex hull. We 
consider a Euclidean space defined by a plane made of the “measurement 
order” and the “intensity” of the analyte signal. Given a finite set S = {S1, 
…..,Sn} where the coordinates of Si are (xi,yi), there is a unique convex 
hull CH(S) of S in the plane defined by different repeated measurements 
of a QC/reference material. A subset S of the plane is called convex if and 
only if for any pair of points p, q ∈ S the line segment pq is completely 
contained in S. The convex hull CH(S) of a set S is the smallest convex set 
that contains S. To be more precise, it is the intersection of all convex 
sets that contain S [8]. 

2.2. Proposed indicators 

For the set of S in the affine Euclidean plane, we assume that the 
measurements are done in groups and the indicative groups are repre
sented by the variable Z = {Z1 … Zh} with h >1. 

2.2.1. Intra-group dispersion (IntraD)
The Intra-group dispersion (IntraD) is meant to assess the dispersion 

of S, considering that the part of dispersion carried by the “Measurement 
order” is known and linear. The observed dispersion is then linked to the 
“intensity” of the measurement. The bivariate dispersion is estimated, 
knowing that the variation is mostly linked to the intensity of the ana
lytes in three steps. 

2.2.1.1. Step 1: Identification of the convex hull. The convex hull of each 
subgroup is identified; this step is completed by the identification of h 
(with h >1) convex hulls. 

2.2.1.2. Step 2: Estimation of the area of each group convex hull. We 
assume that each convex hull is a simple planar polygon with a positively 
oriented (counter clock wise) sequence of points Si=(xi,yi), i = 1, …,n, in 
a Cartesian coordinate system. It is convenient to set S0––Sn, Sn+1=S1 for 
the simplicity of the formula (Eq. (1)). Then, we estimate the signed area 
of the convex hull of each group by using the following shoelace for
mula (Eq. (1)) [9]: 

At =
1
2

(
∑n− 1

i=0
(xiyi+1 − xi+1yi)

)

,where xn = x0 and yn = y0 (Eq.1)  

Remarks. If the vertices of the convex hull are ordered counter
clockwise, Ai > 0. Otherwise, Ai<0. 

2.2.1.3. Step 3: estimation of the median of the areas. Once the area of 
each convex hull is estimated, the IntraD is calculated as the median of 
the different convex hull’s areas weighted by the quotient of the number 
of measurement points in each group and the total number of mea
surement points. 

IntraD=median
(

At • nt

n

)

,with t=1,…, h and h > 1 (Eq.2a) 

Rationale: If the deviation in intensity increases, the covered area 
will also increase. 

A compact form of the formula can be calculated by: 

IntraD = median

(
nt

2n

(
∑n− 1

i=0
(xiyi+1 − xi+1yi)

))

(Eq.2b)  

with t = 1, …, h; h > 1 and 
∑n− 1

i=0
(
xiyi+1 − xi+1yi

)
being the area of the 

convex hull of each batch, 
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2.2.2. Inter-group dispersion (InterD) 
The assessment of the InterD is meant to evaluate the gradient of 

dispersion from one group to another, and is assessed by (Eq. (3)): 

InterD=
Δinjection order ∗ Δintensity

2
or InterD=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
xci − xciʹ

)2
√

∗

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
yc1 − yciʹ

)2
√

2
(Eq.3)  

where Xc and Yc refer to the centroid in the ‘sequence’ and ‘intensity’ 
dimension, respectively. 

The establishment of this equation is done in three steps. 

2.2.2.1. Step 1: The identification of the convex hull centroid of each 
batch. The convex hull centroid of the set of point S={S0, …,Sn} in the 
group j, is the point Cj (Cxj, Cyj) [10], where: 

Cxj =
1

6A
∑n− 1

i=0
(xi + xi+1)(xiyi+1 − xi+1yi), (Eq.4)  

and Cyj =
1

6A
∑n− 1

i=0
(yi + yi+1)(xiyi+1 − xi+1yi), (Eq.5) 

With xn = x0 and yn = y0. 

2.2.2.2. Step 2: Translation and projection. To estimate the gradient, we 
use (Eq. (6)) 

InterD=

(
∂f(x, y)

∂y
+

∂f(x, y)
∂x

)

(Eq.6) 

Considering the centroid of the first measurement group as the 
reference, the gradient of the others is estimated relatively to this group. 
Henceforth, the origin of the Euclidean space is the centroid of the first 
group. By projecting the centroid of each group on the new affine space, 
a triangle (c1 ci’ ci) is obtained in each case. 

2.2.2.3. Step 3: estimation of the gradient. The estimation of the gradient 
is performed by evaluating the area of the triangle c1 ci’ ci [9].: 

Applied to the triangle of interest, we have (Eq. (7)), 

InterD=
cʹici ∗ ci

ʹc1

2
(Eq.7) 

Using the Euclidean distance, we have: 

InterD=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
xci − xciʹ

)2
+
(

yci − yciʹ

)2
√

∗

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
xc1 − xciʹ

)2
+
(

yc1 − yciʹ

)2
√

2
(Eq.8)  

with p(D) (ci) = ci
ʹ, we have yci = yciʹ and xc1 = xciʹ . Then, 

(
yci − yciʹ

)2
= 0 

and (xc1 − xciʹ)
2
= 0. 

Henceforth, 

InterD=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
xci − xciʹ

)2
√

∗

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
yc1 − yciʹ

)2
√

2
(Eq.9)  

with :

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
xci − xciʹ

)2
√

=Δmeasurement order and
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

yc1 − yciʹ

)2
√

=Δintensity  

we have, 

InterD=
Δmeasurement order(j) ∗ Δintensity(j)

2
(Eq.10)  

With j the number of batch; j= 2, …, h, and h being the number of groups. 
If h ¼2: 

InterD=
Δmeasurement order ∗ Δintensity

2
(Eq.11) 

If h>2: 

InterD=median
(Δmeasurement order(j) ∗ Δintensity(j)

2

)
(Eq.12)  

2.2.3. Dispersion index (D − Index)
The dispersion index (D-Index) aims at comparing the dispersion of 

both intra-group (within) and inter-group (between) variabilities. The 
rationale behind the computation of this parameter, is that two mea
surements could show different inter-group variability, while having the 
same intra-group variability. This indicator then captures this structure 
in a single value, as calculated using equation (Eq. (13)): 

D − Index=
IntraD

1 + InterD
(Eq.13)  

2.3. Data 

2.3.1. Simulated data 
The assessment of the theoretical characteristics of these indicators 

(invariance by translation, positivity, and nullity) was first investigated 
based on simulated data. Two variables were simulated: one following a 
normal (variable Y) and another (variable X) following a dummy non- 
normal distribution. This was simulated for n = 30 samples within 3 
groups (10/group). The histograms of the two simulated variables are 
presented in supplementary material 1; X = 11892.5 ± 3939.4, Y =
1955.4 ± 740.8. These variables were used to evaluate the theoretical 
characteristics of the developed indicators and the associated visuali
zation method. From variables X and Y, five variables (T, J, G, F and N) 
were generated to assess these characteristics. A random value (340) 
was subtracted from variables X and Y to obtain variables T and J, 
respectively, thus mimicking constant loss of sensitivity. Constant mul
tiplicative noise was simulated by multiplying variables X and Y by 1.5 
to produce variables G and F, while variable N was obtained by multi
plying variable X by 4. It should be noted that the proposed synthetic 
data do not reflect the complexity that can be encountered in the anal
ysis of real-world data, but they are aiming to demonstrate some 
mathematical properties (invariance by translation and the stability by 
multiplication) of the newly proposed estimators. 

2.3.2. Experimental data: NIST 1950 and experimental conditions 
The different developed indicators were assessed using experimental 

data, as a proof-of-concept study. Metabolomics data obtained from the 
analysis of a human plasma reference material (SRM1950) made 
available to the research community by the National Institute of Stan
dards and Technology (NIST) as Standard Reference Material® [11], 
were used. This material was specifically developed for the metab
olomics research field, and can be used for calibration, measurement 
accuracy assessment and analytical method development. This material 
can also be used for comparison of measurement technologies used in 
metabolomic studies, interlaboratory analyses, and for quality assurance 
when assigning experimental values to in-house reference materials 
[11]. 

Metabolomic data were collected from the repeated analysis of the 
NIST1950 plasma sample over one year, using a mass spectrometry- 
based untargeted approach [12]. Deproteinized plasma extracts were 
injected in triplicates at the beginning of each analytical sequence of 
various metabolomics studies. The experimental analysis plan of the full 
NIST dataset is presented in Fig. 1. Raw data were processed with the 
XCMS R-package [13] using a Galaxy web-based platform [14], to yield 
a data matrix containing retention times, accurate masses and processed 
peak intensities. This pre-processing step included noise filtering, 
automatic peak detection and chromatographic alignment allowing the 
appropriate comparison of multiple samples by further processing 
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methods. Following these steps, a missing data filter was applied 
(threshold percentage of missing data <20 %), leading to a dataset of 
930 features. From this, 43 known chemical compounds were selected to 
get a relevant coverage of the physicochemical diversity in terms of 
retention time and m/z values. The subset of 43 compounds was selected 
to include metabolites that are commonly detected and formally iden
tified in human blood samples. Additionally, the aim was to reflect the 
physicochemical diversity of metabolites in term of polarity (conse
quently retention time) and m/z by including members of several fam
ilies with different chemical natures, and detectable using the present 
LC/HRMS method. Finally, the selected compounds cover a wide range 
of biological absolute concentrations that can be considered reliable in 
the context of metabolomics analysis. 

These data were used to assess three experimental setups involving 
different dimensions of the measurement uncertainty, namely repeat
ability, intermediate precision and within laboratory reproducibility 
[4]. The experimental conditions are presented in Fig. 1: the first use 
case focusses on repeatability assessment (i.e., the typical measurement 
variability associated with repeated measurements of the same sample 
within a single batch) [4] and involved NIST samples from Projects 1, 2, 
and 3. The second use case relates to intermediate precision assessment 
(i.e. between batches variability) and involves NIST samples from Project 
4. The last use case addresses within-laboratory or intra-laboratory 
reproducibility assessment, with NIST samples from Projects 1 to 7. 
The NIST samples were analyzed in the beginning of the analytical 
sequence as they are used to check system suitability prior to project 
analysis being performed. Therefore, they reflect potential consequences 
on the analytical system of previous projects (LC column damage, source 
clogging, etc …). To illustrate the batch effects visualization method, we 
consequently only used the NIST samples following a plasma project, 
excluding then samples from Project 2 and 5. 

2.4. Simulations and analyses 

Simulations and analyses were performed with the R software using 
a fixed seed of “123”. A heatmap was used to assess the correlations 
between the proposed indicators and other dispersion and central in
dicators: CV or RSD, range, median, interquartile range, variance, SD, and 
the Fisher variance ratio. Pearson correlation coefficients were also 
calculated to quantify the agreement between indicators and presented 

as heatmap. Principal component analysis (PCA) was then applied to 
visualize the distribution of the different groups of measurements. 

3. Results 

3.1. Properties of the indicators 

3.1.1. Invariance by translation 
The InterD (Eq. (14)), the IntraD (Eq. (15)) and the D − Index (Eq. 

(16)) remained unchanged when a constant value b was added to the 
random variable as shown in Table 1. 

X : InterD{S(x+ b, y)}= InterD{S(x, y)} (Eq.14)  

X : IntraD{S(x+ b, y)}= IntraD{S(x, y)} (Eq.15)  

X : D − Index{S(x+ b, y)}=D − Index{S(x, y)} (Eq.16) 

The invariance by translation is important to assess the sensitivity of 
measurement to a constant noise. When the same additive measurement 
errors affect the different measurements, the results will remain the 
same for the different indicators. 

Some examples on the invariance by translation based on simulated 
data are presented in Table 1. In the following examples, a case of in
strument sensitivity loss was considered with a constant/non- 
differential signal decrease. As expected, the behavior of variables X, 
Y, T and J revealed that translation did not produce any effect on the 
estimated indicators. 

3.1.2. Positivity and nullity 
The IntraD, InterD and the D-Index are all positive values. They are 

nulls only when the difference between the measurements is null. 

Fig. 1. Analytical sequence of the NIST in one year.  

Table 1 
Estimation of the indicators in X and Y and their translation.   

X T = X-340 Y J = Y-340 

Intra-batch dispersion 2667.87 2667.87 471.03 471.03 
Inter-group dispersion 24451.20 24451.20 19746.56 19746.56 
Dispersion Index 0.11 0.11 0.02 0.02  
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3.1.2.1. Demonstration for  

IntraD. IntraD = median

(

nt
2n

(
∑n− 1

i=0
(
xiyi+1 − xi+1yi

)
))

; with t = 1, …, 

h; h > 1 and 
∑n− 1

i=0
(
xiyi+1 − xi+1yi

)
being the area of the convex hull of 

each batch, knowing that, Ɐ X € [0; + ∞ [; M(X) ≥ 0. 

Ɐ n, h;
∑n− 1

i=0
(xiyi+1 − xi+1yi) > 0 and

nt

2n

> 0 ⟺ Ɐ n, h € ℝ M

(
nt

2n

(
∑n− 1

i=0
(xiyi+1

− xi+1yi)

) )

> 0
(Eq.17) 

Let S (x, y) being the vertex of the convex hull and a series of mea
surements, with x: being the injection order and y: the intensity of the 
measurement, 

Ɐ S, xi = xi+1 = xi+2, when yi = yi+1 = yi+2 = …

= yn,

(
∑n− 1

i=0
(xiyi+1 − xi+1yi)

)

= 0; if Ɐ h,

(
∑n− 1

i=0
(xiyi+1 − xi+1yi)

)

= 0, then M

(
nt

2n

(
∑n− 1

i=0
(xiyi+1 − xi+1yi)

))

= 0 (Eq.18) 

From (Eq. (17)) and (Eq. (18)), ⱯS (x, y), Ɐ h, n € ℝ. 

M

(

nt
2n

(
∑n− 1

i=0 (xiyi+1 − xi+1yi)

)

≥ 0 

That means that if the measured intensity (y) and the measurement 
order (x) are the same for all measurements, the area of the convex hull 
of each group is then null. This behavior is the only condition leading to 
a null median, knowing that the IntraD is a positive parameter. 

3.1.2.2. InterD 

InterD=
Δmeasurement order •Δintensity

2
or InterD=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
xci − xciʹ

)2
√

•

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
yc1 − yciʹ

)2
√

2 

Let S (x, y) being the vertex of the convex hull and series of mea
surements, with x: being the injection order and y: the intensity of the 
measurement,   

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
xc1 − xciʹ

)2
√

≥0 &
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

yc1 − yciʹ

)2
√

≥0 ⇔
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
xc1 − xciʹ

)2
√

.

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

yc1 − yciʹ

)2
√

≥ 0  

⇔

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
xc1 − xciʹ

)2
√

.

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
yc1 − yciʹ

)2
√

2
≥ 0  

⇔ InterD ≥ 0 

Moreover, 

InterD= 0⟺
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
xc1 − xciʹ

)2
√

.

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

yc1 − yciʹ

)2
√

= 0, for 2 ∕= 0.

Knowing that x is the measurement order, Ɐ y; x ∕= 0. We have then, 

InterD= 0⟺
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

yc1 − yciʹ

)2
√

=0 ; for
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
xc1 − xciʹ

)2
√

∕= 0  

⟺yc1 = yciʹ 

The InterD is strictly positive, and its value is null if, and only if, the 
barycenter of both group measurements has the same intensity. 

3.1.2.3. Dispersion index (D − Index)

D − Index=
IntraD

1 + InterD
(Eq.13) 

Knowing that IntraD ≥ 0 & ≥ 0 ; and 1+ InterD ∕= 0, we have D −

Index ≥ 0. 

3.1.3. Stability by multiplication 
The InterD (Eq. (19)), the IntraD (Eq. (20)) and the D − Index (Eq. 

(21)) showed different behaviors when a random variable X is multi
plied by a constant b. 

X : IntraD{S(y • b, x) } ≈ b • (IntraD{S(y, x) } ) (Eq.19)  

X : InterD {S(y • b, x) } = b2 • (InterD{S(y, x) } ) (Eq.20)  

Table 2 
Exploration of the stability by multiplication of X and Y.   

X G = X*1.5 F=X*4 Y N=Y*1.5 

Mean 11892.54 17838.80 47570.15 1955.44 2933.17 
Mean quotient  1.5 4  1.5 
Standard deviation 3939.44 5909.15 15757.72 740.80 1111.21 
Standard deviation quotient  1.5 4  1.5 
Intra-group dispersion 2667.87 3999.79 10659.42 471.03 704.54 
Intra-group dispersion quotient  1.5 4.0  1.5 
Inter-group dispersion 24451.20 55015.20 391219.16 19746.56 44429.77 
Inter-group dispersion quotient  2.25 16.00  2.25 
Dispersion Index 0.11 0.07 0.03 0.02 0.02 
Quotient of the Dispersion Indexs  0.67 (1/1.5) 0.25 (1/4)  0.67 (1/1.5)  

Ɐ
(

xci ; yci

)
; and C1

(
xc1 ; yc1

)
; with x & y € R

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
xc1 − xciʹ

)2
√

≥0 &
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

yc1 − yciʹ

)2
√

≥ 0   
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X : {D − Index{S(y • b, x) } =
1
b
• D − Index{S(y, x) }, (Eq.21)   

for large values of InterD and IntraD. 
The application of the equations (Eq. (19)), (Eq. (20)), and (Eq. (21)) 

to the simulated variables X, Y, G, F and N are presented in Table 2. The 
results were consistent with the expected theoretical behavior, being 
that the quotient of the intra-group dispersion of two variables, with an 
affine multiplicative relation is equal to the multiplicative factor of the 
two variables. For the InterD, the quotient is equal to the square of the 
multiplicative factor. Concerning the D − Index, the quotient is 
approximately equal to the inverse of the multiplicative factor. 

3.2. Investigation of the indicators in different experimental setups 

3.2.1. Use case 1: Repeatability assessment 
Three different examples were considered for repeatability assess

ment, namely the NIST samples of Project 1, 2 and 3 as presented in 
Fig. 1. Each example relates to a group of 3 NIST samples analyzed in 
one batch. 

In these cases, the indicator under investigation was therefore the 
IntraD. As presented in Fig. 2, a strong correlation (>0.8) between the 
coefficient of variation and the IntraD could be highlighted in all cases. 
This shows the ability of this indicator to capture the variation within 
batch, while not submitted to the same theoretical constraints as the 
coefficient of variation. It should be noted that the intra-group disper
sion behaves similarly to the coefficient of variation in presence of a 
gaussian distribution but remains also relevant in the case of a non- 
gaussian distribution. 

3.2.2. Use case 2: intermediate precision assessment: estimation of the 
variability between batches 

This use case was based on the two analytical batches (within the 
same project separated by a mass spectrometer source cleaning) of the 
NIST samples analyzed in Project 4 (Fig. 1). As presented in Fig. 3, a 
strong linear correlation between the IntraD and several parameters, 
namely the interquartile range, the median absolute deviation, the 
variance, and the SD (r ≥ 0.8) was observed. Moreover, a strong linear 
correlation was also found with the SD (r ≥ 0.8) but also with the range, 
the Fisher score, and the RSD (r = -1) for the InterD. Finally, the D −

Index was negatively correlated with the interquartile range (r = -1), 
while a positive association with the coefficient of variation, range, and 
Fisher score (r ≥ 0.8) was observed. These results highlighted the ability 
of the proposed indicators to capture different aspects of variability 
structure related to intermediate precision. 

3.2.3. Use case 3: Within laboratory reproducibility 
All groups of NIST samples analyzed in the various projects over one 

year (Fig. 1) were then included in this analysis to assess within labo
ratory reproducibility. As presented in Fig. 4, PCA was first applied to 
explore the major trends in the data, and the score plot of the first 
factorial plane highlighted the overall homogeneity of dispersion be
tween the different groups analyzed. However, even if the structure of 
variability between the different projects may seem similar, the situation 
is much more complex, and specific patterns could be revealed using 
additional bivariate dispersion indicators and corresponding visualiza
tion tools. 

As presented in Fig. 5, the correlation between the different in
dicators was consistent with the observed behaviors for intermediate 
precision (Fig. 3). Moreover, a strong linear correlation was observed 
between the IntraD, the range, the inter-quartile range, the median ab
solute deviation, and the standard deviation (r ≥ 0.8). In addition, a 
strong positive correlation was found with the variance and the inter- 
quartile range (r ≥ 0.8), while a strong negative correlation with the 
coefficient of variation (r = -1) could be highlighted for InterD. More
over, the D − Index was negatively correlated with the Fisher score (r =
-1). 

3.2.4. Other uses of the indicators 
Rather than using the IntraD and the InterD as indicators to evaluate 

dispersion in quality control, the D − Index intends to capture the 
structure between the inter-batch and the intra-batch dispersion. 
Alternatively, this can be used to quantify the dispersion between the 
QCs and samples as presented by Broadhurst et al. for the D-ratio. In fact, 
the D-ratio can take any indicator of variability into account, whether 
parametric or not. We could therefore include the new indicators in the 
calculation of the D-ratio by estimating these parameters separately on 
the QCs and the study samples, to apply a threshold for features that are 
subject to too much technical variability, following the D-Ratio 
rationale. 

3.3. Visualization of the bivariate interstudy dispersion of selected 
reference compounds 

3.3.1. Application on simulated data 
The distribution of the dispersion computed from simulated data, 

with different types of bias (additive, multiplicative) is presented in 
Fig. 6. Results showed that the structure of the bivariate dispersion 
remained unchanged as far as the bias was constant. 

Fig. 2. Heatmaps of the intra-batch dispersion and the RSD and the standard deviation on Project 1 (A), Project 2 (B) and Project 3 (C).  
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3.3.2. Application to experimental data 
The visualization of the experimental data dispersion revealed 

different types of structures with various shapes. On the Y-axis, a long 
shape reflected an important variation in the signal intensities within 
replicates, while a flattened structure revealed good repeatability of 
measured values. For the different analytes presented in Fig. 7, a ma
jority of compounds were associated with small areas and flat shapes 
illustrating a good repeatability within the Project 1. However, there is 
still an important heterogeneity revealing the complexity of the com
parisons between different projects and different behavior among the 
referent analytes. This difference could be explained by the fact that 
NIST samples from Project 1 were analyzed just after a global mainte
nance of the mass spectrometer, thus reflecting the basic sensitivity of 
the instrument in a clean condition. By considering taurine, creatine and 
hypoxanthine in Fig. 7, the dispersion within Project 3 was highlighted 
as extremely high, while the data within the other projects presented 

smaller dispersion. In practice, observing this difference could lead to 
detect problems occurring during the data acquisition process. Inter
estingly, this clearly showed that the proposed visualization method can 
be useful to display the structure of the dispersion in the different 
measurement batches and guide decisions for a potential correction 
method. Moreover, this approach allowed the dispersion in the system at 
different time points to be investigated, which is of particular interest in 
the assessment of the system suitability, independently of a central 
parameter. This visualization tool can also be used to identify efficiently, 
similar behaviors (dispersion, sensitivity to batch effect) within analytes 
as presented in Fig. 7. Its combination with the proposed indicators, 
brings more information for a robust and easily interpretable quantifi
cation of the dispersion, than classical analytical visualization using 
extracted ion chromatograms and signal areas of replicates along se
quences and batches (supplementary material 2). 

Fig. 3. Heatmaps of the correlation between the indicators and the others dispersion indicators.  

Fig. 4. Projection of NIST samples collected from the different projects in the first factorial plane using the identified metabolites with RSD <50 % and percentage of 
missing values < 20 %. 
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4. Conclusion 

In the present work, three new robust indicators were developed for 
assessing the analytical dispersion. Their combination with a visuali
zation method, allowed an efficient evaluation of the structure of 

variability related to repeatability, intermediate precision, and repro
ducibility. Datasets collected in experimental setups can show a large 
dispersion, but this variability could originate from a specific analytical 
batch. This is particularly the case in untargeted metabolomics, when a 
large number of signals are measured in a single analysis. In that case, 

Fig. 5. Heatmap of the correlation between the proposed indicators and the other dispersion indicators.  

Fig. 6. Visualization of the dispersion on simulated variables, using the proposed visualization method.  
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Fig. 7. Application of the visualization methods on the reference compounds in some groups NIST.  
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combining the proposed indicators with the visualization method 
contributed to reveal different types of structures and make diagnostic 
for further choice of an adapted correction method. Moreover, these 
indicators open the way for a robust assessment of the intra and inter 
assays variability assessment and for long-term suitability testing. 
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