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A B S T R A C T

The quality of meat can differ between grazing and feedlot yaks. The present study examined whether spectral
fingerprints by visible and near‐infrared (Vis‐NIR) spectroscopy and chemo‐metrics could be employed to iden-
tify the meat of grazing and feedlot yaks. Thirty‐six 3.5−year−old castrated male yaks (164 ± 8.38 kg) were
divided into grazing and feedlot yaks. After 5 months on treatment, liveweight, carcass weight, and dressing
percentage were greater in the feedlot than in grazing yaks. The grazing yaks had greater protein content
but lesser fat content than feedlot yaks. Principal component analysis (PCA) was able to identify the meat of
the two groups to a great extent. Using either partial least squares discriminant analysis (PLS‐DA) or the soft
independent modeling of class analogies (SIMCA) classification, the meat could be differentiated between the
groups. Both the original and processed spectral data had a high discrimination percentage, especially the PLS‐
DA classification algorithm, with 100% discrimination in the 400–2500 nm band. The spectral preprocessing
methods can improve the discrimination percentage, especially for the SIMCA classification. It was concluded
that the method can be employed to identify meat from grazing or feedlot yaks. The unerring consistency
across different wavelengths and data treatments highlights the model's robustness and the potential use of
NIR spectroscopy combined with chemometric techniques for meat classification. PLS‐DA's accurate classifica-
tion model is crucial for the unique evaluation of yak meat in the meat industry, ensuring product traceability
and meeting consumer expectations for the authenticity and quality of yak meat raised in different ways.
The yak (Poephagus grunniens) is a unique ruminant animal residing
in the high‐altitude regions of the Tibetan Plateau. It represents the
largest grazing cattle population globally and is exceptionally adapted
to the harsh environment of the Tibetan Plateau, characterized by
extreme cold, low oxygen levels in the air, intense radiation, and wind,
as well as a brief grass‐growing season. (Jia et al., 2021; Jing et al.,
2022; Liu. 2018). The yak is distributed predominantly in Qinghai,
Tibet, Gansu, Sichuan, Xinjiang, and Yunnan provinces of China,
accounting for approximately 95% of the world population
(Ma et al., 2013; Zhang et al., 2015; Zhang et al., 2020). This bovine
species is not only a vital resource for the livelihood of local residents,
providing meat, milk, yak down, wool, leather, and dung but also a
symbol of cultural heritage and economic asset. Therefore, it is
referred to as the “Ecological Yak,” “Environmental Yak,” “Nutritional
Yak,” and “Cultural Yak.” (Jing et al., 2022; Ren et al., 2022). Cur-
rently, China's annual total production of yak meat is approximately
over 400,000 tons (300,000–500,000 tons) (National Technical
System for Beef and Yak Industry, 2021; National Technical System
rrection;
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for Beef and Yak Industry, 2022). Due to its unique digestive system,
yaks can convert low‐quality feed into high‐quality protein and fat,
making their meat particularly valuable (Zuo et al., 2016). It is consid-
ered a delicacy among beef varieties, typically priced more than 30%
higher than regular beef and accounting for around 4% of China's beef
consumption. Yak meat is considered healthy being rich in minerals,
vitamins, conjugated linoleic acid, and compared with cattle, has a
greater content of protein and lesser content of fat (Zuo et al., 2016;
Xiong et al., 2021).

Traditionally, yaks graze on the expansive natural grasslands of the
Tibetan Plateau all year round, maintaining an ecological balance and
ensuring the sustainability of these fragile ecosystems. However, with
the advent of intensive farming practices, there is an increasing trend
of raising yaks in feedlots, primarily on grain‐based diets. This shift not
only affects the meat's fatty acid composition and overall nutritional
profile but also impacts the sustainable practices and the traditional
pastoral culture (Alfaia et al., 2009; Descalzo et al., 2005). Feedlot
diets can be enriched with specific amino acids, vitamins, and miner-
als, ensuring a more balanced and comprehensive nutritional profile.
This leads to meat with improved levels of essential nutrients, includ-
ing iron, zinc, and B vitamins, which are vital for human health
(Hawley et al., 2022). Additionally, feedlot feeding can improve meat
quality in terms of tenderness and marbling, making it more palatable
and potentially increasing its consumption. Therefore, the nutritional
quality of yak meat varies depending on the feeding method, and con-
sumers can purchase it according to their own needs and preferences.

As global consumers become more health‐conscious and environ-
mentally aware, there is a rising demand for meat products that are
not only more nutritional, but that are also produced in a sustainable
manner. Consumers are increasingly seeking green, organic, and func-
tional foods with clear geographical indications, reflecting a broader
trend toward ethical consumption (Prache et al., 2005). Distinguishing
meat accurately between grazing and feedlot yaks thus responds to
consumer demand for transparency, allowing informed choices about
health, ethical considerations, and environmental impact. It also aids
in preserving the cultural heritage and traditional practices associated
with yak rearing, contributing to the socio‐economic development of
pastoral communities.

Near‐infrared spectroscopy is used to obtain information on the
nutritional components of animal tissues through absorption, scatter-
ing, and reflection, enabling rapid and accurate qualitative analysis
of yak meat to determine the animal feeding methods. Visible‐near‐
infrared (Vis‐NIR) spectroscopy measurements are relatively easy
and generally take only a few seconds, making it a convenient, low‐
cost, and nondestructive method (Aleixandre‐Tudó et al., 2019).
Because of its convenience and effectiveness, Vis‐NIR spectroscopy
combined with chemometrics has been used widely in food authenti-
cation and quality assessment, including the nondestructive assess-
ment of shell egg quality and freshness, origin tracing, and in‐line
inspection of agro‐food products under semi‐industrial conditions
(Shin et al., 2021; Cruz‐Tirado et al., 2024; Tejerina et al., 2021;
Lanza et al., 2023; Cortés et al., 2019; Jin et al., 2023;
KomboloNgah et al., 2023; Goi et al., 2022; Patel et al., 2021).
Huang et al. (2015) distinguished meat among pasture‐raised,
concentrate‐fed, and concentrate−finished pasture lambs using Vis‐
NIR reflectance spectroscopy, and this method is being applied to
yak meat. Based on these reports, it is assumed that near‐infrared spec-
troscopy can differentiate yak meat based on varying feeding practices.
To test this hypothesis, this study examined the potential of employing
spectral technology combined with chemometrics to distinguish
between grazing and feedlot−fed yak meat. Such a reliable method
would enhance consumer trust, support sustainable practices, and pro-
mote the economic well‐being of rural communities dependent on yak
rearing. This approach thereby advances the quality identification and
market classification of yak meat products.
2

Materials and Methods

Animal management

Thirty‐six, 3.5−year−old male, castrated yaks of similar body con-
dition were divided into grazing (n = 18) and feedlot (n = 18) yaks.
The feedlot yaks were kept at the fattening yak farm of Datong Fengju
Breeding Professional Cooperative. The grazing yaks grazed the alpine
meadow pasture of Datong County, without supplements from 07:30
to 18:00 each day during summer. The composition and nutrient con-
tent of the pasture is presented in Table 1. Drinking water for the graz-
ing yak was available from a streamlet and from meltwater from
mountains. Yaks in the feedlot were raised in a cooperative and were
fed mainly corn kernels and corn silage ad libitum; feed was added
twice a day (08:00 and 18:00) (see Table 2 for details on feed compo-
sition and nutrition). Drinking water was freely available from water
troughs. All yaks were dewormed with oral Ivermectin prior to the
study. Datong County has a highland continental climate. The average
annual temperature is 4.9°C, and the annual precipitation is 523 mm,
mostly in August and less in December (Wang, 2020).

Sample collection and pretreatment

After 5 months on their regimes, the yaks were fasted, but allowed
water for 24 h. They were weighed (live body weight − LBW) and
then slaughtered in a commercial abattoir according to industry
norms. The wool, head, hooves, tail, and viscera (except kidneys) were
removed and, after 30 min, were weighed for hot carcass weight
(HCW). The dressing percentage was calculated from the hot carcass
weight divided by the live weight and multiplied by 100. Approxi-
mately, 1 kg of the longissimus thoracis (LT) muscle between the
12th and 13th ribs was collected and stored in a vacuum bag at
−20 °C. After thawing, fat and connective tissue were removed from
the surface and the muscle was cut into regular shapes of 1 cm3, and
lyophilized for 48 h. The sample was pulverized in a planetary ball mill
(PM100, Retsch, Germany) for 5 min. Subsequently, it was sieved
through a 40‐mesh screen in preparation for analysis.

Meat composition and color

The lyophilized powder was used for the determination of moisture
(method 925.040), ash (method 938.08), crude protein (CP: method
981.10), and ether extract (EE: method 935.38) contents according
to AOAC (AOAC, 1995). A portable pH meter (H1 99163 N, Hanna,
Bedfordshire, UK) was calibrated and used to determine the pH of
the meat at 45 min and 24 h postmortem. The colorimeter (FRU
WR‐18, Shenzhen Wave Optoelectronics Technology Co., Ltd., Long-
gang, China) was calibrated with black and white reference plates
before use. The meat was cut in a direction perpendicular to the mus-
cle fibers, and lightness (L*), redness (a*), and yellowness (b*) were
measured at three points on a flat cut using illuminant D65 and the
10° standard observer (CIE, 1976). The mean of the three measure-
ments was used for all analyses.

Analysis of feed sample

Dry matter (DM, method 976.05), crude protein (CP, method
976.05, N * 6.25), and ash (method 942.05) contents of the feedlot di-
ets were determined according to the feed analysis (AOAC, 2005).
Ether extract (EE) was measured by the Soxhlet extraction (method
920.39 (AOAC, 2000)). Concentration of phosphorus was determined
by the photometric method and of calcium by the atomic absorption
spectrophotometric method (method 985.01). Neutral detergent fibre
(NDF) concentration was assayed with heat stable α‐amylase and



Table 1
Proximal composition, Calcium, Phosphorus, Gross, and Metabolizable energy of the grazed pasture

Items June 2019 July 2019 August 2019 September 2019 October 2019

Dry Matter (%) 94.5 94.8 94.1 94.9 94.4
Ash (%) 7.13 8.94 7.01 7.72 6.03
Crude protein (%) 13.25 13.13 12.34 10.42 5.14
Crude fat (%) 2.72 2.56 2.98 2.66 2.28
Acid detergent fiber (%) 28.5 29.7 28.4 21.7 29.0
Neutral detergent fiber (%) 45.2 44.4 47.6 66.8 65.0
Ca (%) 3.08 4.01 2.15 5.12 2.47
P (%) 0.08 0.19 0.08 0.07 0.03
GE (MJ·kg−1) 11.63 10.29 10.07 9.51 9.51
ME (MJ·kg−1) 10.41 9.01 8.78 8.19 8.19

Table 2
Composition and nutrient levels of TMR (dry matter basis)

Items (g/kg)

Wheat stalk 9.9
Corn silage 20.1
Corn kernels 35.0
Soybean 10.5
Rapeseed meal 7.0
Oat 7.0
Wheat bran 7.0
Premix 3.5
Total 100
Nutritional level (%)
Dry Matter (DM) 79.8
Organic material 73.9
Ash 6.39
Crude protein 16.0
Crude fat 2.83
Acid detergent fiber 12.15
Neutral detergent fiber 36.1
Ca 1.87
P 0.44
GE (MJ/kg) 16.4
ME (MJ/kg) 9.67

ME (MJ/kg) = 9.236–0.213 Ash + 0.044 CP + 0.300 EE + 0.020 ADF,
the Ash, CP, EE, ADF value in the formula were the values in the table divided
by 10.
GE, gross energy; ME, metabolizable energy; DM, dry matter.
a. The premix provided the following per kg of diets: vitamin
A 100,000–400,000 IU/kg, vitamin D 20 000–130,000 IU/kg, vitamin
E ≥ 560 IU/kg, Ca 10%–30%, NaCI 10%–30%, Cu 100 mg/kg, Fe 0.2–4 g, Mn
0.5–5 g, Zn 0.5–5 g, Se 2–15 mg, I 10–100 mg, Co 2–30 mg, H2O ≤ 10%.
b. ME was calculated value (Liu, 2018), while the other values were measured.
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sodium sulfite and expressed inclusive of residual ash content, and
acid detergent fiber (ADF) concentration was determined using fiber
bags and a fiber analyzer (ANKOM 200, ANKOM, USA) following
Van Soest et al. (1991). The mean of the three measurements was used
for all analyses.

Elemental analysis

The detailed procedures for biochemical methods are described by
references Guo et al., 2008; Sun et al., 2011; Lizhuang et al., 2019. A
0.2 g sample of yak meat, 6 mL of BV3 HNO3, and 2 mL of BV3 H2O2

were placed into a polytetrafluoroethylene (PTFE) digestion tube
(Mars 240/50, CEM, Mathews, NC, USA) for 35 min, with the power
at 1600 W and the temperature increased gradually to 180 °C. The
digested solution was diluted to 100 mL with ultra‐pure water and
stored in the tube before analysis by inductively coupled plasma mass
spectrometry (ICP‐MS; Agilent 7700x, Santa Clara, CA, USA). The
operating conditions of the ICP‐MS were as follows: radio frequency
power at 1600 W, auxiliary gas flow rate at 1.0 L/min, peristaltic
pump flow rate at 0.1 rps, nebulization chamber temperature at
3

2 °C, oxide indices 0.45%, and dual current indices at 1.01%. Quantifi-
cation was done by the standard external method. The Environmental
Calibration Standard (Part# 5183‐4688; Agilent) was used as a stan-
dard solution, and the determination coefficient of standard curve
was higher than 0.99. The internal standards, Ge, In, and Bi were used
to ensure the instrument's stability. The samples were measured when-
ever the RSD of internal standards was greater than 3%.

Visible and near-infrared (Vis-NIR) spectroscopy

The samples were scanned in reflectance mode using a near‐
infrared spectrometer (NIR Systems, Silver Spring, MD, USA). The pro-
cessed sample was loaded into the sample cup and was scanned twice
to reduce photometric variability. Reflectance data were recorded at
2 nm intervals and converted to absorbance logs (1/R) for storage
(Serva et al., 2023). The mean of the three measurements was used
for analysis.

Data processing and multivariate analysis

Statistical analysis was processed by RStudio 4.12 (RStudio IDE,
Chicago) and OriginPro 2022b (OriginLab Corporation, Northampton,
MA, USA). Spectral data were processed by Unscrambler X 10.4 (Camo
Software AS, Oslo, Norway).

Spectral pretreatment
In the current study, the spectral data were preprocessed for first‐

order derivatives, second‐order derivatives (Savitzky‐Golay), standard
normalized variate (SNV), and their combinations. The best spectral
preprocessing method was determined by comparing the accuracy
and reliability of the spectral prediction models.

Exploratory analysis
Principal component analysis (PCA) is exploratory, converting mul-

tiple correlated values into a few uncorrelated composite indicators,
mainly through dimensionality reduction. The information is replaced
and combined with fewer indicators, which are the main components
of the original multiple indicators (Lever et al., 2017). The load
describes the direction of each principal component in the original
X‐space, and the score is a projection of the original data onto the load-
ing vector. PCA analysis used all samples and was done in the visible
(400–780 nm), NIR (780–2500 nm), and Vis‐NIR (400–2500 nm)
ranges.

Classification analysis
For classification analysis, the samples were divided randomly, in

which 2/3 of the samples were for training (12 from each yak treat-
ment) and 1/3 for prediction (six from each yak treatment). The raw
spectral data and preprocessed spectral numbers were classified by
the partial least squares‐discriminant analysis (PLS‐DA) and the soft
independent modeling of class analogies (SIMCA), respectively.
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PLS‐DA is a typical linear pattern recognition technique, a discrimi-
nant analysis method based on the partial least squares (PLSR) model.
The discriminant analysis generates a regression model between the
spectral data and the set class features, and maximizes the separation
between predefined classification levels by calculating the likelihood
that each sample belongs to a classification level. This model uses a
response variable delimited by 0, with −1 representing one category
and +1 representing another. SIMCA first creates its own PCA model
for each type of training set and then calculates the distance between
the PCA model and the sample points that need to be predicted. The
final decision as to where the sample class should belong is based on
the distance between the model and the sample points.
Results and Discussion

Quality characteristics of yak meat with different feeding methods

The liveweight at slaughter (P <0.04), carcass weight (P <0.001),
and dressing percentage (P <0.001) were greater in the feedlot than
grazing yaks (Table 3).

Protein content was greater (P <0.05), but fat content was lesser
(P <0.05) in grazing than in feedlot yaks (Table 4), while moisture
and ash contents were greater (P<0.001) in grazing than feedlot yaks.
Grazing yaks had greater (P <0.05) concentrations of iron and cal-
cium, feedlot yaks had greater (P <0.05) concentrations of zinc, cop-
per, and sodium, while there was no difference (P >0.05) between
treatments in manganese, potassium, and magnesium.

The pH of the meat was greater in the grazing than feedlot yaks at
45 min (P <0.03) and 24 h (P <0.001) after slaughter, while L* and
a* were also greater (P <0.001) in grazing than feedlot yaks, but b*
did not differ (P >0.05) between treatments. The muscle's pH reflects
glycolysis after slaughter and affects tenderness and water‐holding
capacity directly (Xu et al., 2022). The higher the pH, the slower the
anaerobic glycolysis of muscle glycogen, the less water exudation loss,
Table 3
Liveweight at slaughter, carcass weight, and dressing percent of grazing and feedlot

Items Grazing yaks

Liveweight (kg) 229.3 ± 21.36 a

Carcass weight (kg) 101.6 ± 1.75 a

Dressing percentage 44.0 ± 0.01 a

Notes: different letters in rows with different letters are statistically significantly d

Table 4
Chemical and physical properties of meat from grazing and feedlot yaks

Items Grazing

Moisture (%) 73.5 ± 1.03 a

Ash (%) 5.72 ± 0.73 a

Fat (g/100 g) 2.78 ± 1.40 a

Protein (g/100 g) 86.4 ± 2.64 a

Zn (mg/100 g) 3.27 ± 0.66 a

Fe (mg/100 g) 4.15 ± 0.41 a

Cu (mg/100 g) 0.10 ± 0.02 a

Mn (mg/100 g) 0.038 ± 0.01 a

Ca (mg/100 g) 9.71 ± 3.40 a

K (mg/100 g) 300.8 ± 13.24 a

Mg (mg/100 g) 33.3 ± 2.79 a

Na (mg/100 g) 58.6 ± 5.27 a

pH45min 6.97 ± 0.12 a

pH24h 5.62 ± 0.17 a

L* 32.4 ± 3.44 a

a* 15.1 ± 2.15 a

b* 13.9 ± 2.16 a

Notes: different letters in rows with different letters are statistically significantly d

4

the more stable the protein structure, and the better the meat preser-
vation (Zhang et al., 2015). In this study, the grazing yak had lower
muscle glycogen at 45 min and 24 h postmortem resulting in higher
muscle pH.

Meat color is important for the consumer in selecting meat as it
indicates freshness. The color is determined by the content and physic-
ochemical state of hemoglobin and myoglobin in the muscle and is
influenced by a combination of oxidation and light reflection. Myo-
globin combines with oxygen to produce oxygen‐containing myo-
globin that turns bright red. Brown high iron myoglobin is produced
by oxidation of myoglobin or oxygenated myoglobin, which affects
a*, while b* is influenced by the intake of carotenoids in the diet
and the content of intramuscular and intermuscular fat (Nieto et al.,
2010). The L* value of meat in grazing yaks was greater (P <0.05)
than in feedlot yak, which may be due to the difference in moisture
content of the diet. Greater L* values are accompanied by greater
water content of the meat (Wang et al., 2021; Zhang et al., 2020),
and the water content was greater in the grazing than in feedlot yak
meat.
Visible and near-infrared (Vis-NIR) spectral profiling

In the present study, the ground meat sample was placed in a Petri
dish for analysis, and the spectral data were obtained by rotating the
Petri dish several times to scan the sample. Finzi et al. (2015) con-
cluded that the use of the Petri dish provided better calibration results
than optical fibers, and Serva et al. (2021) reported that the effect of
the Petri dish was irrelevant in acquiring spectral data, as the effect
was constant. Figure 1 presents the average absorption spectra of
yak meat in the two treatments. This provides a clearer view to com-
pare the overall absorption trends under grazing and feedlot condi-
tions. It is evident that while the absorbance under both grazing and
feedlot conditions is similar across most wavelengths, at certain wave-
lengths (like those mentioned previously), the samples from grazing
yaks

Feedlot yaks SEM P Values

244.1 ± 18.62b 3.523 0.033
124.8 ± 1.90b 2.760 <0.001
51.0± 0.01b 0.006 <0.001

ifferent (P <0.05).

Feedlot SEM P Values

71.8 ± 1.08b 0.23 <0.001
4.04 ± 0.15b 0.17 <0.001
5.62 ± 3.19b 0.47 0.002
83.3 ± 2.69b 0.51 <0.001
4.49 ± 0.84b 0.16 <0.001
3.63 ± 1.07b 0.14 0.064
0.12 ± 0.03b 0.01 0.021
0.048 ± 0.02 a 0.003 0.104
6.83 ± 1.95b 0.48 0.002
2,901 ± 36.4 a 4.64 0.255
35.1 ± 5.01 a 0.71 0.216
77.6 ± 20.23b 2.96 0.001
6.85 ± 0.16b 0.02 0.023
5.43 ± 0.10b 0.03 <0.001
30.8 ± 1.69b 0.46 <0.001
11.9 ± 2.31b 0.45 <0.001
14.9 ± 1.38 a 0.31 0.096

ifferent (P <0.05).



Figure 1. Average of absorption spectra.
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yaks exhibit a slightly higher ability to absorb light than those from
feedlot yaks.

The spectral and feed data analyses distinctly underscore the qual-
ity and compositional variations between yak meat from grazing and
feedlot systems, especially within specific wavelength ranges. In Fig-
ure 1, the original and average near‐infrared (NIR) spectral data from
yak meat samples revealed absorption peaks within key wavelength
ranges that were associated with various constituents such as proteins,
fats, and moisture. Among them, absorption peaks at 540 nm,
1188 nm, and 1510 nm are related to moisture, representing the com-
bination frequency absorption band of O–H groups. Absorption peaks
at 1736 nm and 2304 nm are related to fat, representing the first har-
monic absorption of C–H groups and the combination frequency
absorption of stretching and bending vibrations of C–H groups, respec-
tively. Absorption peaks at 2058 nm and 2172 nm are related to pro-
tein, representing the harmonic and combination frequency vibrations
of N–H groups (Yan et al., 2005). Particularly, differences in absorp-
tion intensities at certain NIR wavelength ranges, typically between
700 nm and 2500 nm, are indicative of variations in diet source, fatty
acid composition, and moisture content—factors critical to assessing
meat quality (Goi et al., 2022). The feed data for grazing yaks (Table 1)
displayed large seasonal fluctuations in nutrients like crude protein
and total energy, impacting the meat's nutritional quality and taste.
Conversely, feedlot yaks (Table 2) received a controlled and nutrition-
ally balanced diet, leading to higher overall nutritional value. The NIR
spectroscopy effectively captured these variations, with specific wave-
length ranges being particularly telling of the feeding regime's influ-
ence on the meat's quality. Employing this spectral analysis within
these defined wavelength ranges is pivotal for discerning the subtle
differences in yak meat quality, guiding improvements in rearing prac-
tices. Moreover, the high absorption peaks at 430 nm and 500 nm
were associated with respiratory and carotenoid pigments stored in
fat (Cozzolino & Murray, 2002; Ripoll et al., 2015). Moreover, it was
reported that β‐Carotene was greater in the muscle of grazing than
in feedlot yaks (Li et al., 2015).
Exploratory analysis

The structure and content of fat, protein, water, and other compo-
nents in yak meat can differ due to dietary intake. Therefore, the posi-
tion, peak, and intensity of absorption peaks in the NIR spectra
differed between treatments. To identify the essential spectral changes
5

that distinguish the two yak groups, the spectra of the 36 samples were
analyzed by PCA.

The first two principal components were used as inputs for the clas-
sification model because too many variables reduce the computational
speed and cover most of the information while maintaining the inter-
pretability of PCA (Song et al., 2021; Zhang et al., 2020). The cumula-
tive contribution of the first two principal components in all three
cases was greater than 95%, representing most of the information in
the original spectrum, and explaining most of the information in the
original data (Fig. 2A–C). The first two principal components sepa-
rated the meat between the two yak groups; the feedlot yaks were
mainly on the positive side of PC2, while the grazing yaks were mainly
on the negative side of PC2. Consequently, it was possible to distin-
guish between yak groups based on spectral curve reflectance values.

The loading diagram and the scoring diagram can complement
each other's descriptions. Loads of PC1 and PC2 are presented in Fig-
ure 2D. Absorption peaks were observed at 430 and 500 nm associated
with carotenoids. Since carotenoids are fat‐soluble, the wavelengths at
which C–H bonds absorb infrared energy may also be relevant to their
absorption (Barragán et al., 2021). Animals cannot synthesize carote-
noids, so these pigments may play an essential role in differentiating
groups of animals due to dietary intake (Barragán et al., 2021). In
addition, there was a substantial difference in CIELAB color space
(Fig. 1). Negative loads were observed at 1190 and 1940 nm, which
were associated with water, where the 1190 nm absorption peak indi-
cated the secondary multiplicative absorption of C–H (Yan et al.,
2005). The effect of water in freeze‐dried samples should be minor
but is also associated with the first and second overtones of protein
changes, and the C–H and N–H stretch in the combinatorial bands
(Barbin et al., 2015). This was observed at 1694 nm associated with
fatty acid C–H bond, and at 1520, 2060, and 2180 nm associated with
proteins (Yan et al., 2005). The absorption peaks at 2060 and 2180 nm
indicated the absorption bands of protein amides, and the peak at
2060 nm was due to the N–H stretching vibration (Yan et al., 2005).
As these proteins vary due to differences in dietary intake, the different
strengths of these bands most likely are responsible for the differences
determined by the Vis‐NIRS technique in this study.
Chemometrics analysis

To distinguish the meat between the two yak groups, a Vis‐NIR
spectroscopy model was generated by comparing different wave-
lengths of NIR spectra and combining two pattern recognition meth-
ods, PLS‐DA and SIMCA, to measure the suitability of the samples
and the identification model based on the correct discrimination rate.
In optical nondestructive testing, some noise is inevitable in the
acquired spectral information due to interference from internal and
external factors by the optical detection system. Appropriate spectral
preprocessing can eliminate interference from baseline drift, noise,
light scattering, and sample inhomogeneities, while optimizing spec-
tral information and improving the accuracy and robustness of the
model. The derivative process improves the resolution of the spectra
and reduces the interference of baseline drift and background noise.
The data set was divided into two parts: 24 samples were used as a
training set to construct the prediction models, and the best prepro-
cessing method was selected according to the three indices of the cal-
ibration model, i.e., coefficient of determination (R2), root mean
square error of correction (RMSEC), and root mean square error of
cross‐validation (RMSECV). The larger the R2 and the smaller the
RMSEC and RMSEP indicated greater the accuracy of the model. The
best preprocessing method was the SNV, first‐order derivative (five
points) + SNV, and second‐order derivative (five points) + SNV in
the 400–780 nm spectrum, 780–2500 nm spectrum, and
400–2500 nm spectrum, respectively (Table 5). Then, the remaining
12 samples were used to assess the accuracy of the prediction models.
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Figure 2. Score values (A, B, C) obtained from PCA of the spectra in wavelength ranges: 400–780 nm, 780–2500 nm, and 400–2500 nm, and loadings (D)
obtained from PCA of the spectra in wavelength ranges: 400–2500 nm.

Table 5
The parameters of partial least squares discriminant analysis (PLS-DA) calibration models using different preprocessing methods

Range Preprocessing R2 RMSEC RMSECV

400–780 nm Original 0.870 0.361 0.521
Standard normalized variate (SNV) 0.967 0.182 0.347
First-order derivative (5 points) + SNV 0.829 0.414 0.590
Second-order derivative (5 points) + SNV 0.795 0.452 0.724

780–2500 nm Original 0.844 0.395 0.738
Standard normalized variate (SNV) 0.705 0.544 0.724
First-order derivative (5 points) + SNV 0.975 0.159 0.478
Second-order derivative (5 points) + SNV 0.958 0.206 0.429

400–2500 nm Original 0.861 0.373 0.548
Standard normalized variate (SNV) 0.893 0.327 0.465
First-order derivative (5 points) + SNV 0.904 0.310 0.480
Second-order derivative (5 points) + SNV 0.989 0.103 0.449
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The establishment of the discriminant model is presented in Fig-
ure 3 and Figures s2. The provided image features six confusion matri-
ces labeled A through F, which display the results of a discriminant
analysis‐partial least squares‐discriminant analysis (PLS‐DA)‐applied
to near‐infrared spectroscopy data for classifying the meat samples
as either from grazing or feedlot yaks. Matrices A to C depict classifi-
cations using raw spectral data across the wavelength ranges of
400–780 nm, 780–2500 nm, and 400–2500 nm, respectively. Matrices
6

D to F mirror this setup but with preprocessed spectral data. Remark-
ably, all matrices show perfect classification with zero misclassifica-
tions, as the off‐diagonal quadrants—which would indicate false
negatives and false positives—are all zero. This suggests that the
PLS‐DA model is exceptionally accurate across all examined spectral
ranges, with either raw or preprocessed data.

The discrimination rate of the preprocessed spectral data by the
SIMCA model was distinctly higher than that of the original spectral



Figure 3. The plots (A-C) display the reclassification of the test samples in total by using the constructed PLS-DA model, and validate the discriminant ability of
the model in the 400–780 nm, 780–2500 nm, and 400–250 nm wavelength ranges; The plots (D-F) display the reclassification of the test samples in total by using
the constructed SIMCA model, and validate the discriminant ability of the model in the 400–780 nm, 780–2500, nm and 400–250 nm wavelength ranges.
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data because SIMCA is a supervised pattern recognition method based
on PCA. The core idea was to describe the training set by building a
separate PCA model for each sample classification. On this basis, the
classification of the unknown sample can be predicted by fitting the
principal component model of each classification in turn. Preprocess-
ing the spectral data improved the accuracy of the PCA submodel of
each classification in the training set. The confusion matrices labeled
H to M represent the classification of meat samples using the SIMCA
model across various NIR spectral ranges, revealing the discriminant
capabilities of the model. The matrices corresponding to the raw spec-
tral data (H, I, and J) demonstrated that the model achieved very
strong classification in the 780–2500 nm range (I), but was weaker
in the narrower 400–780 nm range (H) and the full 400–2500 nm
range (J). Interestingly, the preprocessed spectral data (K, L, and M)
exhibited a notable improvement in classification accuracy. In partic-
ular, matrix M, which included the full spectral range, achieved flaw-
less classification with no misclassifications, suggesting that
preprocessing techniques such as normalization or baseline correction
may enhance the SIMCA model's predictive accuracy considerably by
reducing spectral noise and highlighting distinguishing features. Com-
paring the two supervised modeling methods, PLS‐DA and SIMCA, it
was clear that the discrimination rate of PLS‐DA was slightly better,
which was in agreement with a previous study (Firmani et al., 2019).

In the PLS‐DA matrices (A‐C), the classification was impeccable for
the broader wavelength ranges (780–2500 nm and 400–2500 nm)
with no observed misclassifications, suggesting a robust model perfor-
mance. However, some misclassifications were noted in the narrower
range (400–780 nm). In contrast, the SIMCA matrices (D‐F) revealed
misclassifications across all wavelength ranges, indicating a compara-
tive reduction in accuracy. This analysis emphasizes the superior dis-
criminant power of the PLS‐DA model, particularly in the combined
wavelength range of 400–2500 nm, and highlights potential areas
for improvement in the SIMCA model. Accurate classification models
like PLS‐DA are vital for the meat industry, ensuring product traceabil-
7

ity and meeting consumer expectations for authenticity and quality.
The 400–780 nm band had a relatively low discrimination rate in both
models, probably due to the low information on the contained compo-
nents, mainly carotenoids, which can also be seen in Figure 3. How-
ever, Serrano et al. (2007) suggested that carotenoid pigments are
suitable biomarkers for grazing herbivores, which is slightly inconsis-
tent with the results of this study. The carotenoid content in adipose
tissue may be higher than that in muscle tissue, or it may differ among
animal species. Further studies are warranted on yak fat.

The current study revealed a strong accuracy of meat classification
across different wavelengths and data treatments of NIR spectroscopy
combined with chemometric techniques. Such reliable differentiation
is vital for quality control and authentication in the meat industry,
ensuring product integrity and consumer trust. The feasibility of using
NIR spectroscopy to differentiate meat from yaks raised under differ-
ent feeding systems was demonstrated, but some problems still need
to be solved. For example, both breed and interannual variation can
affect the content or structure of the chemical components of yak
meat. The VIS‐NIR of meat from different parts of yaks should be
tested. However, this study examined a feasible and highly accurate
method for distinguishing meat between grazing and feedlot yaks.
Consequently, VIS‐NIR can be an effective tool which not only helps
to determine the authenticity of labels but also ensures the food safety
and integrity of yak meat. Additionally, this method can provide useful
insights to food technology professionals and students specializing in
food safety, laying a foundation for understanding traceability in meat
products in subsequent studies.
Conclusion

This study determined the differences in meat quality between
grazing and feedlot yaks and utilized visible and near‐infrared (Vis‐
NIR) spectroscopy fingerprinting and chemometrics to distinguish
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the meat between the two groups of yaks. In meat, protein content was
greater and fat content was lesser in grazing than in feedlot yaks. The
combination of Vis‐NIR with partial least squares discriminant analysis
(PLS‐DA) or soft independent modeling of class analogies (SIMCA)
classification effectively differentiated meat between grazing and feed-
lot yaks. The consistent accuracy across different wavelengths and data
processing highlighted the robustness of the model, with the discrim-
ination rate in the 400–2500 nm range surpassing that of the
400–780 nm and 780–2500 nm ranges. The selection of spectral pre-
processing methods can enhance resolution, particularly with SIMCA
classification. An accurate PLS‐DA classification model is crucial for
the meat industry, as it enables product traceability and provides con-
sumers with authenticity and quality measures.
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