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Abstract 19 

Global warming threatens the productivity of forest plantations. We propose here 20 

the integration of environmental information into a genomic evaluation scheme 21 

using individual reaction norms, to enable the quantification of resilience in forest 22 

tree improvement and conservation strategies in the coming decades. Random 23 

regression models were used to fit wood ring series, reflecting the longitudinal 24 

phenotypic plasticity of tree growth, according to various environmental gradients. 25 

The prediction accuracy of the models was considered to select the most relevant 26 

environmental gradient, namely a gradient derived from an ecophysiological model 27 

and combining trunk water potential and temperature. Even if the individual 28 

ranking was preserved over most of the environmental gradient, strong genotype 29 

x environment interactions were detected in the extreme unfavorable part of the 30 

gradient, which includes environmental conditions that are very likely to be more 31 

frequent in the future. Combining genomic information and longitudinal data 32 

allowed to predict the growth of individuals in environments where they have not 33 

been observed. Phenotyping of 50% of the individuals in all the environments 34 

studied allowed to predict the growth of the remaining 50% of individuals in all 35 

these environments with an accuracy of 0.62. By adding observations in a reduced 36 

number of environments for the individuals to be predicted, while decreasing the 37 

number of phenotyped individuals across all environments, the prediction accuracy 38 

reached 1.37, highlighting the importance of phenotypic data allocation. Genomic 39 



3 
 

reaction norms are useful for the characterization and prediction of the function of 40 

genetic parameters and facilitate breeding in a climate change context. 41 

 42 
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Introduction 43 

Forest trees are keystone species in forest ecosystems supporting biological 44 

diversity and providing ecosystem services (Brockerhoff et al., 2017). They also 45 

produce wood, which will be a key material for meeting the challenges of the near 46 

future, thanks to its multiple uses (construction, paper, furniture, energy, 47 

chemistry) and its ability to sequester carbon for long periods of time 48 

(Ramachandran Nair et al., 2009; Domke et al., 2020). In this context, forest 49 

plantation has been expanding for several decades (FAO, 2010), with the aim of 50 

concentrating timber production and relieve pressure on natural forest. However, 51 

these benefits of forest plantation will require the adaptation of forest to a new, 52 

more challenging climate (Allen et al., 2010; Pawson et al., 2013; Payn et al., 2015) 53 

One of the major levers for ensuring sustainable wood productivity for forest 54 

plantations will be the deployment of trees capable of maintaining high growth 55 

rates even in extreme environments. To meet this goal, the integration of 56 

phenotypic plasticity, which is defined as the ability of an individual to produce 57 

different phenotypes in different environmental conditions (Bradshaw, 1965), is 58 

becoming a major issue in forest tree breeding programs (Ray et al., 2022). An 59 

individual is considered here as a unique genetic combination found in a single tree, 60 

or in several vegetative copies genetically identical. The challenges posed by 61 

climate change faced limited scope of traditional genetic analyses of forest trees 62 

focusing principally on phenotypic plasticity between experimental sites (Baltunis 63 

et al., 2010; Correia et al., 2010; Shalizi and Isik, 2019). Although these studies 64 
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highlight the existence of genotype x environment (GxE) interactions for conifer 65 

trees, i.e. differential variations in plasticity between individuals, they often 66 

consider a limited number of environments, selected so as to avoid high mortality 67 

rates. They are, therefore, not designed to be representative of the full range of 68 

environments of relevance in a context of rapid climate change. The cost and 69 

difficulty of exposing the same individuals to different environmental conditions, 70 

particularly for species difficult to propagate vegetatively, are major obstacles to 71 

the systematic evaluation of across-site plasticity in the context of tree breeding.  72 

Phenotypic plasticity  can be effectively modeled by reactions norms if repeated 73 

measurements across ages or clones are available, together with a relevant 74 

descriptor of the environment in which the phenotype was expressed (Schlichting 75 

and Pigliucci, 1998; Sanchez et al., 2013). A reaction norm is a representation of 76 

phenotypic values as a function of an environmental gradient. Various methods for 77 

constructing reaction norms have been developed, but the random regression 78 

model described by (Kirkpatrick and Heckman, 1989) is particularly relevant in 79 

breeding contexts. Through the integration of genetic data, this model can 80 

continuously estimate genetic parameters and breeding values according to the 81 

gradient. The gradient most frequently chosen is time (age), and this approach is 82 

frequently used in animal breeding (Jamrozik et al., 1997; Schaeffer, 2004; Boligon 83 

et al., 2012) and more rarely in plant breeding contexts (Sun et al., 2017; Campbell 84 

et al., 2018) including tree breeding (Apiolaza and Garrick, 2001; Wang et al., 2009). 85 

However, reaction norms can also be modelled along an environmental gradient 86 

(Ravagnolo et al., 2000, Zumbach et al., 2008, Sanchez et al., 2009). In forest 87 
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breeding, the more recent modelling of this type of reaction norm appears to be a 88 

way to meet the challenges of rapid climate change in tree breeding (Marchal et 89 

al., 2019; Alves et al., 2020).  90 

Selection objectives for forest tree breeding have focused mainly on the final 91 

volume of the tree trunk. Historical selection criteria evaluate the size of trees at 92 

an advanced age (Mullin et al., 2011; Pâques, 2013). . The continuous growth of 93 

trees and their reactions to the different environments encountered over the years 94 

are thus summarized by a very integrative measurement. It is not therefore possible 95 

to trace back and identify the environmental factors contributing to the final 96 

phenotype, as environment can be considered only in a global manner over the 97 

whole period. However, yearly growth increments can be correlated with well-98 

characterized environments (Martinez-Meier et al., 2008; Zas et al., 2020). This can 99 

be achieved with the use of wood ring series, which define the annual radial growth 100 

of each individual in temperate climates. Indeed, the cambial activity of trees 101 

depends strongly on environmental conditions, particularly temperature and water 102 

availability (Schweingruber, 2007). The variability of annual ring width and wood 103 

density characterizes the plastic response of trees to changing environmental 104 

conditions. It has been shown to have genetic determinism (Sánchez-Vargas et al., 105 

2007; Dalla-Salda et al., 2009) and could be used as a proxy for the potential 106 

reaction of trees to changes in environmental conditions. The analysis of these 107 

repeated phenotypes therefore provides an ideal longitudinal dataset for studying 108 

phenotypic plasticity at individual level (Marchal et al., 2019). Such analyses can be 109 

explanatory in nature, seeking to identify the optimal combination of 110 
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environmental factors making a significant contribution to annual growth, but they 111 

can also be predictive, with the development of functional models for inferring 112 

growth in environments where individuals have not been observed. 113 

The integration of molecular markers into genetic evaluations provides not only 114 

more accurate estimates of genetic parameters, but also opportunities to 115 

implement genomic selection  (GS) approaches (R2D2 Consortium et al., 2021). In 116 

forest trees, such approaches pave the way for the early selection of important 117 

traits, such as wood traits, that would otherwise be measured only after many years 118 

of cumulative growth. GS is also particularly valuable in tree breeding, as it allows 119 

the integration of traits that are costly and complex to measure (Grattapaglia and 120 

Resende, 2011). In many species, the gains provided by the use of genomic data 121 

have tended to eclipse the interest in longitudinal data (Oliveira et al., 2019). 122 

However, these two approaches are not antagonistic and their beneficial effects 123 

can be combined (Rutkoski et al., 2016; Sun et al., 2017). Genomic reaction norms 124 

based on environmental measurements are rarely used (Ly et al., 2018), but are 125 

potentially of great value in this context, as they allow prediction of growth in as 126 

yet environments where individuals have not been observed, thus decreasing the 127 

complex and costly  evaluation procedures associated with experimentation and 128 

phenotyping under different environmental conditions. 129 

We propose here an integration of environmental information into genetic 130 

evaluations, using reaction norms in the context of forest tree breeding. A random 131 

regression model based on annual ring growth data for maritime pine (Pinus 132 
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pinaster Ait.) and including genomic data was used to fit individual-level reaction 133 

norms. The genetic components of these norms were described and the 134 

implications of their use in the context of breeding were further investigated with 135 

respect to a classical analysis targeting final radial growth. Finally, we investigated 136 

the model’s ability to predict the growth of individuals in environments where they 137 

have not been observed, considering  realistic phenotyping conditions for the 138 

maritime pine breeding program in a GS context. To our knowledge, this is the first 139 

study in a tree breeding context to use a random regression model to combine 140 

environmental gradient and genomic information. 141 
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Materials and Methods 142 

Plant material 143 

A maritime pine trial was established at two sites in 1997: Site 1 (Cestas, France: 144 

Lat 44.74, Lng -0.68) and Site 2 (Escource, France: Lat 44.16, Lng -1.03). Soil 145 

characterization revealed lower soil fertility (+16.8 g organic matter/kg of soil) and 146 

a deeper water table (mean difference of +6 m) at Site2 than at Site1. Climatic 147 

measurements showed that there was more rainfall at Site 2 (mean of +15% for 148 

total annual rainfall), whereas temperatures were similar at the two sites 149 

(supplementary Table S1). A total of 192 half-sib families obtained from crosses 150 

between identified seed parents and two pollen mixtures of identified donors were 151 

studied here. 171 families were planted on both sites with 35 individuals per family 152 

in a complete block design with single-tree plots (1,250 trees/ha). 21 families were 153 

planted on Site2 only, with the same design. Each site also includes 5 checklots 154 

composed of individuals from improved and unimproved reference varieties. 155 

Thinning operations were performed at both sites in 2012 and exclusively at Site 1 156 

in 2017, when the trees were 16 and 21 years old, respectively. A subsample (POP) 157 

of 25 half-sib families, with 13 individuals per family and per site, was selected as 158 

representative of the variability of growth (total of 650 individuals). In the absence 159 

of cloning in this maritime pine experimental context, the notions of “individual”, 160 

“tree” and even “genotype” are considered equivalent in our study.  161 
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Genetic characterization of POP 162 

Genomic DNA was extracted from needles collected from POP, to which we added 163 

186 randomly selected duplicates for repeatability estimates. The concentration 164 

and quality of DNA for each sample were determined with a NanoDrop 165 

spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). Genotyping 166 

was performed by Thermo Fisher Scientific (Thermo Fisher Scientific, Santa Clara, 167 

CA, USA) with the 4TREE Axiom single nucleotide polymorphism (SNP) multi-species 168 

array (Guilbaud et al., 2020). Of the 50,000 SNPs on this array, 13,407 have been 169 

designed for maritime pine and are considered polymorphic for this species. The 170 

preliminary filters recommended by Thermo Fisher Scientific were applied to the 171 

genotyping results, at the sample (DishQC ≥ 0.4, CallRate ≥ 90) and SNP (CallRate ≥ 172 

95, fld-cutoff ≥ 3.2, het-so-cutoff: ≥ -0.1) levels. In addition, sequential filtering was 173 

applied, with the removal, in the following order, of SNPs with less than 85% 174 

repeatability, SNPs with more than 5% Mendelian segregation errors and SNPs with 175 

a minor allele frequency (MAF) below 1%. A genomic relationship matrix (G) was 176 

calculated with the VanRaden formula (VanRaden, 2008) using the AGHmatrix 177 

package (Amadeu et al., 2016) in R 4.2.2 environment (R Core Team, 2022): 178 

𝐺 =
(𝑀 − 𝑃)(𝑀 − 𝑃)ᇱ

2Σ 𝑝௜(1 − 𝑝௜)
 (1) 179 

where the 𝑀 matrix (𝑛: number of individuals x 𝑚: number of markers) contains 180 

marker information coded as -1 for one of the homozygotes, 0 for heterozygotes 181 

and 1 for the other homozygotes;  and the 𝑃 matrix (𝑛 x 𝑝) contains allele 182 
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frequencies expressed as 2(𝑝௜ − 0.5), where 𝑝௜  is the frequency of the second 183 

allele at locus 𝑖 for all individuals.  184 

In addition, pedigree recovery was performed for each tree from POP, with a subset 185 

of 161 SNPs used to infer the identities of the parents (25 seed parents and 85 186 

pollen parents) and grandparents (69 initial progenitors from the base population 187 

of the breeding program) (supplementary Method. S1). The most complete version 188 

of the pedigree was used to compute an additive relationship matrix A for further 189 

analyses. 190 

Phenotypic data 191 

Circumference measurements were performed at breast height (~1.30m from the 192 

ground) on all the trees in the trial in 2004, 2008, 2012 and 2018, at the ages of 8, 193 

12, 16 and 22 years, respectively. In addition, cores were removed from the trees 194 

of POP in December 2019, at breast height, along the same north-south direction 195 

for each tree. These cores were cut into 2-mm-thick radial strips for X-ray analysis 196 

(Polge, 1966) to obtain wood density profiles (Fig. 1). The limits between the 197 

different rings were identified with Windendro software (Guay et al., 1992) and 198 

validated by visual examination. The area of ring 𝑦 (𝑅𝐴௥௔௪೤
) was calculated at 199 

individual level as follows: 200 

𝑅𝐴௥௔௪೤
=  𝜋 ൫𝐿 + 𝑙௬൯

ଶ
− 𝜋𝐿ଶ (2) 201 

where 𝐿 is the sum of the ring widths from the pith to ring 𝑦 (ring 𝑦 excluded) and 202 

𝑙௬ is the width of ring 𝑦. 𝑅𝐴௥௔௪ values are a good proxy for biomass produced each 203 
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year independently of tree age, in contrast to ring widths which tend to decrease 204 

progressively over the years due to radial growth of the tree. 205 

We chose to study the 2005-2019 period (15 successive years) here because rings 206 

for this period were available for at least 99% of POP and this period excludes the 207 

juvenile phase of the trees (supplementary Table S2 and Fig. S1). Using the 208 

circumference measurements, 𝑅𝐴௥௔௪ values were spatially corrected for each site 209 

with spline functions (via the BreedR R package; Muñoz and Sanchez, 2020; see 210 

supplementary Method. S2) and named RA (adjusted ring area). A complete 211 

phenotyping series for an individual is thus composed of 15 RA values. 212 

Characterization of the environment during ring growth 213 

The environmental conditions associated to each ring were characterized with two 214 

classes of environmental indices, which depend on both year and site variables. The 215 

first class focused on a purely climatic description, with two versions (𝐷𝑀 and 𝐷𝑀′) 216 

of the de Martonne aridity index (de Martonne, 1926), whereas the second 217 

provided a finer description of the environmental conditions with two indices (𝐺𝑃 218 

and 𝐺𝑃′), extracted from an ecophysiological model combining climatic, 219 

silvicultural and soil data (Moreaux et al., 2020).  220 

The de Martonne aridity index was calculated for each ring formed in year 𝑦 at site 221 

 𝑧 with: 222 

𝐷𝑀௬,௭ =  
1

8
 ෍

12𝑃௜,௭

𝑇௜,௭ + 10

ଵ଴

௜ୀଷ

 (3) 223 

where 𝑃௜,௭ is the amount of precipitation (in mm) and 𝑇௜,௭ is the mean air 224 

temperature (in °C), for month 𝑖 in site 𝑧. Only the 8 months from March (𝑖 = 3) to 225 
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October (𝑖 = 10) were included here as we considered, as a first approximation, 226 

that climatic conditions outside the growth period of maritime pine has no impact 227 

on annual RA. In addition, we considered a modified version of the de Martonne 228 

index (𝐷𝑀′) based on a 30-day sliding window average (instead of calendar months) 229 

and considering the impact of the climate of year (𝑦 − 1) on environmental 230 

conditions in year 𝑦 (inspired by Botzan et al., 1998, supplementary Method. S3A). 231 

The environmental indices of the second class derived from the ecophysiological 232 

model GO+ 3.0 (Moreaux et al., 2020) based on climatic data, silvicultural 233 

parameters, soil water properties, soil fertility and reference values for maritime 234 

pine growing in the Landes massif (supplementary Method. S3B). The growth 235 

potential index (𝐺𝑃) was calculated for each ring, based on mean trunk water 236 

potential and temperature estimated daily by the GO+ model (supplementary 237 

Method. S3C). Similarly, to the de Martonne aridity indices, a second index 𝐺𝑃′ was 238 

used to consider a sliding window of 10 days over the course of a year and to take 239 

into account the impact of previous year. 240 

Genetic analysis of radial growth with a random regression model 241 

(RRM) 242 

Unlike a standard analysis of radial tree growth based on final circumference 243 

measurements (supplementary Method. S4), we proposed here to model individual 244 

RA series for POP as a function of the environmental gradient, using an RRM 245 

implemented in Wombat software (Meyer, 2007). The environmental gradients 246 

associated with the four indices previously described were modeled independently 247 
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according to the RRM formulation. Regardless of the environmental index used, the 248 

joint analysis of the two sites and year series provided an overall environmental 249 

gradient of 30 levels (15 environmental levels per site). Legendre polynomials were 250 

used as the base functions (Kirkpatrick et al., 1990) for the following RRM (Mrode 251 

and Thompson, 2005): 252 

𝑅𝐴௜௝௦ =  ෍ Φ୧୨୩ mୱ୩ + ෍ Φ୧୨୩ 𝛼௜௞

௞ഀ

௞ୀ଴

௞೘

௞ୀ଴

+ ෍ Φ୧୨୩ p୧୩ + 𝑒௜௝௦

௞೛

௞ୀ଴

(4) 253 

 254 

where 𝑅𝐴௜௝௦ is the ring area of individual 𝑖 for environmental level 𝑗 at site 𝑠; mୱ୩ 255 

is the 𝑘th fixed regression coefficient used to model the average trajectory at site 𝑠; 256 

𝛼௜௞ and p୩୧  are the 𝑘th random regression coefficients for the genetic additive and 257 

permanent environmental effects, respectively, of individual 𝑖, the latter effect 258 

representing the similarity between repeated records for the same individual of 259 

environmental and non-additive genetic origin; Φ୧୨୩ is the 𝑘th Legendre polynomial 260 

for the RA of individual 𝑖 at environmental level 𝑗; 𝑘௠, 𝑘ఈ , 𝑘௣ are the order of 261 

polynomials for mean trajectory, genetic additive and permanent environmental 262 

effects, respectively; and 𝑟௜௝௦ is a random residual. The goodness-of-fit of the 263 

models for the different orders of the polynomials used was assessed by comparing 264 

Aikaike information criterion (AIC) and Bayesian information criterion (BIC) 265 

(supplementary Fig. S2). According to these criteria, the order 2 and order 3 models 266 

appeared to be the most relevant models for the environmental indices and 267 

relationship matrices considered in this study. Order 2 models have been preferred 268 
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since they allows a drastic reduction in computational demand with no loss or 269 

marginal loss of goodness-of-fit compared to order 3 models. By setting 𝑘௠ = 𝑘ఈ =270 

𝑘௣ = 2, we fitted a baseline, a linear and a quadratic regression on RA. 271 

The equivalent matrix notation for this model is (Mrode and Thompson, 2005): 272 

𝑦 = 𝑋𝑏 + 𝑍𝑢 + 𝑄𝑝𝑒 + 𝑒 (6) 273 

where 𝑦 is the vector of RA over the environmental levels; 𝑏 is the vector of 274 

solutions for site fixed effect; 𝑢 and 𝑝𝑒 are the vectors of the individual genetic 275 

additive and permanent environmental random regression coefficients, 276 

respectively; 𝑒 denotes the residuals. 𝑋, 𝑍 and 𝑄 are the corresponding incidence 277 

matrices.  For genomic-based RRM, it is assumed that 𝑢~𝑁(0, 𝐺 ⊗ Ω), 278 

𝑝𝑒~𝑁(0, 𝐼 ⊗ P), and 𝑒~𝑁(0, 𝐼 ⊗ D), where ⊗ denotes the Kronecker product, 𝐺 279 

the relationship matrix described above, Ω and 𝑃 the covariance matrices for the 280 

RR coefficients for the genetic additive and permanent environmental effects, 281 

respectively, and 𝐷 is a diagonal matrix of heterogeneous residuals for each 282 

environmental level. For pedigree-based RRM, 𝐺 is replaced by 𝐴. 283 

With a second-order model (𝑘௠ = 𝑘ఈ = 𝑘௣ = 2), the RRM estimates three genetic 284 

coefficients per individual. From these, individual GEBV were then obtained at all 285 

environmental levels as a trajectory, following the formulation of (Mrode and 286 

Thompson, 2005). GEBV estimated with an RRM integrating all available phenotypic 287 

data and solved at each environmental level are denoted GEBVref.  288 
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Genomic selection 289 

Cross-validation (CV) scenarios 290 

The prediction accuracy of the RRM was assessed over two CV scenarios (Fig. 2). 291 

First, the reference scenario, denoted CV-A, where the training set (Tset) included 292 

the complete phenotyping series for 50% of the individuals (randomly selected 293 

within sites and families), whilst the remaining 50% of individuals constituting the 294 

validation set (Vset). Second, the CV-B scenario explored the possibility of retaining 295 

the same amount of phenotypic information as for the CV-A (i.e. 50% of total 296 

phenotypic data) but distributed differently over the individuals. Scenario CV-B 297 

mimicked the use of a high-throughput phenotyping tool for quick estimation of 298 

the last five RA which, in a context of global warming, would typically correspond 299 

to unfavorable years. The Tset for CV-B included complete phenotypic series (i.e. 15 300 

phenotypic records per individual) for 25% of individuals and only five phenotypic 301 

records for the remaining individuals (75% of individuals). For each site, we kept 302 

the same five environments for each repetition of the CV scenario. These 5 303 

environments were chosen to represent the most unfavorable half of the gradient. 304 

The Kennard-Stone algorithm (Kennard and Stone, 1969) was applied via the 305 

prospectr R package (Stevens and Ramirez-Lopez, 2022) to maximize the Euclidean 306 

distances between the GP' values and thus select 5 representative environments 307 

from the 8 most unfavorable environments at each site. 308 

The prediction accuracy (i.e. the correlation between the true and predicted 309 

breeding values) of the RRM was estimated for each environmental level as the 310 
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Pearson correlation coefficient between predicted (GEBVpred) and observed RA in 311 

Vset divided by the square root of heritability. The overall prediction accuracy was 312 

then obtained by averaging the prediction accuracies of each environment.  For 313 

each CV scenario, 10 independent repetitions of this process were performed. Such 314 

performance estimator was used as a criterion for assessing modeling quality (Ly et 315 

al., 2018; Arnal et al., 2019; Momen et al., 2019). 316 

Genetic gains 317 

The prediction accuracy of the RRM for genetic gains in our reference scenario CV-318 

A was assessed over each of the environmental levels. The assessment consisted of 319 

calculating the differences in genetic gain between a selection based on GEBVpred 320 

obtained in Vset and the corresponding maximum that would have been obtained 321 

with the same selection intensity based on GEBVref. For this, at each environmental 322 

level, the top 5% of individuals selected according to GEBVpred were identified and 323 

their corresponding GEBVref (obtained with all the phenotypic information) used to 324 

calculate the true genetic gain (GGtrue) as the GEBVref average of the selected 325 

individuals. This amount was compared for the corresponding environmental level 326 

to the maximum gain (GGmax), which was calculated as the GEBVref average of the 327 

top 5%. Finally, GGtrue and GGmax were centered and reduced to ensure 328 

comparability between environmental levels. Any difference between GGtrue and 329 

GGmax would indicate a decrease in the correlation between GEBVpred and GEBVref 330 

for the selected percentage. 331 
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Results 332 

Size and genetic characterization of POP 333 

After phenotype curation (9 wood-density profiles were excluded as they were not 334 

readable enough to allow ring limits to be positioned with confidence) and 335 

genotyping quality control (13  individuals excluded), POP was finally composed of 336 

628 trees (303 from Site 1 and 325 from Site 2). 337 

Pedigree recovery on POP validated 93% of the pedigree seed parents (monoicous 338 

individuals acting as mothers) and allowed the correction of 5%. The remaining 2% 339 

of the pedigree seed parents was classified as unknown, as no candidate parent 340 

could be validated. Pollen parents (acting as fathers) were successfully recovered 341 

for 65% of the individuals. Note that the original design of the study was based on 342 

crosses with a mixture of pollen donors, resulting in the fathers initially being 343 

unknown in the pedigree. Finally, based on the curated pedigree, a status number 344 

(𝑁௦; Lindgren et al., 1996) of 21 was obtained for POP, suggesting a high level of 345 

relatedness between the families studied.  346 

The genotyping of POP resulted in the characterization of the 628 individuals over 347 

3,832 SNPs, with a repeatability of 97% and a total missing data rate of 1%. Additive 348 

genomic relationship coefficients (𝑔௫௬) estimated in 𝐺 were consistent with the 349 

pedigree-based additive relationship coefficients (𝑎௫௬) calculated in 𝐴 (Fig. 3). The 350 

𝑎௫௬ values were discrete, whereas the 𝑔௫௬ values were normally distributed for 351 

each level of relatedness. Note that, for most pedigree-based additive coefficient 352 

levels, the normal distribution has a long upward-sloping tail (revealing some rare 353 
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cases of unrecorded relatedness), and a mean slightly below the theoretical value, 354 

the latter being represented by the gray line in Fig. 3. This shift is expected insofar 355 

as the standardization of G matrix with the observed allele frequencies sets its 356 

average to 0. 357 

Quality of model fit 358 

The prediction accuracy (estimated with CV-A) was used as a criterion for assessing 359 

the quality of RRM (Fig. 4). Mean prediction accuracies were moderate to high, with 360 

correlation coefficients ranging from 0.19 to 0.25. Prediction accuracy was slightly 361 

better (+0.04 better, on average) for genomic-based RRM than for pedigree-based 362 

RRM, except for RRM based on the 𝐷𝑀 environmental index (equivalent mean 363 

prediction accuracy of 0.21). The best prediction accuracies were obtained for 364 

genomic-based RRM with the 𝐷𝑀’ (0.24) and 𝐺𝑃’ (0.25) indices. The optimization 365 

of environmental indices improved slightly RRM prediction accuracy by 16% and 3% 366 

relative to the initial 𝐷𝑀 and 𝐺𝑃 indices, respectively. Finally, the genomic-based 367 

RRM using the 𝐺𝑃’ index was selected for the analyses described below, due to its 368 

best prediction accuracy (0.25) for GS. Detailed prediction accuracies by 369 

environment for this model are presented in the supplementary Fig. S3. 370 

Narrow-sense heritability estimated for this model varied between 0.12 and 0.24 371 

over the environmental gradient (supplementary Fig. S5). Despite the high level of 372 

variation between similar environmental levels, heritability was significantly higher 373 

for the most favorable environmental levels. 374 
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Individual reactions norms estimated by genomic-based RRM 375 

Reordering longitudinal data by the annual environmental index, which 376 

characterizes the conditions of ring formation, instead of the ordinal year greatly 377 

modified the shape of the mean RA curve in a more easily interpretable way (Fig. 378 

5). When expressed as a function of the environmental index GP’, RA increases 379 

significantly. The lowest 𝐺𝑃’ values are associated with the most unfavorable 380 

environmental conditions for growth, whereas the highest values are associated 381 

with the most favorable conditions for growth. This pattern suggests plasticity at 382 

the population level, but hides individual behaviors, which may deviate from this 383 

central trajectory. 384 

Random individual deviations from the mean trajectories due to additive genetic 385 

effects are represented in Fig. 6 and were solved over the environmental gradient 386 

of 𝐺𝑃’ (GEBVref). For most individuals, GEBVref showed a dependence on 𝐺𝑃’, 387 

highlighting the existence of plasticity for RA. These different behaviors can be 388 

characterized simply by the slope of the trajectories, depicted in different colors 389 

(Fig. 6).  A majority of individual reaction norms were were characterized by shallow 390 

slopes and mean GEBVref close to 0. This does not mean that the phenotypic 391 

trajectory of these individuals is flat. Instead, it indicates that they have trajectories 392 

indistinguishable from the mean trajectory and due to its additive genetic origin, 393 

they would give only very  limited extra plasticity to the offspring, unlike individuals 394 

whose trajectories are significantly further from 0. The highest and lowest mean 395 

GEBVref were those obtained for individuals whose trajectory is colored dark blue 396 
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and dark red, respectively. These individuals also display reaction norms with the 397 

strongest positive and negative slopes (for dark blue trajectories anddark red 398 

trajectories, respectively), leading to a greater range of variation in individual 399 

genetic values in favorable than in unfavorable environmental levels. The  average 400 

GEBVref for each individual is, thus, strongly correlated with the regression 401 

coefficients describing the slope of its trajectory (+0.52 and +0.95 with quadratic 402 

and linear regression coefficients, respectively). There appear to be few 403 

intersections between reaction norms, corresponding to changes in individual 404 

ranks across environmental levels, over most of the environmental gradient. This is 405 

confirmed by strong genetic correlations (>0.90) between environmental levels 406 

(supplementary Fig. S4).  However, large overlaps occur in the part of the gradient 407 

corresponding to unfavorable environmental levels (Fig. 6). This results in lower 408 

genetic correlations (between 0.83 and 0.90) between the two most unfavorable 409 

environmental levels (GP'=52 and GP'=53) and more favorable environmental 410 

levels (when GP'>65). These lower values point out variations in how certain 411 

individuals behave at these unfavorable environmental levels, which affects their 412 

ranking. 413 

 414 

Genomic selection scenarios and cross-validation 415 

Genetic gain over the environmental gradient 416 

The overall prediction accuracy of the genomic-based RRM (using the GP’ 417 

environmental index) estimated with the CV-A scenario was 0.62 (Fig. 4). Breeding 418 
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efficiency, based on predicted values, was assessed by calculating genetic gains for 419 

different environmental levels (Fig. 7). GGmax increased until the environmental 420 

value of 62, above which it reached a plateau with maximum value of 2.35. The 421 

difference between GGmax and GGtrue was minimal (+0.64) for GP’ environmental 422 

level 62, increasing towards the two extreme environmental levels.  Indeed, this 423 

difference reached +0.73 and +0.72 respectively for the most unfavorable 424 

environmental level 53 and for the most favorable environmental level 82. The 425 

relatively moderate prediction accuracy of the RRM (0.62) necessarily led to a 426 

significant loss of genetic gain (no overlap between GGmax and GGtrue boxplots). 427 

Nevertheless, depending on the environmental level, GGtrue accounted for 68% to 428 

73% of GGmax. GGtrue was always significantly different from 0 (𝑝 − 𝑣𝑎𝑙𝑢𝑒௧ି௧௘௦ <429 

0.001), indicating a certain efficiency of selection based on predicted values, even 430 

in the most extreme environmental levels. 431 

Prediction accuracy over the CV scenarios 432 

We considered an alternative cross-validation scenario (CV-B) (Fig. 2), to improve 433 

selection efficiency while preserving phenotyping effort with respect to CV-A. As in 434 

CV-A, 50% of the phenotypic data were used to constitute the Tset of the CV-B. The 435 

key difference between the two is due to a better distribution of phenotypic effort, 436 

both between individuals and between environments, in CV-B. This alternative 437 

distribution had a considerable impact on improving the prediction accuracy of the 438 

RRM, which increased from 0.62 for the CV-A to 1.37 for the CV-B (Fig. 8), with no 439 

increase in phenotyping effort. It should be noted that the CV-A scenario is a major 440 

challenge for RRM, as it imposes the prediction of entire trajectories for half of the 441 



23 
 

population. This challenge is relaxed in CV-B by including at least partial information 442 

for all individuals. 443 

 444 

Discussion 445 

Deciding which genetic material should be planted now to form the forests of 446 

tomorrow is becoming increasingly challenging due to the rapidity of climate 447 

change (Thomas et al., 2004; Wiens, 2016). Using longitudinal tree-ring data and 448 

parallel environmental descriptors, we have successfully modeled genomic 449 

individual reaction norms based on random regression. This first example for forest 450 

trees provided consistent results for use in the maritime pine breeding program, 451 

but may inspire other programs in perennial species.  452 

Reaction norms in forest trees 453 

Growth measurements at advanced age are generally used for the calculation of 454 

breeding values. Such measurements constitute highly integrative phenotypes that 455 

can be associated only with a global environmental site index. Using sites with 456 

contrasting indices has been a classic strategy to establish comparative trials for 457 

genetic x environment evaluation. In this sense, our two sites present strong 458 

contrast in terms of fertility and water table depth at the scale of the Landes massif, 459 

but even with their differences they are still part of the same breeding area (Jolivet 460 

et al., 2007). Wood cores give us access to phenotypic inter-annual variation and 461 

can be used to generate longitudinal annual growth data that can be associated 462 
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with annual environmental variation. Our results showed indeed that the 463 

environmental variation between years was much greater than the one between 464 

sites (Fig. 5). Indeed Cir22 was associated with a mean environmental index GP’ of 465 

68.2 for site 1 and 72.1 for site 2, whereas analysis based on ring measurements 466 

covered a larger index range (GP’ from 52.6 to 81.9). This much greater annual 467 

variation provides an opportunity to infer plasticity at individual level over a large 468 

environmental gradient. 469 

In addition to longitudinal data collection, which can be operationally costly, there 470 

are other challenges that arise with these data. One is autocorrelation between 471 

repeated measurements on the same individual in a time series. Another, not least, 472 

is ontogenetic differences between phases of phenotype expression (Sanchez et al., 473 

2013). Finally, a third challenge is the choice of a relevant environmental descriptor. 474 

Although we have not shown it for simplicity, we have performed a preliminary 475 

RRM for RA with a one-year lag in the climatic index in order to match RA of year n 476 

with the environmental index of year n - 1, and its results pointed to an absence of 477 

autocorrelated effect. As for the ontogeny challenge, we have ignored in our 478 

longitudinal data series the initial segments corresponding to the juvenile phase, 479 

keeping only the remaining adult phase for which the RA trend was generally flat, 480 

despite strong inter-annual oscillations (Fig. 5A). 481 

The third challenge is probably the most difficult to address, the choice of a relevant 482 

environmental index  (Li et al., 2017). This study was not designed to identify 483 

precisely the environmental factors most relevant to tree growth, but we defined 484 
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two classes of biologically meaningful environmental indices that integrate the key 485 

components of temperature and water (Begum et al., 2013; Rathgeber et al., 2016). 486 

Both of them depend on the year and the site in which the ring was formed. The 487 

first class (aridity indices) is easy to obtain, since it only considers the climatic data 488 

(temperature and precipitation over the growing period) of the site and the year 489 

associated with to the rings under study. On the other hand, the second class 490 

(growth potential indices) requires more complex modeling, including for example 491 

the characterization of the daily water status of the trunk. A major difference 492 

between the two types of indices is the insensitivity of the former to the intra-493 

annual distribution of precipitation and temperatures. Thus, similar annual aridity 494 

values (𝐷𝑀 or 𝐷𝑀’) may reflect different climatic realities over the course of the 495 

growing season, with temperatures and/or precipitation occurring at different 496 

periods and leading to differences in growth. Conversely, by considering the daily 497 

environmental status and tree physiology, the growth potential indices (𝐺𝑃 and 498 

𝐺𝑃’) allowed a more detailed consideration of within-year environmental variation. 499 

Finally, the prediction accuracy obtained with 𝐷𝑀, 𝐷𝑀′, 𝐺𝑃, 𝐺𝑃′ (Fig. 4) confirms 500 

the relevance of the proposed environmental indices, but also suggest that they 501 

only partially capture the environmental factors influencing radial growth and the 502 

differences between individuals' reactions. More specifically, the variability due to 503 

site is not fully described by the index, given the remaining high significance value 504 

of the corresponding fixed effect in RRM (Fig. 5B). 505 
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Modelling reaction norms with RRM 506 

Unlike univariate single-point analyses, which are easy to implement but do not 507 

integrate longitudinal phenotypic information, or multi-trait models, which can 508 

integrate it but are computationally demanding, RRM provides genetic estimates 509 

over the chosen continuous environmental gradient with reduced parametrization 510 

(Sun et al., 2017). The continuous trajectory of GEBV predicted by the RRM allows 511 

a position to be considered at any environmental level within the range defined by 512 

the two most extreme environments, whether it has actually been observed or not. 513 

The RRM can model highly complex curves using orthogonal base functions such as 514 

Legendre polynomials, which are widely used and described in the context of 515 

breeding (Schaeffer, 2004; Campbell et al., 2018; Marchal et al., 2019). Despite 516 

their great flexibility and computational advantages, Legendre polynomials may 517 

present numerical problems (Runge's phenomenon) at the extremities for high-518 

order fits (de Boor, 1978; Meyer and Kirkpatrick, 2005). In this study, the 519 

adjustment at the extremities of the environmental gradient was particularly 520 

important as the unfavorable extreme conditions are likely to increase in frequency 521 

in the future (Coumou and Rahmstorf, 2012; Spinoni et al., 2018). The use of low-522 

order polynomials to model RA trajectories overcame this problem. The 523 

consistency and quality of the norms fitted with Legendre polynomials were 524 

verified by a comparison with norms fitted with B-spline functions, which are 525 

considered a more robust alternative to high-order polynomials in terms of 526 

extremum fitting, although less advantageous computationally (de Boor, 1978; 527 

Meyer and Kirkpatrick, 2005) (Kendall correlations between GEBVref estimated with 528 
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Legendre polynomials and those estimated with B-splines yielding coefficients of 529 

up to 0.95 over the entire gradient for the final RRM).  530 

Exploration of individual genetic trajectories  531 

Random individual trajectories (Fig. 6) highlight the existence of plasticity for 532 

genetic values that can be targeted by breeders. It is not easy to discriminate 533 

between individual reaction norms that follow a trajectory close to the population 534 

average, given their high frequency, the fact that they present shallow slopes and 535 

mean GEBVref close to 0. However, individuals with potentially good growth along 536 

the entire gradient are much easier to discriminate from the rest, for which the 537 

proposed clustering allows simple and efficient visualization (cluster E), useful for 538 

selection purposes. 539 

The distribution of individual GEBV varied between environmental levels, and those 540 

more favorable levels enhanced the expression of differences between trajectories 541 

relative to less favorable levels, which has already been observed in other biological 542 

models (Arnold et al., 2019). Individual ranking was globally preserved over the 543 

trajectories for most of the gradient (van Eeuwijk et al., 2016). This trend was 544 

confirmed by strong genetic correlations (supplementary Fig. S4) between the 545 

environmental levels. However, these genetic correlations were weaker with 546 

unfavorable environments (environmental index below 65), in agreement with the 547 

reranking of individuals observed for the individual trajectories at the most 548 

unfavorable end (Fig. 6). This precise and localized GxE interaction in our gradient, 549 

only possible thanks to the use of the RRM, should not be considered marginal or 550 
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potentially negligible considering that it affects only one segment of the gradient. 551 

In fact, climate projections (supplementary Fig. S6) suggest that such unfavorable 552 

environments are likely to become much more common in the future. Even if the 553 

expected global level of aridity in 2075 remains close to current levels, according to 554 

our de Martonne calculation, aridity in 2100 will be much stronger, with a higher 555 

frequency of extreme events as predicted by other studies (Sillmann and Roeckner, 556 

2008; Lehner et al., 2017). Our 15-year study period was already affected by a high 557 

global level of aridity and included extreme annual climates that may become 558 

frequent in the future. The environmental gradient used for the inference of 559 

reaction norms is therefore particularly relevant for identifying individuals with 560 

better potential for growth in the unfavorable years to come.  561 

When GxE interactions must be taken into account in selection decisions, a robust 562 

strategy would involve prioritizing the best adapted individuals across the entire 563 

environmental gradient (Li et al., 2017), focusing on the notion of persistence. The 564 

definition of persistence may vary according to species and breeding aims (Gengler, 565 

1996; Rocha et al., 2018), but it is generally defined as the capacity of a species to 566 

maintain a stable or high level of growth or production over time or in the face of 567 

different environmental conditions. For reactions norms, several ways of evaluating 568 

persistence and integrating the slope of trajectories in an operational breeding 569 

context have been proposed. For example, for feed conversion ratio in large white 570 

pigs, (Huynh-Tran et al., 2017) suggested combining the EBV estimated by the RRM 571 

with the coefficients of eigenvectors estimated from the eigenvalue decomposition 572 

of the covariance matrix of additive genetic effects. In their study, two summarized 573 
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breeding values for each individual were sufficient to describe most of the variation 574 

in terms of mean genetic values (first dimension) and the slopes of EBV trajectories 575 

(second dimension), and could be used directly in selection. In another example in 576 

goat lactation, (Arnal et al., 2019) considered “the cumulative deviation in genetic 577 

contribution to yield relative to an average animal having the same (initial) yield” 578 

for the calculation of persistence-related EBV. Finally, (Peixoto et al., 2020) 579 

suggested the ranking of cotton genotypes on the basis of area under the reaction 580 

norm, the genotype with the highest norm being the most persistent. Another 581 

interesting approach would involve calculating the final GEBV for each individual as 582 

the mean of the GEBV for each environmental level weighted by the probability of 583 

occurrence of the environmental level in the future. Such a strategy would make 584 

use of the GxE interaction to maximize genetic gain for individuals performing in 585 

environmental conditions close to those predicted for the near future, while 586 

ensuring a certain level of resilience to environmental variation. Any of these 587 

proposals could be applied to our data. A possible advantage of the latter strategy 588 

could be to take more explicit account of future climate predictions, provided that 589 

they have some control over uncertainty. 590 

Reaction norm in a GS context 591 

The use of genomic reaction norms to predict the growth of individuals in 592 

environments where they have not been observed is a good example of the 593 

potential benefits of GS approaches for traits that are complex to evaluate. Wood 594 

density profiles provide highly informative longitudinal data on tree growth over 595 
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the years, but its acquisition via the coring process remains costly and time-596 

consuming at breeding-program scale. This limitation has motivated one of our 597 

alternative cross-validation scenarios (CV-B), with a more homogeneous 598 

distribution of phenotypic effort, resulting in a training population involving all 599 

individuals, 25% of which contribute full time series and the remaining 75% only 600 

partial 5-year series. Indeed, relative to our baseline scenario (CV-A), which aimed 601 

to predict the full trajectories of 50% of individuals, the CV-B scenario achieved a 602 

much higher level of prediction accuracy (1.37), demonstrating that the allocation 603 

of phenotyping effort to constitute the training population is a key optimization to 604 

consider. The scenario CV-B would reflect the use of a high-throughput 605 

phenotyping tool usable on a large number of individuals at the cost of a smaller 606 

number of rings scanned per tree, which is basically what a resistograph does 607 

(Bouffier et al., 2008). Resistograph measures the resistance of the wood to 608 

penetration with a needle and can estimate RA efficiently for the rings closest to 609 

the bark, i.e. the last five rings formed (personal communication). These 610 

measurements provide only partial information about plasticity, but when applied 611 

to the whole population, they have the advantage of providing information 612 

complementary to that obtained by coring. Overall, less phenotyping effort is 613 

required, but the benefits are substantial.  614 

The genetic component of reaction norms, the one of greatest interest to breeders, 615 

was estimated by integrating pedigree or genomic information in the RRM. 616 

Genomic-based RRM had a significantly better prediction accuracy (with the 𝐺𝑃’ 617 

index) than pedigree-based RRM, suggesting that refining the coefficients of 618 
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relationships between individuals through their molecular characterization with 619 

SNPs results in the generation of more suitable models (Gamal El-Dien et al., 2016; 620 

Bouvet et al., 2016). The pedigree information tended towards a systematic 621 

overestimation of pairing coefficients relative to the genomic information (Fig. 3). 622 

However, some rare pairs of individuals appeared to be much more related on the 623 

basis of genomics than on the basis of pedigree, suggesting that, in some cases, the 624 

pedigree may be incomplete, or may contain errors, despite the correction and 625 

recovery steps (Tan et al., 2017; Li et al., 2019). The use of genomic data for 626 

genomic evaluation is often proposed for forest trees (Grattapaglia and Resende, 627 

2011; Lebedev et al., 2020), but first GS studies for maritime pine (Isik et al., 2016; 628 

Bartholomé et al., 2016) highlighted the difficulty of demonstrating a superiority of 629 

genomic models over pedigree-based models. In this study, we provide some 630 

arguments to go beyond these limitations in the application of the genomic 631 

prediction model. The RRM takes greater advantage of genomic information to 632 

predict individual trajectories than pedigree information. Indeed, in a context of 633 

intense climate change, the importance of integrating environmental information 634 

into genetic evaluation may fully justify the additional cost of genotyping (Isik, 635 

2014).  636 
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Figures 
Figure 1: From wood increment core to wood density profile. From the bottom to 

the top: the wood increment core picture from one tree, its corresponding 

radiography, its wood density profile (black line) from pith (position: 0mm) to the 

bark obtained after processing.  Sudden and high drops in wood density mark the 

end of annual growth and were used to fit each ring limitations. 
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Figure 2: Cross-validation scenarios CV-A, CV-B, CV-C and CV-D performed with a 

RRM according to the 𝑮𝑷’ index. All scenarios include the same amount of 

phenotypic information in the training set (i.e. 50% of total phenotypic data); only 

the distribution of this information across individuals and environmental levels 

differ. All families contributed equally to the training set. 
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Figure 3: Comparison between pedigree-based additive relationship coefficients 

derived from pedigree and additive genomic relationship coefficients derived 

from SNP markers for individuals of POP. For each value of the discrete scale taken 

by the pedigree-based additive relationship coefficients, the corresponding violin 

plot represents the continuous distribution of additive genomic relationship 

coefficients. Numbers below each violin plot denote the number of relationship 

included in the corresponding violin plot. Grey line is the bisector passing through 

the origin of the graph. The two highest pedigree-based additive relationship 

coefficients (1.25 and 1.5) are unique and so represented by single points instead of 

violin plots. 
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Figure 4: Prediction accuracy of the RRM according to the environmental gradient 

and the genetic information used. Boxplots indicates the Pearson correlation 

coefficient between observed and predicted RA values over the whole 

environmental gradient for 10 repetitions of the CV-A scenario. Boxplots are blue 

when the RRM implemented integrated pedigree-based additive relationship 

coefficients while boxplots are yellow when the RRM implemented integrated 

additive genomic relationship coefficients. For each kind of genetic information, 

RRM were run independently with each of the four environmental gradients, 

respectively derived from DM, DM’, GP and GP’ indices.  
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Figure 5:  Evolution of mean RA according to the years for each site (Fig. 5A) or 
according to the 𝐆𝐏’ index (Fig. 5B). Figure 5.A presents mean phenotypic 
trajectories of RA and Figure 5.B presents mean trajectories adjusted by the RRM 
for each site. Both trajectories are the result of the same model. The significance 
of the slope parameter for each trajectory in Figure 5.B was assessed with 
Student’s t-test (p-value<0.01) 
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Figure 6: Individual trajectories of GEBVref associated to RA according to the GP’ 

index. Trajectories correspond to the genetic component of the reaction norms 

estimated by the genomic based RRM. Trajectories were colored according to their 

slope (quadratic regression coefficient), from the steepest negative slopes (dark 

red) to the steepest positive slopes (dark blue).  
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Figure 7: Maximum genetic gain (GGmax) and true genetic gain (GGtrue) according 

to 𝐆𝐏’ index. The RRM was used with complete phenotypic information for all 

individuals to estimate GEBVref over the gradient; and then independently repeated 

10 times with the scenario CV-A to predict GEBVpred for individuals in the validation 

set. GGmax was calculated as the mean of the top 5% of GEBVref and for each iteration 

GGtrue was calculated as the mean of GEBVref associated to the top 5% individuals 

selected based on GEBVpred for each 𝐺𝑃’ values. GGmax and GGtrue are centered and 

reduced. 
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Figure 8: Prediction accuracy of the RRM according to the CV-A and CV-B 

scenarios. Boxplots indicates the Pearson correlation coefficient between observed 

and predicted RA values over the whole environmental gradient for 10 independent 

repetitions of the CV scenario. The significance between  prediction accuracies was 

assessed by a Student’s t-test (****: p-value <1e10-4) 

 

 


