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g Université de Caen Normandie, UNICAEN, Caen, France   

A R T I C L E  I N F O   

Keywords: 
Automated species identification 
Bird communities 
BirdNET 
Confidence threshold 
Passive Acoustic Monitoring 
Precision and recall 
Soundscape 

A B S T R A C T     

1. Passive acoustic monitoring has become increasingly popular as a practical and cost-effective way 
of obtaining highly reliable acoustic data in ecological research projects. Increased ease of col
lecting these data means that, currently, the main bottleneck in ecoacoustic monitoring projects is 
often the time required for the manual analysis of passively collected recordings. In this study we 
evaluate the potential and current limitations of BirdNET-Analyzer v2.4, the most advanced and 
generic deep learning algorithm for bird recognition to date, as a tool to assess bird community 
composition through the automated analysis of large-scale ecoacoustic data.  

2. To this end, we study 3 acoustic datasets comprising a total of 629 environmental soundscapes 
collected in 194 different sites spread across a 19◦ latitude span in Europe. We analyze these 
soundscapes using both BirdNET and manual listening by local expert birders, and we then 
compare the results obtained through the two methods to evaluate the performance of the algo
rithm both at the level of each single vocalization and for entire recording sequences (1, 5 or 10 
min).  

3. Since BirdNET provides a confidence score for each identification, minimum confidence thresholds 
can be used to filter out identifications with low scores, thus retaining only the most reliable ones. 
The volume of ecoacoustic data used in this study did not allow us to estimate species-specific 
minimum confidence thresholds for most taxa, so we instead used and evaluated global confi
dence thresholds selected for optimized results when consistently applied across all species. 

4. Our analyses reveal that BirdNET identifications can be highly reliable if a sufficiently high min
imum confidence threshold is used. However, the inevitable trade-off between precision and recall 
does not allow to obtain satisfactory results for both metrics at the same time. We found that F1- 
scores remain moderate (<0.5) for all datasets and confidence thresholds studied, and that 
acoustic datasets of extended duration seem to be currently necessary for BirdNET to provide a 
reliable and minimally comprehensive picture of the target bird community. We estimate, how
ever, that the usage of species- and context-specific minimum confidence thresholds would allow to 
substantially improve the global performance benchmarks obtained in this study. 
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5. We conclude that a judicious use of AI-based identifications provided by BirdNET can represent a 
powerful method to assist in the assessment of bird community composition through the automated 
analysis of ecoacoustic data, especially when applied to acoustic datasets of extended duration.   

1. Introduction 

In recent years, passive acoustic monitoring (PAM) based on 
autonomous recording units (ARUs) has become an increasingly popular 
option for monitoring avian populations and communities (Shonfield & 
Bayne, 2017). Compared to active acoustic monitoring (AAM) methods 
such as point counts or active searches, ARUs could provide a more cost- 
effective way of obtaining data (Melo et al., 2021; Darras et al., 2018) 
and a higher degree of standardization in the data collection process 
(Darras et al., 2019). Moreover, ARUs offer the possibility of listening to 
distant, noisy or dubious animal sounds multiple times, potentially 
facilitating their identification (Sugai et al., 2019). At the same time, 
ARUs make it possible to collect substantial amounts of ecoacoustic data 
in a non-invasive way for local wildlife. 

ARUs can be especially useful for biodiversity monitoring projects in 
hard-to-reach areas, where difficult access conditions might hinder 
frequent data collection through AAM methods, and might improve the 
detectability of species whose vocal activity patterns do not coincide 
with the dates and times at which active monitoring is usually conducted 
(Sebastián-González et al., 2018). This greater facility to collect ecoa
coustic data at regular time intervals in a standardized way makes it 
possible to study the variations in vocal activity patterns of one or more 
species along a given time gradient (e.g., time of day, week of the year) 
(Gasc et al., 2013; Towsey et al., 2014). Additionally, the analysis of 
soundscape variation across time and space allows researchers to study 
potential correlations between the presence of anthropogenic sounds 
and the acoustic activity of sound-producing animals (Blumstein et al., 
2011). This means that PAM could serve as a reliable way to obtain 
complementary information to cover the gaps left by traditional moni
toring methods (Bradfer-Lawrence et al., 2023). Indeed, recent studies 
suggest that the combined use of PAM and AAM may provide a more 
accurate picture of the presence and abundance of target species than 
the use of only one of the two methods (Bobay et al., 2018; Shaw et al., 
2021). 

The increased ease of obtaining large amounts of ecoacoustic data 
–easily within the range of hundreds to tens of thousands of hours for 
multi-site projects (Dufourq et al., 2021)– through PAM means that, 
currently, the main bottleneck in ecoacoustic monitoring is often the 
time required for the analysis of passively collected data (Symes et al., 
2022). Manual analysis of recordings by experts requires time-intensive 
dedication and therefore severely limits the amount of data that can be 
processed. Thus, the automated analysis of recordings could represent a 
potential solution to the current disparity between the efforts required to 
obtain data through PAM and the efforts necessary to manually analyze 
these data. In recent years, deep learning techniques have allowed for 
significant advances in the development of different tools for the auto
mated recognition of biological sounds (Stowell, 2021). However, this 
field is still in a developing phase, and the use of these algorithms often 
results in significant numbers of false positives or false negatives, thus 
requiring subsequent manual validation (Knight et al., 2017) or the use 
of sophisticated population models to filter out false positives (Clare 
et al., 2021). Hence, the development of ecoacoustic data processing 
algorithms that can reliably identify the species recorded without 
manual supervision could allow for a substantial transformation of the 
methods through which biodiversity monitoring projects are conducted 
(Liu et al., 2022). 

In this study we evaluate BirdNET-Analyzer v2.4, a deep neural 
network algorithm developed by the Cornell Lab of Ornithology which is 
capable of identifying > 6000 bird, mammal and amphibian species 
worldwide based on their sounds (Kahl et al., 2021). BirdNET, in 

addition to detecting and identifying animal sounds present in a given 
recording, assigns a confidence score between 0 and 1 to each identifi
cation, thus providing information about the reliability of its results. If 
considered sufficiently reliable, BirdNET could partially or even fully 
automate the analysis of ample amounts of ecoacoustic data that can 
already be efficiently obtained with ARUs (Stowell, 2021; Borowiec 
et al., 2022). Moreover, the recently released BirdNET App (Wood et al., 
2022) might further contribute to the collection of ornithological data 
by helping non-experts identify bird vocalizations heard on the field. 

Several recent studies have tested the potential and limitations of 
BirdNET as a tool to assess bird community composition through the 
automated analysis of environmental soundscapes (Kahl et al., 2021; 
Arif et al., 2020; Brüggemann et al., 2021; Tolkova et al., 2021; Sethi 
et al., 2021; Toenies & Rich, 2021; Cole et al., 2022; Höchst et al., 2022; 
Malamut, 2022; Wood et al., 2021). However, as highlighted in a recent 
review of these previous studies (Pérez-Granados, 2023), multiple ana
lyses of potential relevance are still lacking. More concretely, the impact 
of (i) the number of species vocalizing simultaneously, (ii) the recording 
environment (i.e., the soundscape or acoustic habitat type), (iii) the type 
of recorder employed, (iv) the volume of species-specific acoustic data 
available online, and (v) the input values for the overlap and detection 
sensitivity parameters of the algorithm on BirdNET performance re
mains to be evaluated. Moreover, the review suggests that BirdNET 
performance should be studied not only at the entire recording level but 
also at the level of each single vocalization. Last but not least, BirdNET 
detection capacity (i.e., recall rate) across a large range of European 
soundscapes has yet to be investigated. 

To help fill this knowledge gap we analyze, both automatically with 
BirdNET and manually by expert birders, 629 environmental sound
scapes collected in 194 different sites spread across a 19◦ latitude 
gradient in Europe (Fig. 1) and amounting to a total of 3137 min of 
recording (Table 1). We then compare the identifications obtained with 
BirdNET against those made by experts in order to assess the perfor
mance of the algorithm in terms of precision and recall (see subsection 
2.4.1). Subsequently, we examine how to deal with the existing trade-off 
between these two metrics and how different features of the acoustic 
dataset analyzed might influence BirdNET performance. The focus of 
this study being on the use of BirdNET for the broad characterization of 
bird communities, our recommendations do not apply to other wide
spread applications (e.g., occupancy modeling (Cole et al., 2022), bio
acoustic tracking (Verreycken et al., 2021)) of the algorithm. We also 
suggest caution in the extrapolation of our results to regions with 
different bird community compositions or geophonic or anthrophonic 
profiles. 

2. Methods 

2.1. Study area and soundscape collection 

The environmental soundscapes analyzed in this study originated 
from three independent acoustic datasets (Table 1, Appendix S1). Our 
first dataset, hereafter referred to as ZA-Pygar, consists of a total of 237 
1-minute recordings collected from 2019 to 2022 in 79 different sam
pling sites in the French region of Occitanie (Barbaro et al., 2022). More 
precisely, the region sampled is part of the Zone Atelier Pyrénées Gar
onne (Ouin et al., 2021), considered a long-term socio-ecological 
research site by French research institute CNRS since 2017. Out of the 79 
sampling sites from which recordings were obtained, 60 are found in the 
Aurignac canton, 16 are found either in alpine meadows or at the edge 
between alpine meadows and subalpine forests at altitudes between 
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1400 and 2100 m in the Ariège department, and the remaining 3 are 
found in lowland agricultural areas in South-West Occitanie (Fig. 1a). 

Our second dataset, hereafter referred to as Rambouillet, consists of a 
total of 204 5-minute recordings collected during the COVID-19 lock
down of 2020 in 68 different sampling sites in the public forest of 

Rambouillet (Fig. 1b). This lowland sub-Atlantic broadleaf forest, 
covering 220 km2, is located in South-West ̂Ile-de-France (France), about 
70 km from Paris (Barbaro et al., 2023). Finally, our third dataset, 
hereafter referred to as TreeBodyguards, was inherited from a pan- 
European citizen science project and consists of a total of 188 10-minute 

Fig. 1. Maps showing (a) the 79 sampling stations in the ZA-Pygar dataset, (b) the 68 sampling stations in the Rambouillet dataset, and (c) the 47 sampling stations 
in the TreeBodyguards dataset. The predominant habitat in each station is only specified for the ZA-Pygar dataset. 
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recordings collected in 47 different sampling sites from 17 European 
countries ranging from Spain to North-West Russia (Fig. 1c) (Schillé 
et al., 2024). 

2.2. Manual bird identification by experts 

Expert birders identified bird vocalizations in the three datasets. In 
the ZA-Pygar dataset, all bird sounds found within the first minute of 
each of the 237 recordings were manually identified and annotated by a 
single trained birder (DF) by drawing time–frequency bounding boxes 
around every single vocalization on recording spectrograms (Appendix 
S2, Fig. S1). In the two other datasets, a list of species present in each 
recording was generated after the listening, the specific vocalization 
times of each species remaining unknown. In the Rambouillet dataset, 
each 5-minute recording selected was manually listened to once, all 
species detected being listed regardless of their total vocalization time 
by a single trained birder (LB). As for the TreeBodyguards dataset, given 
its wide geographical range, we distributed the recordings among 21 
expert birders (see Acknowledgements), each of them manually 
listening to and identifying bird sounds from between 4 (one site) to 52 
recordings (13 sites). 

2.3. BirdNET-assisted analysis of recordings 

The BirdNET version chosen for this study is BirdNET-Analyzer v2.4, 
the most recent release of the algorithm at the time of publication. 
BirdNET takes a sound file as input, which it splits into 3-second seg
ments before providing a list of species detected in each segment along 
with a confidence score assigned to each identification, with values 
ranging from 0 to 1. By default there is no overlap between consecutive 
prediction segments, i.e., each segment begins where the previous 

segment ends, but BirdNET offers the possibility of allowing a certain 
degree of overlap (Fig. S2). Another configurable parameter is the 
detection sensitivity, with potential input values ranging from 0.5 to 1.5. 
Higher values of this parameter result in a lower threshold for the 
detection of bird vocalizations in the input recording, thus translating 
into a greater expected number of bird identifications by BirdNET. In 
this study we initially performed the same analyses with allowed over
laps of 0 s, 1 s and 2 s between consecutive segments and with detection 
sensitivity values of 0.5, 1 and 1.5. Despite the increase in BirdNET 
processing time associated with the use of higher overlaps, the superior 
performances (as measured by Area Under the Curve scores for both 
Receiver Operating Characteristic and Precision-Recall curves) obtained 
with an overlap of 2 s and a detection sensitivity of 1.5 on the ZA-Pygar 
dataset made us select them as the input values to evaluate BirdNET with 
in all datasets (Table 2, section 3.1). Finally, we configured BirdNET to 
filter its list of potentially detectable species based on the approximate 
date (in the form of week of the year) and geographic coordinates of 
each recording (Appendix S3). 

2.4. Comparing BirdNET and expert identifications 

We compared the results obtained with BirdNET against the identi
fications made by the expert birders in order to evaluate the perfor
mance of the algorithm. BirdNET results corresponding to the ZA-Pygar 
dataset could be analyzed at a higher level of detail (at the vocalization 
level) than those obtained for the other two datasets, since its temporally 
annotated identifications make it possible to confront human and 
BirdNET identifications on each 3 s segment of recording analyzed. For 
our evaluation we defined 4 possible categories –True Positives (TP), 
False Positives (FP), True Negatives (TN) and False Negatives (FN)– for 
each species and acoustic sample, the categorization criteria being 
slightly variable between the three acoustic datasets analyzed (see 
detailed explanation in Table S1). 

Based on the categorization described, we calculated the precision, 
recall and False Positive Rate (FPR) of the algorithm for each minimum 
confidence threshold studied, going from 0.10 to 0.99 with a step of 0.01 
(e.g., a minimum confidence threshold of 0.5 implies that all BirdNET 
identifications with confidence levels lower than 0.5 were filtered out). 
Each of these thresholds was applied consistently across all species 
present in the dataset or identified by BirdNET, rather than using vari
able thresholds on a species-by-species basis. 

Precision is a measure of the reliability of BirdNET identifications, i. 
e., it estimates the probability that a given BirdNET identification will be 
correct, and is calculated by dividing the number of species correctly 
detected by the total number of species detected by the algorithm in the 
acoustic sample analyzed. Recall estimates the probability that a species 
present in the acoustic sample will be correctly detected by BirdNET, 
and is calculated by dividing the number of species correctly detected by 
the total number of species actually present in the acoustic sample 
analyzed. Finally, FPR estimates the probability that a species absent 
from the acoustic sample will be detected by BirdNET, and is calculated 
by dividing the number of species mistakenly detected by the total 
number of species absent from the acoustic sample analyzed (only 
considering those featuring in the species lists generated following the 
procedure explained in Appendix S3). The specific formulas used are the 
following:  

• Precision = TP/(TP + FP)  
• Recall = TP/(TP + FN)  
• FPR = FP/(FP + TN) 

Different conclusions can be drawn from these metrics at different 
levels of analysis. In the ZA-Pygar dataset, measuring these metrics at 
the vocalization level provides us with a fine-grained picture of BirdNET 
performance. However, since the total vocalization time of any given 
species varies significantly across different recordings, evaluating 

Table 1 
Global description of the three datasets studied along with multiple indicators of 
BirdNET performance for each dataset.  

Dataset Name ZA-Pygar Rambouillet TreeBodyguards 

Number of sites 79 68 47 
Number of 

recordings 
237 204 188 

Recording duration 
(min) 

1 5 10 

Total duration (min) 237 1020 1880 
Unit of identification Bird 

vocalization 
Bird presence in 
the recording 

Bird presence in the 
recording 

Number of species 74 44 86 
Number of 

identifications 
41011 2004 1630 

BirdNET results at the vocalization level 
Maximal F1-score 0.339 − −

Optimal confidence 
threshold2 

0.4 − −

Precision with 
optimal conf. 
threshold 

0.584 − −

Recall with optimal 
conf. threshold 

0.238 − −

PR AUC 0.432 − −

ROC AUC 0.054 − −

BirdNET results at the recording level 
Maximal F1-score 0.401 0.477 0.521 
Optimal confidence 

threshold2 
0.3 0.3 0.45 

Precision with 
optimal conf. 
threshold 

0.59 0.684 0.592 

Recall with optimal 
conf. threshold 

0.30 0.312 0.506 

PR AUC 0.416 0.37 0.451 
ROC AUC 0.157 0.185 0.153  

1 3340 songs, 754 calls and 7 drummings. 
2 Confidence threshold with the highest F1-score. 
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BirdNET based on the correctness of each individual identification could 
result in a small number of recordings with long vocalization times 
having a disproportionate weight over a greater number of recordings 
with shorter vocalization times. Thus, calculating precision and recall at 
the recording level can be an appropriate way of homogenizing the 
weight of each recording in the final results. Finally, calculating preci
sion and recall at the level of the whole acoustic dataset can inform us 
about the reliability and exhaustiveness of BirdNET results when using 
them to provide us with a broad picture of the composition of a bird 
community recorded over multiple hours or days. 

We therefore calculated precision, recall and FPR at all three 
different levels of analysis: (i) at the vocalization level (only for the ZA- 
Pygar dataset), (ii) at the recording level and (iii) at the dataset level. 
The metrics calculated at the first level will be referred to as voc_pre
cision, voc_recall and voc_FPR, the metrics calculated at the second level 
will be referred to as rec_precision, rec_recall and rec_FPR and the 
metrics calculated at the third level will be referred to as ds_precision, 
ds_recall and ds_FPR (Table 3). It is important to note that, since our 
categorization criteria imply that one correct identification can override 
any number of incorrect identifications of the same species within the 
same acoustic sample, the values obtained for these metrics will be 
highly influenced by the level of analysis chosen. Longer acoustic sam
ples provide more opportunities for BirdNET to detect a given species, 
either correctly or incorrectly, but the asymmetric weight given to 
correct identifications over incorrect ones implies that the number of 
TPs will scale more rapidly with time than the number of FPs. This re
sults in a bias towards more positive results when longer acoustic sam
ples are used. 

Once calculated, we used these values to plot the Receiver Operating 
Characteristic (ROC) and Precision-Recall (PR) curves, both with an 
estimation of the Area Under the Curve (AUC) (Davis & Goadrich, 
2006). The ROC curve consists in plotting recall against FPR for each 
minimum confidence threshold studied in order to show the trade-off 
between the two metrics: as the minimum confidence score required 
to accept BirdNET identifications increases, the number of FPs will 
decrease, but so will the number of TPs. The PR curve, on the other hand, 
plots precision against recall for each minimum confidence threshold 
used, showing the trade-off between these two metrics as well. The AUC 
is, in both cases, a measure of the predictive power of the algorithm with 
a range of possible values going from 0 to 1, higher values being 
indicative of a higher predictive power. 

Another metric that we used to evaluate the performance of the al
gorithm for each minimum confidence threshold studied is the F-score. 
The F-score measures the overall predictive power of the algorithm by 
considering both precision and recall scores, the weight assigned to each 
variable depending on the β coefficient: 

F − score =
(
β2 + 1

)
*precision*recall

(
β2*precision + recall

)

An F-score with β = 1 assigns the same importance to precision and 
recall, whereas an F-score with β > 1 weighs recall more heavily than 

precision, and vice versa for β < 1. We performed F-score analyses using 
three different β values: β = 1 as a standard value to facilitate the 
comparison of our results with those of other studies, β = 0.25 to reflect 
a clear prioritization of precision over recall and β = 0.1 to reflect an 
even more marked asymmetry between the importance assigned to these 
two metrics. We chose such asymmetrical coefficients because we esti
mate that ensuring high precision levels is paramount in most biodi
versity research projects, i.e., it is usually considered preferable not to 
detect present species rather than mistakenly detecting non-present ones 
(Tolkova et al., 2021). Moreover, some types of population models (e.g., 
occupancy models) can account for the imperfect detection of species in 
the target study sites (Brunk et al., 2023; Bielski et al., 2024), further 
underscoring the importance of false negatives with respect to false 
positives. 

2.5. Factors influencing BirdNET performance 

Using only the Za-Pygar dataset, we further analyzed how BirdNET 
performance might be influenced by factors related to the acoustic 
dataset analyzed (total duration recorded, habitat recorded, passive 
recorder used, preponderance of biophony over anthropophony and 
geophony as measured by NDSI (Bradfer-Lawrence et al., 2023; Kasten 
et al., 2012; see Appendix S6), and number of species vocalizing at the 
same time) as well as the number of recordings available online for each 
species as a proxy for the size of the training dataset used by BirdNET. 

To estimate the influence of the size of the dataset (i.e., total 
recording duration) analyzed on BirdNET performance, we calculated 
recall and FPR at the dataset level (ds_recall and ds_FPR) for 23 different 
subset sizes going from 10 to 230 recordings using a step increase of 10. 
For each subset size, we performed 200 random selections of recordings 
from the whole set of 237 recordings making up the ZA-Pygar dataset 
and then averaged out their results (i.e., we generated 200 random 
subsets of 10 recordings and then averaged out the ds_recall and ds_FPR 
corresponding to each of these subsets; likewise for all other subset sizes 
until 230). This number of random selections proved to be sufficient to 
perfectly replicate the ordinality of the ds_recall and ds_FPR averages by 
subset size across 2 iterations of the same analysis. 

As for the variability of the predictive power of BirdNET across 
species, we distinguished between two different types of causal factors: 
(i) factors related to the difficulty inherent in identifying certain vo
calizations, such as some acoustic patterns being easier to identify than 
others, or bird species with vocalizations highly similar to those of other 
species being harder to identify than species with more idiosyncratic 
sounds, and (ii) the size and quality of the acoustic data available for 
each species on the online platforms used as sources of data for the 
training of the algorithm. The first type of factor being considered out of 
scope for this study, we analyzed the influence of species-specific data 
availability on BirdNET performance. Despite not having direct access to 
the training datasets used by BirdNET, we know that the Xeno-canto 
platform (Xeno-canto, 2023) and the Macaulay Library of Natural 

Table 2 
Area Under the Curve (AUC) scores for both Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves depending on the detection sensitivity used and 
the levels of overlap allowed between consecutive prediction segments by BirdNET. The voc_, rec_ and ds_ prefixes correspond to precision, recall and FPR being 
calculated at the vocalization level, recording level and dataset level, respectively. Best results are shown in bold and worst in italics. Only results from the ZA-Pygar 
dataset are included.  

Overlap Detection sensitivity voc_PR AUC voc_ROC AUC rec_PR AUC rec_ROC AUC ds_PR AUC ds_ROC AUC 

0 s  0.5  0.312  0.011  0.177  0.049  0.255  0.084 
0 s  1.0  0.384  0.012  0.316  0.051  0.360  0.076 
0 s  1.5  0.382  0.023  0.420  0.136  0.449  0.130 
1 s  0.5  0.374  0.014  0.213  0.051  0.363  0.038 
1 s  1.0  0.408  0.018  0.336  0.060  0.409  0.062 
1 s  1.5  0.388  0.031  0.423  0.143  0.428  0.148 
2 s  0.5  0.363  0.036  0.246  0.058  0.354  0.057 
2 s  1.0  0.428  0.036  0.380  0.062  0.445  0.058 
2 s  1.5  0.432  0.054  0.416  0.157  0.446  0.152  
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Sounds (Macaulay, 2023) were used as sources of audio data for this 
purpose (Kahl et al., 2021). Even though recordings from other sources 
were included in the training of the algorithm and the sampling pro
cedures used to convert archival recordings to training data were not 
simply 1:1 (personal communication, January 31, 2024), we used the 
total number of foreground recordings available on both platforms for 
each species analyzed as a rough proxy for the species-specific avail
ability of recordings during the training phase of the algorithm. More 
specifically, we examined the correlation between the number of re
cordings available on these platforms and BirdNET precision, recall and 
F1-scores across species. This allowed us to roughly estimate the 
explanatory power of species-specific recording availability over the 
variability of BirdNET performance across species. Species detected 
fewer than 10 times were filtered out from the analysis, their sample 
sizes being too low for results to be minimally reliable. Finally, it is 
important to note that, unless explicitly specified, all figures and sta
tistical results correspond to the analysis of recordings with BirdNET- 
Analyzer v2.4, using a detection sensitivity of 1.5 and an overlap win
dow of 2 s between consecutive prediction segments. 

3. Results 

3.1. Optimizing BirdNET parameters 

Our evaluation of BirdNET performance under different input 
parameter configurations suggests that 1 s overlap windows improve 
AUC scores on both ROC and PR curves with respect to the default 0-sec
ond overlap, and that 2 s overlaps improve these scores even further 
(Table 2). This improvement seems to arise from the fact that high de
grees of overlap facilitate the capture of a substantial part of any given 
bird vocalization within a single prediction segment (Fig. S1). Since 
longer vocalization times within a given prediction segment are pre
dictive of higher voc_recall levels (Fig. S3; Spearman, rs = 0.956 and p <
0.001), an increase in overlap between consecutive prediction segments 
should correspondingly result in higher recall scores. Likewise, the 
predictive power of BirdNET as measured by the ROC and PR AUC scores 
seems to improve along with higher values of the detection sensitivity 
parameter (Table 2), suggesting that a detection sensitivity of 1.5 (from 
a range of possible values going from 0.5 to 1.5) might be the optimal 
value for overall performance in the specific context of this study. 

3.2. Assessing BirdNET performance 

We found the confidence scores provided by the algorithm to be 
positively correlated with the actual probability that the corresponding 
identification is correct (Figs S4 and S5; Kruskal-Wallis, H(1) = 5977.7 
and p < 0.001). This means that a minimum confidence threshold can be 
established so that identifications with low confidence scores are filtered 
out, thus retaining only the most reliable ones. In accordance with this 
premise, the ROC and PR curves (Fig. 2) reveal a clear trade-off between 
the precision and recall of the algorithm, as well as between recall and 
FPR: the higher the minimum confidence score required to accept 
BirdNET identifications, the higher the precision and the lower the FPR 
will be. Nonetheless, improvements in these two metrics have to be 
weighed against the lower recall associated with a higher level of 
selectiveness. Average precision scores by species improve considerably 
by setting higher minimum confidence thresholds (Fig. S6), recall scores 
by species following the opposite trend (Fig. S7). 

When analyzing BirdNET results at the recording level for the ZA- 
Pygar dataset, we found that the optimal minimum confidence thresh
olds for maximizing global F-scores for β-values of 1, 0.25 and 0.1 are 
0.3, 0.55 and 0.65, respectively (Fig. 3). The results obtained for each of 
these thresholds show that, as the minimum confidence score required 
to accept BirdNET identifications becomes stricter, both TPs and FPs 
decrease while FNs rise sharply (Fig. 4). This causes both the number of 
species correctly detected and the number of species mistakenly 

Table 3 
Description of the different metrics used to evaluate BirdNET performance.  

Evaluation 
Metric 

Acoustic 
sample 

Description Aggregation 
method 

voc_precision1 3-second audio 
segment 

Proportion of 
BirdNET 
identifications that 
are correct (match in 
time and species with 
an annotation by an 
expert). 

No aggregation: 
each BirdNET 
identification is 
either correct (TP) 
or incorrect (FP)  

voc_recall1 3-second audio 
segment 

Proportion of 
manually annotated 
bird vocalizations 
that have been 
correctly identified 
by BirdNET 

No aggregation: 
each bird 
vocalization has 
either been correctly 
identified (TP) or 
not (FN) 

voc_FPR1 3-second audio 
segment 

Number of species 
mistakenly detected 
by BirdNET as a 
fraction of all species 
actually absent from 
the prediction 
segment2 

No aggregation: 
each species absent 
from the 3-second 
audio segment has 
either been 
mistakenly detected 
(FP) or not detected 
(TN) by BirdNET 

rec_precision Entire 
recording3 

Proportion of species 
detected by BirdNET 
that are actually 
present in the 
recording 

Aggregation at the 
recording level: each 
species detected by 
BirdNET has either 
been correctly 
detected at least 
once (TP) or not (FP) 
in the recording 

rec_recall Entire 
recording3 

Proportion of species 
present in the 
recording that have 
been correctly 
detected by BirdNET 

Aggregation at the 
recording level: each 
species present in 
the recording has 
either been correctly 
identified at least 
once (TP) or missed 
(FN) by BirdNET 

rec_FPR Entire 
recording3 

Number of species 
mistakenly detected 
by BirdNET as a 
fraction of all species 
actually absent from 
the recording2 

Aggregation at the 
recording level: each 
species absent from 
the recording has 
either been 
mistakenly detected 
(FP) or not detected 
(TN) by BirdNET 

ds_precision Acoustic dataset 
(compilation of 
recordings) 

Proportion of species 
detected by BirdNET 
that are actually 
present in the 
acoustic dataset 

Aggregation at the 
dataset level: each 
species detected by 
BirdNET has either 
been correctly 
detected at least 
once (TP) or not (FP) 
in the dataset 

ds_recall Acoustic dataset Proportion of species 
present in the 
acoustic dataset that 
have been correctly 
detected by BirdNET 

Aggregation at the 
dataset level: each 
species present in 
the dataset has 
either been correctly 
identified at least 
once (TP) or missed 
(FN) by BirdNET 

ds_FPR Acoustic dataset Number of species 
mistakenly detected 
by BirdNET as a 
fraction of all species 
actually absent from 
the acoustic dataset2 

Aggregation at the 
dataset level: each 
species absent from 
the dataset has 
either been 
mistakenly detected 
(FP) or not detected 
(TN) by BirdNET  

1 Only calculated for the ZA-Pygar dataset. 
2 Only considering those featuring in the species lists generated following the 

procedure described in Appendix S3. 
3 Corresponding to 1 min in the ZA-Pygar dataset, 5 min in the Rambouillet 

dataset and 10 min in the TreeBodyguards dataset. 
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detected to vary considerably depending on the minimum confidence 
threshold used. While a minimum confidence threshold of 0.3 allows for 
a ds_recall of 0.65 (i.e., the correct detection of 65 % of the species 
present in the dataset), a threshold of 0.55 reduces this figure to 0.55 
and a threshold of 0.65 reduces it further to 0.5. On the other hand, 
ds_FPR (i.e., the proportion of species absent from the dataset that are 
mistakenly detected by the algorithm) varies even more strongly along 
with the confidence threshold used, with respective values of 0.41, 0.07 
and 0.03. In absolute terms, this translates into 48, 41 and 37 species 
correctly detected and 85, 15 and 6 species mistakenly detected, 
respectively. 

It is important to note that a non-negligible number of species have 
only been manually detected in fewer than 10 recordings per dataset 
(47, 15 and 53 species in the ZA-Pygar, Rambouillet and TreeBody
guards datasets, respectively) (Fig. S8). Hence, we deem our estimations 
of the predictive power of the algorithm for these species to be highly 
unreliable. Limiting the analysis to species detected –either by BirdNET 
or by the expert birder– in a minimum of 10 recordings, while filtering 
out less common species, results in a substantially higher overall per
formance of the algorithm. More specifically, when analyzing the ZA- 
Pygar dataset with a confidence threshold of 0.3, this filtering proced
ure improves rec_precision from 0.59 to 0.71 without compromising 
rec_recall, which actually remains stable at 0.32. The results obtained 
after applying this filter (Fig. 4d) also suggest that the variability in 

BirdNET predictive power across species is not as pronounced as what 
we might infer from the analysis of unfiltered results (Fig. 4a), since the 
low number of data points available for many species leads to more 
variable outcomes. 

Overall, our analyses yielded highly consistent results across the 
three datasets studied, with maximal F1-scores (corresponding to min
imum confidence thresholds between 0.3 and 0.45) ranging from 0.4 to 
0.52 at the recording level (Table 1). This roughly means that, in the best 
case, we can expect two errors (FP or FN) for each correct BirdNET 
prediction. BirdNET performance is lower (maximal F1-score of 0.33 for 
a minimum confidence threshold of 0.4) when results are analyzed at the 
vocalization level (i.e., 1 correct prediction for every 3 errors). 

3.3. Factors influencing BirdNET performance 

In order to properly isolate the variables of interest and ensure that 
the heterogeneous identification procedures and recording durations 
used in the three datasets do not have a confounding effect, only re
cordings from the ZA-Pygar dataset are included in the following 
analyses. 

Regarding the influence of sample size on BirdNET performance, 
there appears to be a positive linear correlation between ds_F1-scores 
and the logarithm of the number of recordings sampled (Fig. 5; linear 
regression, adjusted R2 = 0.539, p < 0.001). The same seems to be true 

Fig. 2. Receiver Operating Characteristic (left) and Precision-Recall (right) curves of BirdNET-Analyzer. The three plots correspond to results obtained at the 
recording level for the (A) ZA-Pygar, (B) Rambouillet and (C) TreeBodyguards datasets. 
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for ds_TPR (adjusted R2 = 0.376, p < 0.001) and ds_recall (adjusted R2 

= 0.095, p < 0.001) as well, in all cases after controlling for the mini
mum confidence threshold used. ds_FPR shows a pronounced decrease 
when higher confidence scores are required whereas ds_recall, while 
following the same trend, shows differences of more moderate pro
portions as a response to increased minimum confidence thresholds 
(Fig. 5). This suggests that a given global recall target can be reached 
either by setting a low enough minimum confidence threshold or by 
setting a high minimum confidence threshold and procuring a large 
enough acoustic dataset, the latter approach resulting in substantially 
lower ds_FPR values. 

The correlation tests performed between the number of different bird 
species vocalizing simultaneously and BirdNET performance metrics 

suggest that vocalization superposition has a significant influence on 
voc_precision (Fig. S9; Spearman, rs = 0.122 and p < 0.001) but not on 
voc_recall and voc_F1-scores (Spearman, rs = -0.051 and p = 0.285 for 
voc_recall, rs = 0.017 and p = 0.72 for voc_F1-score). In contrast, neither 
the recorder used nor the predominant habitat sampled seem to affect 
BirdNET performance (Fig. S10), since neither rec_precision, rec_recall 
nor rec_F1-scores show significant differences across different habitats 
(Kruskal-Wallis, H4 = 1.11 and p = 0.775 for rec_precision, H4 = 0.79 
and p = 0.852 for rec_recall and H4 = 1.24 and p = 0.744 for 
rec_F1_score) or recorders (Kruskal-Wallis, H3 = 4.08 and p = 0.130 for 
rec_precision, H3 = 8.92 and p = 0.116 for rec_recall and H3 = 2.04 and 
p = 0.36 for rec_F1_score). Finally, the number of foreground recordings 
available on Xeno-canto and the Macaulay Library for each species 
studied appears to have a significant influence on species-specific 
rec_precision, rec_recall and rec_F1-scores. More concretely, the loga
rithm of the number of recordings available seems to correlate positively 
with rec_precision and rec_F1-score but negatively with rec_recall 
(Fig. 6; Spearman, rs = 0.506 and p < 0.001 for rec_precision, rs = -0.484 
and p = 0.002 for rec_recall and rs = 0.599 and p < 0.001 for rec_F1- 
score). 

4. Discussion 

BirdNET appears as a promising tool to assist in the assessment of 
bird community composition through the automated processing of 
large-scale ecoacoustic data. Our analyses reveal that BirdNET can 
provide us with reasonably high levels of precision or recall, at least in 
the regions studied, but the inevitable trade-off between these two 
metrics prevents satisfactory results for both at the same time (maximal 
F1-score < 0.5). Despite BirdNET still having considerable room for 
improvement in both precision and recall scores, it is important to note 
that identifications by field observers are not exempt from errors either. 
Recent studies suggest that acoustic identifications by highly experi
enced birders present precision scores no higher than 0.94 and recall 
scores no higher than 0.89 (Farmer et al., 2012; Campbell & Francis, 
2011), implying that BirdNET identifications with exceptionally high 
confidence scores might prove to be as accurate or more as those made 
by reasonably experienced birders. 

Regarding precision scores in particular, our results are in line with 
previous studies (Sethi et al., 2021; Cole et al., 2022) showing that 
BirdNET identifications can be highly reliable, especially for common 
species (Fig. 6), provided that a sufficiently high minimum confidence 
threshold is used (Fig. S6). Indeed, confidence scores assigned to each 
identification by the algorithm are positively correlated with the actual 
probability (species-agnostic id_precision) that the identification in 
question is correct (Fig. S4). It is important to note, though, that the 
correspondence between confidence scores and precision is not of 1 to 1, 
i.e., a confidence score of 0.5 is not equivalent to a 50 % probability that 
the corresponding identification is correct. This correspondence can also 
vary across different species and recording settings, i.e., a given confi
dence score can translate into different levels of precision depending on 
the species identified and acoustic features such as the sampling rate of 
the recording (Wood & Kahl, 2024). Moreover, recent findings suggest 
that thresholds based on the use of contextual information in combi
nation with BirdNET confidence scores can yield higher precision results 
than thresholds based on BirdNET confidence scores alone. More spe
cifically, the precision of a given BirdNET identification might be less 
reliably correlated with its own confidence score than with the aggre
gate quality (average, median, minimum and maximum confidence 
scores) and quantity of BirdNET identifications obtained for the same 
species over a certain recording duration within the same site (Singer 
et al., 2024). 

Our results further suggest that BirdNET precision can be improved 
not only by raising the minimum confidence threshold used, but also by 
filtering out species not having reached a minimum number of BirdNET 
detections across the whole dataset (Fig. S6). We found, however, that 

Fig. 3. F-score curves of BirdNET-Analyzer for β values of 0.1, 0.25 and 1. The 
three plots correspond to results obtained at the recording level for the (A) ZA- 
Pygar, (B) Rambouillet and (C) TreeBodyguards datasets. 
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species such as garden warblers (Sylvia borin) and Western Bonelli’s 
Warblers (Phylloscopus bonelli) were identified by BirdNET on a high 
number of occasions, always incorrectly, and exceeded our minimum 
occurrence frequency threshold (Fig. 4d). Non-negligible numbers of 
FPs for other non-present species suggest caution around their identifi
cations as well. On the positive side, these misidentifications seem to be 
effectively filtered out by establishing a strict enough global minimum 
confidence threshold (Fig. 4c), and could probably be filtered out even 
more effectively with the usage of species-specific thresholds. It is 

important to note, though, that background sounds can vary consider
ably between different locations and times of the year, so the list of 
problematic species can turn out to be substantially different in other 
spatio-temporal contexts. We therefore recommend that, prior to its use, 
a preliminary assessment of BirdNET be conducted with soundscapes 
from the target study site. This would allow researchers to preemptively 
identify the species appearing most often as FPs and to pay special 
attention to identifications of these species when examining BirdNET 
results. Another possible method to reduce FPs, as suggested by a recent 

Fig. 4. Proportion of true positives, false positives and false negatives by bird species in BirdNET results with confidence scores (A) ≥ 0.3, (B) ≥ 0.55, (C) ≥ 0.65 and 
(D) ≥ 0.3, the latter only including species with ≥ 10 detections (either by BirdNET or by an expert). Results are calculated at the recording level and only recordings 
from the ZA-Pygar dataset are included. 
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study (Toenies & Rich, 2021), would be to filter out BirdNET identifi
cations of diurnal species when analyzing nocturnal recordings, thus 
effectively preventing most dog barks and frog croaks from being mis
classified as diurnal waterbird calls. 

Our results (Fig. 6, S6, S7), along with those of previous studies 
(Kelly et al., 2023; Wood et al., 2023; Singer et al., 2024), make it clear 
that BirdNET precision and recall results can be highly variable across 
species, even when controlling for the minimum confidence threshold 
used. We thus recommend that, when using BirdNET for species-specific 
occupancy modeling, researchers conduct preliminary tests to deter
mine the optimal minimum confidence threshold for the species of in
terest rather than relying on a threshold optimized for global 
performance when consistently used across a wide range of species. We 
estimate that this approach could allow BirdNET users targeting specific 
species to readily exceed the global performance benchmarks presented 
in this study. While we expect the use of species-specific minimum 
confidence thresholds to improve BirdNET performance when applied to 
the characterization of bird communities as well, the estimation of 
optimal thresholds for each species potentially present in a given study 
area represents a much greater challenge for this approach. It is also 
important to bear in mind that the optimal minimum confidence 
threshold to be used for any species will always be conditional on 
recording settings and on the importance that each user or research 
group assigns to minimizing FPs vs. minimizing FNs. 

Despite our study being based on > 600 recordings and > 4000 
manually annotated bird vocalizations (Table 1), the number of BirdNET 
identifications obtained for any given species is quite low, especially in 
the high confidence range. More precisely, no species has been identified 
by BirdNET in more than 29 recordings across all datasets (Table S2) or 
in more than 32 prediction segments in the ZA-Pygar dataset (Table S3) 
with a confidence score greater or equal than 0.9. This is partly due to 
the wide bird diversity covered by our acoustic datasets and the short 

duration of each recording analyzed, and partly because the vast ma
jority of BirdNET identifications obtained have low confidence scores 
(Figure S5). More specifically, only 1692 out of 1,047,794 BirdNET 
identifications obtained across the three datasets have a confidence 
score >= 0.9, corresponding to 0.16 % of all identifications. Hence, the 
limited per-species amount of high-confidence BirdNET identifications 
did not allow for the analysis of BirdNET performance based on species- 
specific minimum confidence thresholds. We therefore limited our an
alyses to the estimation of the best possible global threshold for opti
mized results at the community level. These values, while suboptimal for 
any given species, might provide researchers seeking to use BirdNET for 
the general characterization of bird community compositions (Hartig 
et al., 2023) with a basic picture of the performance that can be expected 
from the algorithm at different levels of precision exigency. 

Another question that arises from our results is the degree to which 
the cross-species variability in BirdNET performance is due to (i) cross- 
species differences in the amount or quality of recordings available to 
train the algorithm with, (ii) the inherent difficulty in identifying vo
calizations with certain acoustic patterns, or (iii) the identification dif
ficulty arising from two or more species emitting highly similar sounds. 
Assuming that the first obstacle is the most tractable among the three 
mentioned, the higher the percentage of cross-species variation in 
BirdNET performance that is explained by recording availability, the 
more optimistic we should be regarding the improvement of the per
formance of the algorithm over time. In this regard, our results sug
gesting that 19 % of the variance in F1-scores between species can be 
explained by online recording availability (Fig. 6) provide ground for 
optimism about the future reliability of BirdNET. More concretely, this 
could mean that the diagnostic capacity of BirdNET for less common 
species could be considerably improved by enlarging the pool of avail
able acoustic data for these species. 

We presume that a higher availability of acoustic data could facilitate 

Fig. 5. Dataset performance depending on the number of recordings included in the analysis. ds_recall (top-left), ds_FPR (top-right) and ds_F1 scores (bottom) are 
shown for virtual datasets of increasing size depending on the minimum confidence threshold required to validate BirdNET identifications. Only recordings from the 
ZA-Pygar dataset are included. 
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BirdNET performance through two different mechanisms: (i) by 
enabling BirdNET to enlarge the size of its training dataset, and (ii) by 
improving the quality of the recordings comprising its training dataset. 
Acoustic quality scores are included in the metadata of recordings on 
Xeno-canto and the Macaulay Library, and higher-quality recordings 
were prioritized in the selection of training data for the BirdNET algo
rithm (Kahl et al., 2021). Hence, we would expect the average acoustic 
quality to be higher in the training datasets of species with larger pools 
of available recordings to choose from. Insomuch as both higher-quality 
recordings and larger training datasets could facilitate a better adjust
ment of the algorithm to the target bird vocalizations, these factors 
could provide a plausible explanation to the positive correlation 
observed between species-specific acoustic data availability and Bird
NET predictive power. 

We further found a significant linear relationship between the log
arithm of the recording time analyzed and the proportion of recorded 
species having been correctly detected by BirdNET (Fig. 5). A possible 
explanation to this correlation would be that the short total vocalization 
time recorded for the least frequent species often results in no correct 
detections of these species by BirdNET. Thus, insofar as longer recording 
times contain a greater number of vocalizations per species in expecta
tion, we should expect larger acoustic datasets to provide more chances 
for the algorithm to correctly detect less frequent species. We therefore 
hypothesize that a sufficiently high number of recording hours analyzed 
could partially compensate for the low recall scores obtained when high 

minimum confidence thresholds are used. Hence, were the necessary 
conditions to be met, BirdNET might prove successful in capturing most 
bird species present in a study site while also ensuring a relatively low 
number of FPs. These results, in line with recent findings (Toenies & 
Rich, 2021; Cole et al., 2022; Wood et al., 2021), are encouraging with 
respect to the potential of BirdNET to reliably and comprehensively 
describe bird communities in research projects with large amounts of 
ecoacoustic data at their disposal. Similar results have been obtained in 
studies targeting specific species and having used highly conservative 
minimum confidence thresholds (Brunk et al., 2023; Bielski et al., 2024), 
providing further evidence that ecologically meaningful results can be 
obtained even with a very strong emphasis on precision over recall when 
analyzing acoustic datasets of sufficient duration. 

Our results also show that the predominance of biophony over 
anthropophony and geophony in recordings, as measured by NDSI 
(Kasten et al., 2012), appears to be positively correlated with recall 
scores (see Appendix S6, Fig. S11). We propose three possible hypoth
eses explaining this correlation: (i) anthropogenic and geological sounds 
might hinder the performance of the algorithm by concealing or blurring 
bird vocalizations, (ii) BirdNET might have mostly been trained with 
recordings with relatively low levels of background noise, thus being 
less well calibrated to identify bird vocalizations in noisy recordings, 
and (iii) high NDSI scores can be indicative of high-amplitude bird vo
calizations, which might to be easier to identify than low-amplitude bird 
vocalizations (Pérez Granados, 2023). If the second hypothesis were 

Fig. 6. Relationship between BirdNET performance and the number of foreground recordings available for each species on the Xeno-canto and Macaulay Library 
platforms. More specifically, the mean rec_precision (top-left), rec_recall (top-right) and rec_F1 (bottom) scores obtained for each species are plotted against the base- 
2 logarithm of the number of recordings available online for the species in question. Only species having been detected 10 or more times by BirdNET are included in 
the precision analysis, only species with at least 30 s of (manually annotated) total vocalization time are included in the recall analysis and only species meeting both 
criteria are included in the F1-score analysis. The minimum confidence threshold used is 0.1, and only recordings from the ZA-Pygar dataset are included. 
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correct, we consider it plausible that the application of a noise reduction 
filter to recordings prior to their analysis with BirdNET could result in an 
enhanced performance of the algorithm. 

Overall, the results of this study may provide valuable information 
for research groups considering the possibility of using BirdNET for the 
automated analysis of passively collected environmental soundscapes. 
However, these results provide an overview of the current potential of 
BirdNET in a very specific context, and therefore cannot be reliably 
extrapolated to other regions with different habitats, levels of anthro
pogenic pressure or bird community compositions. Care must also be 
taken when extrapolating our results to other areas with similar but 
geographically distant bird communities, as bird songs and calls can 
present subtle variations across different regions (Slabbekoorn & Smith, 
2002). Likewise, the analyses performed to evaluate the effect of dataset 
size on BirdNET performance have been conducted with subset sizes of 
very short durations (on the order of minutes or hours), so our findings 
might fail to generalize to acoustic datasets of larger scale. The same 
caveat applies to the optimal values for BirdNET configuration param
eters found in this study as well. Higher overlap values between 
consecutive prediction segments might improve BirdNET performance 
by facilitating the capture of a substantial part of any given bird 
vocalization within a single prediction segment (Fig. S1), but they in
crease processing times as well. In small datasets with few vocalizations 
of any given species, the improvement in detection capacity might 
largely compensate for the potential increase in processing time, but the 
compromise can look very different in large datasets, which provide 
more opportunities for BirdNET to detect any given species. In these 
cases, the increased processing time can become a substantial burden 
without providing much benefit in terms of recall. 

Another point that should be borne in mind is that this study starts 
from the fundamental assumption that all our expert identifications are 
correct, which is why we used them as the reference to compare BirdNET 
against. As already mentioned, even highly experienced birders seem to 
fall short of infallibility (Farmer et al., 2012; Campbell & Francis, 2011), 
so the possibility that some of the expert identifications included in this 
study are incorrect cannot be entirely ruled out. As a concluding note, in 
light of the improvement detected between the recall scores of BirdNET- 
Analyzer v2.4 and those of older versions of the algorithm –BirdNET-Lite 
and BirdNET-Analyzer v2.1 to 2.3– that we previously tested with the 
same data, we consider it plausible that future releases will be capable of 
identifying bird vocalizations even more reliably and exhaustively. This 
finding, coupled with the fact that the usage of species-specific mini
mum confidence thresholds could readily improve the performance 
benchmarks presented in this study, implies that our results should not 
be assumed to accurately estimate the best-case performance of Bird
NET, but they should rather be interpreted as a lower bound for its 
potential. 
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Mikusiński, G., 2021. Hybrid bioacoustic and ecoacoustic analyses provide new links 
between bird assemblages and habitat quality in a winter boreal forest. Environ. 
Sustain. Indicators 11, 100141. https://doi.org/10.1016/j.indic.2021.100141. 

Shonfield, J., Bayne, E., 2017. Autonomous recording units in avian ecological research: 
Current use and future applications. Avian Conservation Ecol. 12, 14. https://doi. 
org/10.5751/ACE-00974-120114. 

Singer, D., Hagge, J., Kamp, J., Hondong, H., Schuldt, A., 2024. Aggregated time-series 
features boost species-specific differentiation of true and false positives in passive 
acoustic monitoring of bird assemblages. Remote Sens. Ecol. Conserv. https://doi. 
org/10.1002/rse2.385. 

Slabbekoorn, H., Smith, T.B., 2002. Bird song, ecology and speciation. Philosophical 
Transactions of the Royal Society of London. Series b: Biological Sciences 357, 
493–503. https://doi.org/10.1098/rstb.2001.1056. 

Stowell, D., 2021. Computational bioacoustics with deep learning: a review and 
roadmap. https://doi.org/10.48550/arXiv.2112.06725. 

Sugai, L.S.M., Silva, T.S.F., Ribeiro Jr, J.W., Llusia, D., 2019. Terrestrial Passive Acoustic 
Monitoring: Review and Perspectives. Bioscience 69, 15–25. https://doi.org/ 
10.1093/biosci/biy147. 

Symes, L.B., Kittelberger, K.D., Stone, S.M., Holmes, R.T., Jones, J.S., Castaneda 
Ruvalcaba, I.P., Webster, M.S., Ayres, M.P., 2022. Analytical approaches for 
evaluating passive acoustic monitoring data: A case study of avian vocalizations. 
Ecol. Evol. 12, e8797. 

Toenies, M., Rich, L., 2021. Advancing bird survey efforts through novel recorder 
technology and automated species identification. California Fish Wildlife J. 107, 
56–70. https://doi.org/10.51492/cfwj.107.5. 

Tolkova, I., Chu, B., Hedman, M., Kahl, S., Klinck, H., 2021. Parsing Birdsong with Deep 
Audio Embeddings. https://doi.org/10.48550/arXiv.2108.09203. 

Towsey, M., Zhang, L., Cottman-Fields, M., Wimmer, J., Zhang, J., Roe, P., 2014. 
Visualization of Long-duration Acoustic Recordings of the Environment. Procedia 
Computer Science, 2014 International Conference on Computational Science 29, 
703–712. https://doi.org/10.1016/j.procs.2014.05.063. 

Verreycken, E., Simon, R., Quirk-Royal, B., Daems, W., Barber, J., Steckel, J., 2021. Bio- 
acoustic tracking and localization using heterogeneous, scalable microphone arrays. 
Commun. Biol. 4, 1–11. https://doi.org/10.1038/s42003-021-02746-2. 

Wood, C.M., Kahl, S., Chaon, P., Peery, M.Z., Klinck, H., 2021. Survey coverage, 
recording duration and community composition affect observed species richness in 
passive acoustic surveys. Methods Ecol. Evol. 12, 885–896. https://doi.org/ 
10.1111/2041-210X.13571. 

Wood, C.M., Kahl, S., Rahaman, A., Klinck, H., 2022. The machine learning–powered 
BirdNET App reduces barriers to global bird research by enabling citizen science 
participation. PLoS Biol. 20, e3001670. 

Wood, C.M., Kahl, S., Barnes, S., Van Horne, R., Brown, C., 2023. Passive acoustic 
surveys and the BirdNET algorithm reveal detailed spatiotemporal variation in the 
vocal activity of two anurans. Bioacoustics 32, 532–543. https://doi.org/10.1080/ 
09524622.2023.2211544. 

Wood, C.M., Kahl, S., 2024. Guidelines for appropriate use of BirdNET scores and other 
detector outputs. J. Ornithol. https://doi.org/10.1007/s10336-024-02144-5. 

Xeno-canto, 2023. Sharing Bird Sounds from Around the World. https://www.xeno- 
canto.org/about/xeno-canto. 

D. Funosas et al.                                                                                                                                                                                                                                

https://doi.org/10.1093/ornithapp/duac003
https://doi.org/10.1093/ornithapp/duac003
https://doi.org/10.1111/1365-2664.13229
http://refhub.elsevier.com/S1470-160X(24)00603-4/h0075
http://refhub.elsevier.com/S1470-160X(24)00603-4/h0075
http://refhub.elsevier.com/S1470-160X(24)00603-4/h0075
https://doi.org/10.1002/rse2.201
https://doi.org/10.1525/auk.2012.11129
https://doi.org/10.1525/auk.2012.11129
http://refhub.elsevier.com/S1470-160X(24)00603-4/h0095
http://refhub.elsevier.com/S1470-160X(24)00603-4/h0095
http://refhub.elsevier.com/S1470-160X(24)00603-4/h0095
https://doi.org/10.1016/j.tree.2023.09.017
https://doi.org/10.1016/j.tree.2023.09.017
https://doi.org/10.1016/j.ecoinf.2021.101236
https://doi.org/10.1016/j.ecoinf.2021.101236
https://doi.org/10.1016/j.ecoinf.2012.08.001
https://doi.org/10.1016/j.ecolind.2023.110851
https://doi.org/10.1016/j.ecolind.2023.110851
https://doi.org/10.5751/ACE-01114-120214
https://doi.org/10.3390/rs14153816
https://doi.org/10.3390/rs14153816
https://doi.org/10.1016/j.ecolind.2021.108305
https://doi.org/10.1016/bs.aecr.2021.05.001
https://doi.org/10.1016/bs.aecr.2021.05.001
https://doi.org/10.1111/ibi.13193
https://doi.org/10.5751/ACE-01224-130207
https://doi.org/10.1016/j.indic.2021.100141
https://doi.org/10.5751/ACE-00974-120114
https://doi.org/10.5751/ACE-00974-120114
https://doi.org/10.1002/rse2.385
https://doi.org/10.1002/rse2.385
https://doi.org/10.1098/rstb.2001.1056
https://doi.org/10.1093/biosci/biy147
https://doi.org/10.1093/biosci/biy147
http://refhub.elsevier.com/S1470-160X(24)00603-4/h0225
http://refhub.elsevier.com/S1470-160X(24)00603-4/h0225
http://refhub.elsevier.com/S1470-160X(24)00603-4/h0225
http://refhub.elsevier.com/S1470-160X(24)00603-4/h0225
https://doi.org/10.51492/cfwj.107.5
https://doi.org/10.1038/s42003-021-02746-2
https://doi.org/10.1111/2041-210X.13571
https://doi.org/10.1111/2041-210X.13571
http://refhub.elsevier.com/S1470-160X(24)00603-4/h0255
http://refhub.elsevier.com/S1470-160X(24)00603-4/h0255
http://refhub.elsevier.com/S1470-160X(24)00603-4/h0255
https://doi.org/10.1080/09524622.2023.2211544
https://doi.org/10.1080/09524622.2023.2211544
https://doi.org/10.1007/s10336-024-02144-5

	Assessing the potential of BirdNET to infer European bird communities from large-scale ecoacoustic data
	1 Introduction
	2 Methods
	2.1 Study area and soundscape collection
	2.2 Manual bird identification by experts
	2.3 BirdNET-assisted analysis of recordings
	2.4 Comparing BirdNET and expert identifications
	2.5 Factors influencing BirdNET performance

	3 Results
	3.1 Optimizing BirdNET parameters
	3.2 Assessing BirdNET performance
	3.3 Factors influencing BirdNET performance

	4 Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


