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Dynamic Lambda-Field: A Counterpart of the Bayesian Occupancy
Grid for Risk Assessment in Dynamic Environments

Johann Laconte1, Elie Randriamiarintsoa1, Abderrahim Kasmi1,2, François Pomerleau3,
Roland Chapuis1, Christophe Debain4, Romuald Aufrère1

Abstract— In the context of autonomous vehicles, one of the
most crucial tasks is to estimate the risk of the undertaken
action. While navigating in complex urban environments, the
Bayesian occupancy grid is one of the most popular types of
maps, where the information of occupancy is stored as the
probability of collision. Although widely used, this kind of
representation is not well suited for risk assessment: because
of its discrete nature, the probability of collision becomes
dependent on the tessellation size. Therefore, risk assessments
on Bayesian occupancy grids cannot yield risks with meaning-
ful physical units. In this article, we propose an alternative
framework called Dynamic Lambda-Field that is able to assess
generic physical risks in dynamic environments without being
dependent on the tessellation size. Using our framework, we are
able to plan safe trajectories where the risk function can be
adjusted depending on the scenario. We validate our approach
with quantitative experiments, showing the convergence speed
of the grid and that the framework is suitable for real-world
scenarios.

I. INTRODUCTION

In the context of robotics in urban environments, au-
tonomous vehicles are beginning to coexist alongside human
drivers. One of the main factors to take into account for each
robot’s decision is undoubtedly the risk of the undertaken
action. The risk is tied to the probability of collision, con-
ventionally defined as the probability of encounter between
the robot and static or dynamic obstacles.

To assess this risk, the robot creates a map of the en-
vironment and identifies any potential threats or obstacles
it must avoid. To create these maps, the robot can either
use a semantic approach, namely identifying each obstacle
as a unique entity, or use a metric approach by storing the
occupancy information of each position in the environment.
Although the first approach seems by far the most fitted
for risk assessment scenarios, creating semantic maps is not
an easy task. Indeed, identifying obstacles from raw mea-
surements is complicated and can leave obstacles undetected
if, for example, the obstacle has specific features that were
not in the training set (e.g., people wearing a skirt or with
strollers [1]). As it is critical to detect any possible threat,
the metric map is then a reliable option since it does not
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Fig. 1. Example of an urban scenario that the robot can encounter. A
pedestrian is crossing the road, while a vehicle is approaching the robot
in the other lane. Using the Dynamic Lambda-Fields, the robot is able to
estimate the risk of its actions, taking into account a generic risk that can
be adapted depending on the scenario.

require in-depth processing of measurements, thus providing
a more conservative approach to risk assessment.

The most commonly used metric map is the Bayesian
occupancy grid: it tessellates the environment into cells
where each cell stores the probability of occupancy (i.e., the
probability that the cell will cause a collision if crossed).
However, as highlighted by Heiden et al. [2], this type of map
is not suitable for risk assessment. Indeed, the probability of
collision depends on the size of the cells: for instance, for a
map having cells twice as small as another map of the same
environment, the robot would have to cross twice as many
cells to reach its goal, increasing the probability of collision.
Following this problem, any risk assessment strategy on
Bayesian occupancy grids has to take into account the cell
size in the equations. As such, the Bayesian occupancy grid
cannot naturally yield risks but only probabilities of collision
that are themselves dependent on the tessellation size. For
instance, Figure 1 shows a scenario where a robot is crossing
an urban-like environment: a car is coming in the other lane
while a pedestrian suddenly crosses the road despite the
vehicles approaching. In the case where the dynamics of the
robot does not allow it to stop, a collision is inevitable, either
with the pedestrian by simply braking, or with the vehicle
in the other lane by swerving. Whereas Bayesian occupancy
grid frameworks are not able to differentiate by themselves
the risks associated with each decision, a human driver would
have a more nuanced approach. If the risk only takes into
account the damages to the robot itself, it is indeed safer
to collide with the pedestrian since its mass is much lower
than that of a car. However, if the risk takes into account
the probability that both the robot and the collided obstacle
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survive, changing direction and colliding with the car might
become a better solution.

In this article, we present a novel framework, named
Dynamic Lambda-Field, specifically conceived to allow risk
assessment in metric maps using a 2D lidar sensor. This
concept answers the limitations of the Bayesian occupancy
grid by proposing a method where the probability of collision
does not depend on the tessellation size, thus allowing for
continuous risk assessments over the path of the robot. We
extend our theory presented in [3] to take into account
dynamic environments. Using the framework presented in
this article, the robot is able to plan safe trajectories using
generic, user-defined risks that do not depend on the tessel-
lation size while keeping their physical units.

II. RELATED WORK

The most widely adopted representation of static environ-
ments is the Bayesian occupancy grid, introduced by Elfes
[4]. Nègre et al. [5] proposed to extend the framework,
estimating static and dynamic obstacles in occupancy grids,
using particles to represent the dynamic world. Rummel-
hard et al. [6] enhanced the aforementioned framework by
conducting a pre-processing step of estimating the state of
the space (i.e., static, dynamic, empty or unknown). Our
framework draws from this idea, inferring at each step the
state of each cell, while providing a means of inferring
physical risks from the map. In parallel, Nuss et al. [7]
proposed to model the dynamic environment using random
finite sets and Dempster-Shafer theory. Rexin et al. [8] built
upon the previous method, using a pure Bayesian approach,
leading to analogous results [6]. Guizilini et al. [9] proposed
a method to learn and store continuous dynamic occupancy
maps. Although providing an approach to learn complex
pattern and dependencies in the environment, [9] relies on
clustering and learning, two aspects where providing safety
guaranties cannot be ensured. Furthermore, the problem of
the tessellation size remains in continuous maps: the question
only becomes how to integrate (instead of sum) probabilities
of occupancy. As the information stored into such maps is
not suitable for risk assessment, the Bayesian occupancy grid
cannot yield meaningful risks.

The notion of risk and how to handle it is not uniquely
defined in the literature. Majumdar et al. [10] addressed this
question, exploring what criteria are needed to define risk
metrics. In the context of occupancy grids, Rummelhard et al.
[11] proposed to define the risk as the probability to collide
with a specific area. The authors argued that a simpler ap-
proach such as the maximum value of collision over the cells
tends to work better. Nevertheless, this approach discards all
collisions with the exception of the one with the maximum
likelihood, leading to potential hazardous situations (e.g., a
path colliding with two pedestrians with chances of 90 %
and 91 % may be more dangerous than a path colliding with
only one pedestrian with a probability of 95 %). Guardini et
al. [12] inferred risk maps from a Bayesian occupancy grid
and defined it as the severity of injury. However, they do
not provide a means of inferring the risk of a path as the

aforementioned problem of the Bayesian maps also applies
here. As such, our framework can be seen as a counterpart
of their work where it is possible to assess the risk of a
path. Heiden et al. [2] proposed a method to assess collision
probabilities in Bayesian occupancy grids, relying on product
integrals. The main drawback is that there is no natural
reason to use the concept of product integrals, as it is here
merely a tool to lift the dependence on the tessellation size. In
addition, their framework does not take into account the size
of the robot. On the contrary, our method takes into account
its size while providing a natural means of assessing generic
risks. Finally, Fan et al. [13] planned trajectories in risk maps
(i.e., a grid where each cell stores a risk) and defined a risk as
a compound of one-step risk metrics. Each risk is defined as a
weighted sum of different metrics (e.g., collision, slippage).
However, compounding and summing risks therefore lose
their physical meaning, whereas our framework maintains
the physical meaning and therefore leads to more informed
decisions.

In a different manner, Laugier et al. [14] clustered the
dynamic obstacles of the Bayesian occupancy grid, hence
falling back on more standard path planning problems where
the obstacles are identified. However, this approach assumes
that every obstacle has been successfully detected. Because
of the possible wrong clustering (e.g., two pedestrians being
detected as only one cluster), obstacles might have an in-
correct velocity estimation hence leading the robot to make
wrong decisions. On the contrary, our method does not
require performing clustering to assess risk with a physical
meaning, hence provides a more conservative approach. The
risk function, that we define below as the maximum change
of kinetic energy arising from a collision, keeps its physical
unit and allows more nuanced decision-making than would
be possible with only the probability of collision. Therefore,
more adequate decisions can be taken by the robot, where
each path possesses a meaningful risk with a physical unit.

III. RISK ASSESSMENT IN DYNAMIC LAMBDA-FIELD

We present here how to construct Dynamic Lambda-Fields
as well as how to assess risks using this map as done in the
static case in [3]. In order to motivate our approach, we
show that the theory of the Lambda-Field naturally emerges
from Bayesian occupancy grids when the cell size tends to
zero. We assume that when the cell size tends to zero, the
probability of a collision occurring in this cell is λ∆a, where
λ ∈ R≥0 is the rate of the event collision and ∆a is the
area of the cell. The larger λ is, the more likely a collision
will occur. Under these assumptions, the probability to safely
cross a path (i.e., without collision) of N cells ci of areas
∆a with a constant rate of λi is

N−1∏
i=0

(1− λi∆a). (1)

Taking the limit ∆a→0, N→∞ leads to the computation of
the Volterra type I product integral. For a path crossing a total
area A where each cell of area ∆a has a rate λ(a), a being



the total area crossed from the beginning, the probability of
collision is

P (coll) = 1− lim
∆a→0

A/∆a∏
i=0

(
1− λ(i∆a)∆a

)
= 1− exp

(
−
∫ A

0

λ(a) da

)
.

(2)

It can be shown that taking such a limit leads to the Poisson
point distribution. Therefore, the theory of Lambda-Field
relies on this distribution. Instead of storing the probability of
occupancy for each obstacle (i.e., cell and potential dynamic
obstacles), as done in the standard Bayesian occupancy grids,
the Lambda-Field stores the intensity of the cells, namely a
value λi ∈ R≥0 for each obstacle. The higher the intensity,
the higher is the probability that crossing the cell will result
in a collision. Conversely, a value of zero indicates that the
cell will never lead to a collision.

In this article, we define the risk as the maximum change
of kinetic energy of the robot and the obstacle (static or
dynamic) due to a collision. The framework allows the risk
function to be changed depending on the application. For
example, the risk function could also model the probability
of survival for both the vehicle occupants and the collided
obstacle if it is human. By keeping the risk in its physical
form, the robot is able to make more informed decisions
without the need of tuned user-defined thresholds. First,
we show how to compute the Lambda-Field, namely the
intensities λi of both static and dynamic obstacles, using
a lidar sensor. Then, we present how to manage the particles
used to represent the obstacles in the environment. Finally,
we show how to use this field to assess physical risks given a
generic risk function, leading to the generation of safe paths
for the robot.

A. Mapping

As the environment contains both static and dynamic
obstacles, the value of the lambda of a cell ci (i.e., its
intensity representing the likelihood of a collision occurring
in this cell) is stochastic. Indeed, the cell can be occupied by
a static obstacle, a dynamic obstacle or be free of obstacles.
Therefore, we define the probability of collision as the
probability of colliding with an obstacle in the expectation
of the intensity field, leading to

P (coll) = 1− exp

−∑
ci∈C

∆aE
[
λtici
] , (3)

for a path crossing the cells C = {c0, . . . , cN−1}
at the times {t0, . . . , tN−1}, of expected intensities{
E
[
λt0c0
]
, . . . ,E

[
λ
tN−1
cN−1

]}
and of area ∆a. One can note

that the probability of collision does not depend on the
tessellation size as the sum is weighted by the area of the
cells, as shown in [3].

In order to estimate the expectation of the intensity E
[
λtc
]

for each cell c, we use particles that represent the possible
obstacles in the environment. The static grid is considered

as a set of particles that do not move and have the size
of a cell, whereas dynamic obstacles are defined as moving
particles of different classes. We define in this work three
different classes of particles: the ‘cell’ class, for the static
environment, the ‘pedestrian’ class and the ‘car’ class for
the dynamic obstacles. Each particle has a position, a speed,
a velocity profile (i.e., a car can achieve greater speed than
a pedestrian, whereas a pedestrian can change direction
quicker). Each particle is also defined by their size. For
instance, a pedestrian particle is represented by a 40 cm
diameter circle whereas a vehicle is described by a rect-
angle of 2× 1 m. Note that the particles’ footprints are not
dependent on the tessellation size. Naturally, particles of the
‘cell’ class have null velocity and acceleration. Using these
attributes, the framework is able to represent the different
obstacles more efficiently, as only one particle can represent
an obstacle even if it spans several cells, contrary to [6]
where a particle does not have a size. Also, using the particle
classes representing the obstacle, the classes of the obstacles
are inferred at the same time, allowing the framework to
take into account the classes of the obstacles while assessing
the risk of a path. For instance, if the risk function takes
into account the probability of survival of collided obstacles,
it allows the robot to prefer colliding with a car over a
pedestrian.

As an example, Figure 2 gives the Lambda-Field of
Figure 1 where the robot wants to cross the environment
while a pedestrian abruptly appears on the road, therefore
having only two choices: either braking and colliding with
the pedestrian or swerving and colliding with the car in the
other lane, hence saving the pedestrian. The environment is
populated by static particles (one per cell) of different inten-
sities whereas the possible dynamic obstacles are represented
using dynamic particles (in this example, only two, one of
type ‘pedestrian’ and the other of type ‘car’). The expectation
of the cells’ intensity that the robot crosses is derived in
the following section, taking into account the intensity of
the particles that are in the cell at the time of traversal (a
static particle and possibly several dynamic ones). Once the
expected intensity of the cells is computed, the probability
of collision of the robot’s path is given by Equation 3,
integrating the expected intensity of the cells crossed by the
robot. Then, the expectation of a risk function over the path
can be computed, giving more insight on which path is the
safest.

B. Computation of the expectation of a cell

In order to measure particles and infer the risk of a path,
the first step is to compute the expectation of the intensities of
the cells. When measuring the environment at a given time,
we assume that a cell cannot contain more than one obstacle
(e.g., a cell can contain a wall or a car but not both). This
consideration allows us to only measure the obstacle that is
in the cell, as for instance we do not want to measure the
static part of a cell as occupied if a moving car is in the same
cell at this time. Furthermore, we also model the probability
that a particle still exists: it is indeed unlikely that a particle



λi = 0.1

λi = 30

λi = 30

Fig. 2. Example of Dynamic Lambda-Field where a pedestrian emerges
unexpectedly on the road in front of the robot (black box with its front
represented as a filled triangle) while another vehicle is approaching in the
opposite lane. The environment is represented as a set of cells storing the
expected intensity, computed using the intensity of the static (resp. dynamic)
particles, depicted in gray (resp. red) scale, occupying these cells. Depending
on the risk function, the robot can assess which one of the two paths (in
purple) is the safest.

still represents an obstacle after having run into a wall. If
this case occurs, the existence probability of the particle will
drop.

Under these considerations, the expected lambda of a cell
c is given by

E
[
λtc
]

=
∑
pi∈c

λiP (pi ∈ c)P (ei | pi ∈ c) , (4)

where λi is the lambda of the particle pi being in the cell at
the time of traversal t, P (pi ∈ c) depicts the probability that
the particle pi is the one located in the cell and P (ei | pi ∈ c)
is the probability that the particle pi exists. In the case where
there is truly no obstacle in the cell, the probability P (pi ∈ c)
will be one for the static particle, which can have a very low
lambda, thereby meaning that the cell is safe to cross, or a
high lambda, meaning that the cell contains a static obstacle.
Assuming that every cell has exactly one obstacle, we can
compute the probability of the particle pi of being in the
cell c as the probability that only the particle pi creates a
collision given that there is exactly one obstacle in the cell:

P
(
pi ∈ c

∣∣ (p0 ∈ c)⊕ · · · ⊕ (pNP−1 ∈ c)
)

=

(1− exp (−λi∆a))
∏
j 6=i exp

(
−λj∆a

)∑
k(1− exp (−λk∆a))

∏
j 6=k exp

(
−λj∆a

)
∝ 1− exp (−λi∆a)

exp (−λi∆a)
,

(5)

for a cell c of area ∆a where NP particles lie in it, ⊕ being
the standard XOR operator. The probability of existence
P (ei | pi ∈ c) is defined as the joint probability that the
particle did not collide with the static environment since its
creation and that it still follows an obstacle, computed as

P (ei | pi ∈ c) = exp

−∑
c∈Pi

λc,s

 · exp (−τ · ti) , (6)

where Pi is the path (set of crossed cells) of the particle
pi, λc,s is the lambda of the static particle at the cell c (we
allow dynamic particles to cross without collision), ti is the
time since the last measurement ‘hit’ (i.e., the lidar hits the
obstacle) of pi and τ is the rate of the distribution. Indeed,
if the particle has not been measured for a long time, it is

very likely that either the particle lost the obstacle or that the
obstacle left the field of view of the robot. This probability
can also take into account other sensors such as a camera:
for instance, the probability of existence of particles of type
‘pedestrian’ should drop if the camera informs the robot that
there is a car at this position.

C. Measuring particles

Using the expressions of the probability of collision given
by Equation 3 and the expectation of the intensities of the
cells given by Equation 4, we provide a means of estimating
the lambdas of the static field as well as the dynamic particles
using a lidar sensor. As in [3], we determine the combination
of the intensities λ = {λi} of the particles that maximizes
the expectation of the K beams the lidar has shot since the
beginning. The lidar is modelled as a range sensor with an
error region of area e: for a lidar measurement, the true
position of the obstacle is contained within the error region,
itself centered on the measurement. In the case of a perfect
sensor, this region is reduced to a point at the measurement
position. Using the derivation in [3] and the expectation
of the intensity given by Equation 4, the intensities of the
particles are given by

λi =
1

e
ln

(
1 +

hi
mi

)
, (7)

where hi is the sum of probabilities
P (pi ∈ ch)P (ei | pi ∈ ch) each time the particle pi
has been counted as ‘hit’ in the cell ch (i.e., was in
the region of error of the sensor) and mi the sum of
probabilities P (pi ∈ cm)P (ei | pi ∈ cm) each time the
particle pi has been counted as ‘miss’ in the cell cm (i.e.,
the lidar beam crossed the cell without collision). For this
equation to be true, one needs the assumption that for a
given measurement, all of the particles measured in the
error region of the sensor have the same intensity. As the
lidar error region tends to be small, this assumption holds
in every situation except for low-intensity static particles.
Indeed, high-intensity dynamic particles can easily come
to the cell containing the low-intensity particle, thereby
the assumption that every obstacle has the same intensity
no longer holds. This case is tackled by assuming that the
low-intensity static particle has the same intensity as the
high-intensity particles, therefore overestimating its intensity
and keeping a conservative approach.

D. Particle Management

Using the particles update equation previously derived,
the Lambda-Field is updated as described below. At each
iteration, the particles evolve, are updated with lidar mea-
surements and are resampled. First, the particles evolve using
a simple update equation:

xti = xt−1
i + vti∆t,

vti = vt−1
i + ai∆t with a ∼ N (0,Σi),

(8)

for the particle pi of position and speed xti,v
t
i ∈ R2

at the time t, where ai ∈ R2 is a centered Gaussian



random variable of covariance Σi depicting the acceleration
of the particle. Evidently, static particles have zero speed and
acceleration. Then, for each measured cell c, we compute the
probability that the particle pi is indeed the particle in the
cell. Each particle in the ‘hit’ zone (resp. ‘miss’ zone) of
the lidar measurements increments its ‘hit’ counter hi (resp.
‘miss’ counter mi) of the quantity P (pi ∈ c)P (ei | pi ∈ c)
as shown in Equation 7. Moreover, particles have a low
probability to switch classes (i.e., ‘pedestrian’ switching to
‘car’ and vice versa). This consideration avoids an incorrect
convergence of the particles (e.g., a low velocity car can
be represented as a group of pedestrians, however both
hypotheses have to be maintained).

Once the particles have been updated, they are resampled
according to the joint probability of their existence and
selecting one of the cells in which they are located:

wi ∝ P (pi∈c)P (ei | pi ∈ c)
∑
pi∈c

1−exp
(
−∆aE

[
λtc
])

(9)

Moreover, particles can be born during the resampling step.
Indeed, obstacles can appear on the map and the particles
might not converge to an obstacle, leaving a dynamic ob-
stacle unidentified. Even if this situation is less likely the
more particles we have, dealing with such a critical case is
necessary. Hence, we allow the birth of particles inside any
cell c measured ‘hit’ by the lidar with

wbirth
c = γ · exp

−∆a
∑
c∈Ek

E
[
λtc
] , (10)

for every ‘hit’ measurement of error region Ek, where γ
is a coefficient controlling the proportion of births at each
resampling. If the measured cell is already populated by
particles of high lambdas, meaning that the obstacle is
already represented, the birth probability drops to zero. If
the particle which is born is picked during the resampling,
random class and speed are drawn from a uniform distribu-
tion. Algorithm 1 summarizes the procedure.

Algorithm 1: Particles management

repeat
Evolve particles using Equation 8
Update particles with measurements using

Equation 7
forall particles pi do

Draw a particle pk with weight wk and birth
weight wbirth

c

Replace particle pi with particle pk
end

until True;

Once every particle has been updated and resampled, we
infer the underlying distribution for each cell. Indeed, plan-
ning while taking into account every particle would not reach
real-time constraints. For each cell, the speed is modeled
as a normal distribution N (µv, σv) whereas the direction is
modeled using the Von-Mises distribution (as the direction
lies on a circle) of parameters µθ, κθ, where these parameters

are estimated as in [15]. In the case where κθ is large enough,
the Von-Mises distribution can be approximated by a normal
distribution of the same mean with a standard deviation of
σθ =

√
1/κθ.

At the end of the mapping process, a grid is created
where each cell contains an intensity for the static part,
as well as an intensity for each type of dynamic particle
(i.e., summing the intensities of the particles of the same
class, using Equation 4). We do not sum the intensities of
the different classes since the risk can depend on the type
of obstacle. We instead provide each class intensity to the
planner. As we defined three classes in this article (static,
pedestrian and car), each cell contains three intensities, one
for each obstacle.

E. Risk assessment and Path Planning
Using the data provided by the dynamic map, we generate

safe trajectories for the robot. As in Gerkey et al. [16], we
sample commands of translational and rotational velocities
(v, w) and choose the one leading the closest possible to the
objective while being below the allowed risk. In each cell, the
robot has to go through all of the obstacles simultaneously
(i.e., static obstacle and all of the dynamic ones arriving in
the cell at the same time as the vehicle). The probability
of colliding with the obstacle ok in a cell c containing NO
obstacles o0, . . . , oNO−1 of intensities λ0, . . . , λNO−1 at the
time t is the joint probability of not colliding the other
obstacles {oi}i 6=k and colliding with the obstacle ok:

P
(
collc,k

)
=

∫ ∆a

0

exp

−a∑
i6=k

λi

 · λk exp (−aλk) da

=
λk

E [λtc]

[
1− exp

(
−∆aE

[
λtc
])]

, (11)

where E
[
λtc
]

=
∑NO−1
i=0 λi is the expected lambda of the

cell c at the time of traversal t, where the intensities λi
of the incoming obstacles oi have been pondered by the
probability of reaching the cell beforehand. One can note
that the expectation is the same as Equation 4 where we
lifted the assumption that only one obstacle can be in the
cell. Indeed, even if only one obstacle can truly be in a cell,
several obstacles can reach the cell from different directions
and create a collision with the robot which attempts to cross
it. Since several obstacles can hit the robot in the same cell,
the assumption of each cell having only one obstacle is lifted,
yielding P (pi ∈ c) = 1 for the computation of expectation
in risk assessment. Using Equation 11, we compute the risk
of a path as the expectation of the risk function r(a, ok),
where a is the traversed area at the time of the collision and
ok is the obstacle the collision occurs with, as

E
[
r(·)
]

=

N−1∑
i=0

Ki

∑
ok∈ci

λk

E
[
λtici

] · r(i∆a, ok), (12)

with Ki = exp

−i−1∑
j=0

∆aE
[
λtjcj

](1−exp
(
−∆aE

[
λtici
]))

,



for a path passing through the cells {c0, . . . , cN−1} at the
times {t0, . . . , tN−1} of expected lambdas E

[
λtici
]
. The

curvilinear abscissa s is linked to the traversed area by the
relation s = i∆a/L where L is the width of the robot. In
order to determine which obstacles are in the cell at the
time of traversal, we convert the velocity distribution of
each dynamic cell into a set as depicted in Figure 3. The
set corresponds to the shape of the obstacle’s (i.e., dynamic
cell) path using two sigmas on its velocity and orientation.
This shape is then tested to cross the cells of the robot’s
path, using the Gilbert-Johnson-Keerthi distance algorithm.
In the case of a collision between the robot’s path and the
cell’s path (dashed cells in Figure 3), the earliest arrival and
latest departure time of the dynamic obstacle and the robot
are compared. If the time intervals intersect, the obstacle
is said to be in the cell of the robot’s path. Using this risk
assessment method, the robot is able to effectively assess the
risk of a path. In the following section, the risk is defined as
the change of kinetic energy arising from the collision, thus
taking into account the harmfulness of the collision for both
the robot and the obstacle it collides with.

λi = 0.1

λi = 2

λi = 30

λi = 30

Fig. 3. Example of risk assessment. The robot (left vehicle) wishes to
cross the crossroad using the trajectory depicted in blue. A dynamic obstacle
arrives from the bottom of the map, with a probabilistic direction and speed,
converted into a set (in red) that corresponds to the possible positions of the
obstacle. Using these distributions for each dynamic cell (here depicted for
the crossed one), the potential collision positions are marked (dashed cells).
If the times of traversal intersect, the obstacles are added to the crossed
cells for risk assessment.

IV. VALIDATION OF THE FRAMEWORK

In order to show the applicability of our theory, we imple-
mented our mapping framework on a Jetson TX2 GPU. We
used the robot depicted in Figure 1 (right), equipped with a
lidar LMS-151 located at its front. As the aim is to plan short
distance trajectories and the map is centered on the robot, we
only used the odometry for the relative displacements of the
robot. To estimate the states of the dynamic obstacles, we
used 2× 104 particles in the experiments, running at more
than 10 Hz and more than 5 Hz if the planning segment
is carried out on the same GPU. The map size was set
to 200× 200 cells of size 15× 15 cm, resulting in a map
of 30× 30 m. In order to accelerate the convergence of
the particles towards the obstacle, particle velocities were
resampled with a Gaussian noise of σ = 0.3 m s−1.

A. Evaluation

First, we show that the convergence speed of the frame-
work. Using the same type of validation as Nuss et al.
[7], we simulated an environment where an obstacle was

approaching the robot at a known velocity and orientation.
This experiment was repeated 50 times in which the obstacle
was either a pedestrian or a car. The velocity of the obstacle
was chosen to be 1.5 m s−1, as this profile of speed can
be matched by either the ‘pedestrian’ or the ‘car’ class.
Using the fact that only one dynamic obstacle is in the
environment, we retrieve the mean and a confidence interval
at two sigmas for the velocity and the orientation. Figure 4
shows the results for a pedestrian (in green) and a car (in
blue). We can see that both the speed and the orientation
converge to a valid value after less than 2 s. Furthermore,
as the framework assesses the risk by allowing two sigmas
on the velocity and the orientation, the ground truth is
always contained in the estimation. At first, the speed of
the obstacle is overestimated as both cars of high velocities
and pedestrian of low velocities coexist. In the case of the
pedestrian, all particles of class ‘car’ are discarded as their
size is too large for the obstacle (i.e., they lie in cells counted
as free by the sensor). Once the ‘car’ particles are removed
at t ≈ 1 s, the mean velocity converges to the true value at
the next iteration. In the case of the car, the car particles
of high velocities are discarded as soon as they leave the
measurements zone, which is indicated by the fact that the
convergence of the mean is smoother than in the pedestrian
experiment.
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Fig. 4. Convergence of the speed and orientation of a single dynamic
obstacle (Left: pedestrian; Right: car) where the ground truth is depicted in
dashed black. The mean is displayed in solid line whereas the confidence
interval at two sigmas is depicted in light shade.

The convergence of the obstacle class is also studied. We
compute the probability of the obstacle to be of a certain
class as the probability to collide with dynamic cells of
the class. Figure 5 shows the resulting convergence for a
pedestrian and a car. In the case of the pedestrian, the
framework quickly converges to the real class of the obstacle
after 1 s. However, in the case of the car, the framework
cannot decide whether the obstacle is a car or a group
of pedestrians. Indeed, with only a lidar, the obstacle can
match both classes equivalently. Other sensors such as a
camera could remove the ambiguity. Also, the class would
be determined to be a car if the velocity profile only matched
the ‘car’ class (i.e., the obstacle moves at greater velocity).
Therefore, the framework is able to effectively infer the
velocity, orientation and class (when possible) of the different
obstacles.
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Fig. 5. Convergence of the class probability for a pedestrian (left) and
a car (right) with the quantiles at 25% and 75% in light shade. Whereas
the pedestrian has its class quickly inferred, the framework cannot decide
between a car and a group of pedestrians in the case where the car has a
speed matching both classes.

B. Validation of the approach

In the following experiment, the risk is defined as the
maximum gain of kinetic energy between the robot and the
obstacle it collided with, assuming inelastic collisions, as

r(s, ok) = max

(
1

2
mR

(
vR(s)− vf

)2
,

1

2
mk

(
vk − vf

)2)
with vf =

mRvR(s) +mkvk
mR +mk

(13)

where mR, vR(s) is the mass and velocity of the robot at
the curvilinear abscissa s, mk, vk the mass and velocity of
the obstacle ok, and vf the final velocity of the obstacles
after collision. The mass of the robot was set to 150 kg
while the masses of the ‘pedestrian’ and ‘car’ classes were
set to 80 kg and 500 kg respectively. This risk enables the
consideration of both the possible damages suffered by the
robot but also by the obstacle it collided with. As such, the
decision to collide with a pedestrian takes into account that
although the robot will suffer little damage, the pedestrian
is at a much greater risk. Note that the risk function can
be adapted depending on the context and can take into
account other elements if available such as slippage, car
deformation and so on. The static environment is assumed
to have infinite mass, meaning that collisions with the static
environment will always lead the vehicle to stop. As shown
in Figure 1, the robot had to move through an urban-like
environment consisting of a crossroad, where other agents
such as pedestrians and cars were also evolving. A car was
approaching in the other lane and a pedestrian entered the
field of view of the robot from behind, afterwards crossing
the road in front of it. For obvious security reasons, in this
experiment, the velocity of the robot was bounded such
that it will always be able to instantly stop in the case of
hazardous situations where every path is too risky, contrary
to the scenario depicted in Figure 2.

Figure 6 shows the resulting Lambda-Field for two dif-
ferent timestamps. The static environment is depicted with a
gray scale, whereas the dynamic environment is shown with
a red scale. Using our framework, the velocity distribution
of each cell is extracted as well as a lambda of the static
environment and each type of particle (i.e., in our case a
lambda for the ‘car’ class and a lambda for the ‘pedestrian’
class). At t = 19 s, the large dynamic high-lambda zone (in
red) of the map corresponds to the car, where the probability
of being a car is approximatively 50 % for the underlying

Fig. 6. Example of field resulting from our method, where the robot is
located at the bottom center of the map. The static (resp. dynamic) environ-
ment is represented using a gray (resp. red) scale. A car is approaching the
robot at t = 19 s, whereas a pedestrian is crossing the road at t = 28 s right
in front of the robot. Some speed distributions of the cells are displayed in
polar plots (angle for the orientation, radius for the velocity), where inner
circles correspond to a step of 1m s−1.
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Fig. 7. Risk undergone by the robot during its traversal with the associated
speeds. First, a car passed the robot in the other lane, where its speed was
precise enough not to cause the robot to brake or change direction. After
that, a pedestrian emerges from behind the robot and crosses the road in
front of it, leading the robot to stop and wait for the pedestrian to free the
way. The robot then rejoins its goal without further obstacles.

cells. The probability did not converge to 100 % because
without additional sensors, the framework cannot decide
whether the obstacle is a car or a group of pedestrians, as the
velocity of 1.2 m s−1 is possible for both classes. At t = 28 s,
a pedestrian emerges from behind the robot, then crosses the
road right in front of it a few seconds later. When the robot
detects the new obstacle, an inconsistency between the map
and the measurements is found, leading the framework to
create many particles on this location. Note the light gray
trace which is left behind the pedestrian, as the framework
had not yet decided whether the obstacle was static or
dynamic. As shown in the right polar distribution (i.e., angle
for the orientation, radius for the velocity), the hypothesis of
the pedestrian pursuing its northward trajectory (top of the
figure) is maintained. This hypothesis models the fact that
without other sensors, the obstacle can in fact represent two
pedestrians walking together, with the probability that they
can change directions. The wrong hypothesis (i.e., pedestrian
moving north) is discarded over the next iterations.

Finally, we used this dynamic map to plan safe paths for
the robot. The goal of the robot was set at the top of the
map, 15 m away from its position. To do so, we set the



maximum risk to be rmax = 1 J where any path below this
risk is considered safe. Figure 7 shows the risks the robot
underwent during the traversal. First, no obstacles were in
sight, leading the robot to accelerate to its maximum speed,
here at 0.5 m s−1. At t = 10 s, a car entered the field of view
of the robot. As the obstacle was far away enough during the
convergence of the speed and orientation, the robot did not
stop its course. At t = 22 s, the car passed on the left side
of the robot. As the velocities were precise enough not to
encounter the path of the robot, it continued its course at
full speed. At t = 31 s, the pedestrian took a hard left turn,
deviating from its expected trajectories thereby leading the
framework to birth particles on its position. Consequently, the
robot detected a danger on every path it could take, leading
it to stop as this decision is the one minimizing the risk. The
associated risk is then the risk of the pedestrian running into
the robot, thus harming himself. In contrast, the Bayesian
occupancy grid would only yield a probability of collision
(in this case equal to one) and the robot could not distinguish
between the collision at full speed and the collision at rest
since both paths lead to a collision with the pedestrian. If the
velocity of the robot did not allow it to stop, the robot would
then prefer to collide with a parked car of same weight, as
the resulting risk is lower. After a few iterations, the velocity
of the pedestrian re-converged, and the robot continued on
its way as soon as the pedestrian left. The robot accelerated
to its maximum velocity and reached its goal safely.

V. CONCLUSION

In this article, we proposed a novel framework for generic
risk assessment in occupancy grids. Using particles, we
modeled both static and dynamic environments, deriving at
the same time the nature of the obstacles. We first showed
how to compute the Dynamic Lambda-Field using lidar mea-
surements. Then, the resulting dynamic map is used to assess
the risk for a given path, here defined as the change of kinetic
energy due to a collision with an obstacle. On the contrary,
the Bayesian occupancy grid would only yield the probability
of collision, hence not being able to differ between a collision
with a car or a pedestrian. Using this formulation of the risk,
the robot was able to plan real-time safe trajectories in a
dynamic environment. As this work focused on explaining
the theoretical framework and providing a use case for its
application, future work will involve extensive experiments
with the framework in both real and simulated benchmarks,
allowing for more complex and hazardous scenarios. Future
work will also address particle convergence guarantees for
a wider range of scenarios. Finally, other risks, metrics and
particle types will be used to better characterize the risk of
a path in more complex situations.
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