
HAL Id: hal-04638080
https://hal.inrae.fr/hal-04638080v1

Submitted on 8 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

YADE - An extensible framework for the interactive
simulation of multiscale, multiphase, and multiphysics

particulate systems
Vasileios Angelidakis, Katia Boschi, Karol Brzeziński, Robert A Caulk, Bruno
Chareyre, Carlos Andrés del Valle, Jérôme Duriez, Anton Gladky, Dingeman

L H van der Haven, Janek Kozicki, et al.

To cite this version:
Vasileios Angelidakis, Katia Boschi, Karol Brzeziński, Robert A Caulk, Bruno Chareyre, et al..
YADE - An extensible framework for the interactive simulation of multiscale, multiphase, and
multiphysics particulate systems. Computer Physics Communications, 2024, 304, pp.109293.
�10.1016/j.cpc.2024.109293�. �hal-04638080�

https://hal.inrae.fr/hal-04638080v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Computer Physics Communications 304 (2024) 109293

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

YADE - An extensible framework for the interactive simulation of

multiscale, multiphase, and multiphysics particulate systems ✩,✩✩

Vasileios Angelidakis a,b,∗, Katia Boschi c, Karol Brzeziński d, Robert A. Caulk e,
Bruno Chareyre e,∗, Carlos Andrés del Valle f , Jérôme Duriez g, Anton Gladky h,
Dingeman L.H. van der Haven i,j, Janek Kozicki k,l, Gerald Pekmezi m, Luc Scholtès n,
Klaus Thoeni o

a School of Natural and Built Environment, Queen’s University Belfast, BT9 5AG Belfast, United Kingdom
b School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, United Kingdom
c Department of Civil and Environmental Engineering, Politecnico di Milano, 20133 Milan, Italy
d Faculty of Civil Engineering, Warsaw University of Technology, 00 637 Warsaw, Poland
e Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, 38000 Grenoble, France
f Departamento de Física, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Edificio Uriel Gutiérrez, Bogotá D.C., Colombia
g INRAE, Aix Marseille Univ, RECOVER, Aix-en-Provence, France
h Independent researcher, 09618 Brand-Erbisdorf, Germany
i Department of Materials Science & Metallurgy, University of Cambridge, CB3 0FS Cambridge, United Kingdom
j Oral Drug Product Process Development, Novo Nordisk A/S, 2760 Måløv, Denmark
k Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 80-233 Gdańsk, Poland
l Advanced Materials Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland
m Department of Mechanical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
n Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, Clermont-Ferrand, France
o Centre for Geotechnical Science and Engineering, The University of Newcastle, 2308 Callaghan, Australia

A R T I C L E I N F O A B S T R A C T

Dataset link: https://

gitlab .com /yade -dev /trunk

Keywords:

Discrete element method (DEM)

Open-source software

Granular materials

Non-spherical particles

Coupled methods

Parallel computing

This contribution presents the key elements of YADE, an extensible open-source framework for dynamic
simulations. During the past 19 years, YADE has evolved from “Yet Another Dynamic Engine” to a versatile
multiscale and multiphysics solver, counting a large, active, and growing community of users and developers.
The computationally intense parts of the source code are written in C++, using flexible object models that allow
for easy implementation of new features. The source code is wrapped in Python, equipping the software with
an interactive kernel used for rapid and concise scene construction, simulation control, post-processing, and
debugging. The project, including documentation and examples, is hosted on https://yade -dem .org, while the
source code is freely available on GitLab. Over the last decade, YADE has expanded in terms of capabilities thanks
to the contribution of many developers from different fields of expertise, including soil and rock mechanics,
chemical engineering, physics, bulk material handling, and mineral processing. The rapid growth of YADE can be
attributed to (1) the careful and robust design of the framework core, (2) a continuous integration pipeline with
fully embedded thorough tests which are executed upon each merge request, ensuring stable compilation for
various operating systems, and (3) user-friendliness, facilitated by the Python interface, detailed documentation,
and rigorous user support. In this paper, we review the main features of YADE, highlighting its versatility in
terms of applications, its flexibility in terms of code development, as well as recent improvements in terms of
computational efficiency.

✩ The review of this paper was arranged by Prof. Andrew Hazel.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www .sciencedirect .
com /science /journal /00104655).

* Corresponding authors.
Available online 28 June 2024
0010-4655/© 2024 The Author(s). Published by Elsevier B.V. This is an open access

E-mail addresses: v.angelidakis@qub.ac.uk (V. Angelidakis), bruno.chareyre@3sr

https://doi.org/10.1016/j.cpc.2024.109293

Received 23 February 2024; Received in revised form 17 June 2024; Accepted 21 Ju
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

-grenoble.fr (B. Chareyre).

ne 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
https://gitlab.com/yade-dev/trunk
https://gitlab.com/yade-dev/trunk
https://yade-dem.org
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:v.angelidakis@qub.ac.uk
mailto:bruno.chareyre@3sr-grenoble.fr
https://doi.org/10.1016/j.cpc.2024.109293
https://doi.org/10.1016/j.cpc.2024.109293
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2024.109293&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computer Physics Communications 304 (2024) 109293V. Angelidakis, K. Boschi, K. Brzeziński et al.

Program summary

Program Title: YADE - Yet Another Dynamic Engine

CPC Library link to program files: https://doi .org /10 .17632 /n4f5fw97rd .1
Developer’s repository link: https://gitlab .com /yade -dev /trunk

Licensing provisions: GNU General Public License 2
Programming language: C++, Python

Nature of problem: Numerical simulation of many-particle systems requires accurate models for particle-to-

particle interactions, efficient contact detection between objects of various shapes, and robust time integration.
In addition, the flow of fluids, thermal effects, as well as other coupled problems in the presence of particles
are found in many fundamental and practical applications and they need dedicated computational tools. YADE

provides a computational framework to perform such simulations using the discrete element method and multiple
extensions of it.
Solution method: YADE simulates particulate systems using the Discrete Element Method (DEM) in a flexible
platform combining C++ and Python. It provides a large variety of shape and interaction models, an explicit
time-integration scheme, and many post-processing tools. YADE features dedicated solvers for both fluid and heat
fluxes at the pore scale, and it supports couplings with third-party software such as Escript (finite element
method) and OpenFOAM (computational fluid dynamics).
1. Introduction

Particulate systems, i.e., collections of interacting discrete elements,
are ubiquitous in both industry and nature. Understanding and being
able to predict the behavior of particulate systems is thus of paramount
importance to the chemical, pharmaceutical, and manufacturing indus-

tries as well as fundamental to every earth science concerned with
either engineering applications (geotechnics, mining, natural resources
management), risk assessments (landslides, earthquakes) or, more gen-

erally, geophysical processes. In this context, discontinuous numerical
methods have attracted more and more attention in recent years be-

cause of their intrinsic capability to describe the true nature of partic-

ulate systems as a collection of bodies and their responses to different
kinds of loading of either mechanical, hydraulic, or thermal origin.

Originating in the field of soil mechanics in the 1970s, the dis-

crete element method (DEM) simulates individual particles as discrete
entities with defined geometries, material properties, and interactions
[29]. By tracking the motion, forces, and contacts between these dis-

crete elements over time, the DEM provides a microscopic understand-

ing of macroscopic behaviors observed in particulate systems. As a
matter of fact, the DEM shares many principles with the Molecular
Dynamics (MD) method in which materials are studied at the most
fundamental level by simulating the interactions between individual
molecules or atoms [67]. Hereafter, the term DEM refers to soft con-

tact models and explicit time-integration, as pioneered by Cundall and
Strack [29] and widely covered by both closed-source and open-source
codes [63,4,77,107,110], as opposed to the implicit scheme and possi-

bly non-smooth interactions of Contact Dynamics [57].

YADE [97] is an open-source package based on the smooth DEM. It
was first introduced in 2008 [64] to provide a research platform capable
of handling various numerical models and facilitating their coupling.
Since then, thanks to its versatility and its open development model,

YADE has benefited from the contributions of many developers to simu-

late multiscale and multiphysics problems of growing complexity. This
continued activity is visible through numerous research projects, Ph.D.
theses, and scientific articles that have relied on it over the years.1

YADE is written mainly in object-oriented C++, but the objects are most
commonly manipulated using a Python interpreter thanks to systematic
Python binding. The Python layer facilitates scene construction, simu-

lation control, and post-processing. YADE offers a stable release version
available as a package in all Debian, Ubuntu, and DEB-based distribu-

tions, as well as up-to-date versions containing the latest developments
available, either as a ready-to-use packaged version or as a source code

1 An extensive list of references is available on https://www .yade -dem .org /
2

doc /publications .html.
that can be modified and compiled with dedicated add-ons. The de-

velopers ensure that every new contribution is both numerically and
scientifically sound and try to make YADE as easy to learn as possible
for new users by providing a detailed reference manual2 as well as nu-

merous working examples.3 In addition, both users and developers can
benefit from the support of the community thanks to the issue tracker
on GitLab.4 Finally, as YADE is fully open-source under a GNU General
Public License (GNU GPL) license, all features implemented in it can
be accessed and reused freely for both non-commercial and commercial
purposes under consideration of the GNU GPL license terms.

In the following, we describe some key aspects and unique fea-

tures of YADE. Section 2 presents YADE modeling features, i.e., the
ingredients of DEM simulations that are available in the platform for
simulating particulate systems; it includes various formulations for par-

ticle shape, interaction models, boundary conditions, and couplings
with other methods. Section 3 describes the practical aspects of how

YADE is used and developed, while Section 4 sets a deeper technical fo-

cus on some implementation choices that contribute to the versatility
and computational efficiency of YADE.

2. Modeling features

2.1. Particle shapes

YADE simulates objects of various shapes. For non-spherical parti-

cles, YADE provides implementations of several integration algorithms
for particle rotations, including the ones proposed by Fincham [43],
Omelyan [79], and del Valle et al. [32]. The translational motion is
independent of shape and uses the conventional (symplectic) finite dif-

ference scheme used in Cundall and Strack [29]. Fig. 1 illustrates the
available classes to simulate rigid non-spherical objects. YADE supports
the modeling of cuboidal (Box), triangular (Facet), and planar (Wall)
objects that are commonly used for representing rigid boundaries and
containers. Additionally, YADE provides functions for generating com-

plex domains from mesh files in formats like gengeo, gmsh, gts, iges,

stl, unv and representing them with collections of Facets.

Sharp, convex polyhedra are available using two shape classes:

Polyhedra [42] and PotentialBlock [11]. The Polyhedra class
utilizes computational geometry concepts and the CGAL5 library [62]

to facilitate contact detection and to compute the contact volume that
is used in a volume-dependent contact force model. The Potential-
Block class uses an alternative modeling strategy, where the geometric

2 https://www .yade -dem .org /doc /index -toctree .html.
3 https://yade -dem .org /doc /tutorial -more -examples .html.
4 https://gitlab .com /yade -dev /answers.

5 Requires CGAL version 4.4.

https://doi.org/10.17632/n4f5fw97rd.1
https://gitlab.com/yade-dev/trunk
https://www.yade-dem.org/doc/publications.html
https://www.yade-dem.org/doc/publications.html
https://www.yade-dem.org/doc/index-toctree.html
https://yade-dem.org/doc/tutorial-more-examples.html
https://gitlab.com/yade-dev/answers

Computer Physics Communications 304 (2024) 109293V. Angelidakis, K. Boschi, K. Brzeziński et al.

Fig. 1. YADE classes for rigid particle shapes.
plane defining each particle face is established, and the interior of each
particle is defined as the shared space of the planar inequalities formed
by the planes corresponding to the particle face. Contact detection is fa-

cilitated using linear programming and convex optimization techniques
to detect whether a feasible region exists within the inequalities defined
by the faces of two particles in contact. In particular, the contact point
between two PotentialBlocks is calculated as the analytic center
of the planar inequalities in the overlap region, whereas the contact
normal vector is calculated using the gradient of an inner potential par-

ticle, for each particle, i.e. a smaller rounded version of each particle
that is defined by a piece-wise implicit potential function. The penetra-

tion distance used to calculate normal contact forces is calculated using
a bracketed search algorithm from the contact point to the surface of the
particles along the contact normal direction, whereas another bracketed
search is employed in the perpendicular direction to trace the surface of
the contact area, which is used to establish non-linear force-deformation
contact behavior.

The PotentialParticle [12] shape class represents generalized
rounded convex particles described by a single piece-wise potential
function, the value of which is zero on the surface and positive outside
the particle. A constrained minimization method is then employed to
establish contact and compute a contact point and contact normal vec-

tor, which in turn determine a penetration distance and contact area
used to calculate contact forces, where the constraints for a Poten-

tialParticle are curved.

YADE’s LevelSet shape class [35] represents particles with virtu-

ally any shape. LevelSet uses the level-set discrete element method
(LS-DEM) [59,61], which defines the particle surface implicitly using
the zero contour of a scalar function, chosen here as the signed dis-

tance function expressed in a spatially discretized form (no closed-form
expression is required). The latter can be obtained using the Fast March-

ing Method whenever the location of the particle surface is known
(e.g. [93]). To detect contacts, a primary-secondary contact algorithm
usually combines the signed-distance field for a particle with the surface
node discretization of another particle, both being simultaneously used
3

for distance queries. Fig. 2 illustrates such a LevelSet description for
the case of a rock aggregate. Using surface nodes, however, may raise
issues because results depend on how the surface nodes are distributed
and the number of nodes [34,35]. As an alternative to surface nodes,
a volume-interacting level-set discrete element method (VLS-DEM) is
provided [54], which is based on the same LevelSet shape class
but utilizes the overlap volume to determine the interparticle forces,
thereby removing the need for surface nodes. The computational cost is
higher, but in return, VLS-DEM can handle arbitrarily complex geome-

tries, including those of highly concave, angular, and rough particles
[54,55].

The Clump shape class defines rigid aggregates formed by many
particles (called “members”) to represent generic shapes, including con-

cave ones (e.g. [40]). The computational advantage of a Clump over
a group of bonded particles (see next section) is that the interactions
between members of one clump are ignored, and the motion of all
members is dictated by the clump itself. Comparisons between clumps
and other types of non-spherical particle types have been carried out in
the literature to quantify their accuracy and efficiency [39]. The inter-

actions between clumps need no specific implementation; they simply
result from interactions between their constituents. Clumps of spheres,
approximating the physical shape(s) at hand, can be generated using
dedicated generation algorithms [5]. The number of spheres in a clump
logically controls the accuracy of the shape approximation and the in-

crease in computational cost. Clumps are commonly used to simulate
multisphere bodies, yet the clump implementation in YADE allows the
formation of aggregates using any particle shape, e.g. convex polyhedra
can be clumped to form concave polyhedra.

Polyhedra and clumps can be used to simulate crushable particles
with the fragment replacement method. This approach requires adopt-

ing a failure criterion for the strength evaluation of the particles. If a
particle reaches the limit state, breakage occurs, and smaller particles
replace the broken one. Eliáš [42] and Gladkyy and Kuna [46] imple-

mented two algorithms to simulate the fragmentation of sharp polyhe-

dra, where the particle stress tensor is used in conjunction with a failure
criterion to determine when particles break. The main differences be-
tween these models lie in the type of failure criterion considered and

Computer Physics Communications 304 (2024) 109293V. Angelidakis, K. Boschi, K. Brzeziński et al.

Fig. 2. Level Set description of a centimetric rock aggregate: (a) scanned 3D view of the actual particle and its counterpart in YADE with (b) distance data and (c)
surface nodes (a total of 264). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Example of: (a) polyhedra breakage (modified after [46]) and (b) clump breakage.
how particle size effects are taken into account to calculate the single
particle crushing strength. An example of breakage due to oedometric
compression is shown in Fig. 3(a), where the initial 22 polyhedra break
into more than 3 000 fragments. Brzeziński and Gladky [17] adopted
the same failure criterion for a clump breakage algorithm. This method
was developed for multisphere particles (i.e. clumps), but it can also be
used with standalone spheres [16]. The algorithm evaluates the strength
of each clump constituent. If the stress exceeds the clump member’s
strength, the clump is replaced by standalone spherical fragments. The
volume of the new particles is adjusted so that the total volume and
mass of the particles in the simulation remain unchanged. Fig. 3(b)

shows an example of a clump composed of four spheres before and
after breakage. The middle sphere breaks into smaller fragments during
the compression, whereas the other spheres remain intact. The remain-

ing parts of the clump split into a new clump (brown) and separated
spherical particles (green).

2.2. Deformable particles and flexible structures

The simplest method for modeling deformable particles and flexi-

ble structures is to “glue” or “bond” spheres together [85]. This means
that attractive forces between particles are allowed, i.e. the interaction
law is cohesive. The cohesive link can have a threshold that allows the
bonds to break. YADE implements several cohesive contact models that
enable the simulation of deformable bodies such as rubber particles
(e.g. [7,8]) and flexible structures such as wire meshes (e.g. [104,103])
and woven fabrics (e.g. [27]).

Another option to model deformable particles in YADE is the De-
formControl feature. In this case, the deformation is achieved by
expanding the radius of the spheres based on their overlap so that the
volume of the material is kept constant [53]. This approach is useful
for modeling the compaction of powders and other granular materials,
such as metal pellets, where significant strain hardening occurs because
of the additional contacts formed due to plastic deformation.

The modeling of more complex deformable structures can be
4

achieved using the GridConnection and Pfacet shape classes
[13,41]. These classes allow the representation of catenary-like struc-

tures formed as the Minkowski sum of a sphere and polyline/polytope
(Fig. 4). Unlike bonded spheres, spheropolyhedra have no artificial sur-

face bumpiness, and thus the contact force between them and other
objects is a continuous function of the relative displacement (Fig. 5).
This shape model is compatible with all sphere-sphere contact models
since all interactions are seen as interactions between virtual spheres on
both sides of the contact and moving together with the contact point.
The nodes of the structures have six degrees of freedom (translational
and rotational), and, as such, these classes can be used to represent
complex beams, grids, shells, and membrane structures, including hol-

low spheropolyhedra. These structures can break, and as long as the
internal interactions are assigned a failure condition (such as cohesive
interactions, typically); they are otherwise purely elastic. As mentioned
in Section 2.1, YADE allows any type of shape to be clumped together to
form a rigid body. This also applies to GridConnection and Pfacet
elements, i.e. clumping the PFacets of a deformable object turns it
into a rigid object, which is a way to represent rounded convex and
concave polyhedra.

2.3. Broad-phase and narrow-phase collision detection

For the sake of computational efficiency, YADE performs contact de-

tection in two phases. First, a broad-phase detection establishes pairs

of particles which may interact (a list of close neighbors with or with-

out actual contact) - the broad phase results in a list of potential in-

teractions. Then, the narrow-phase goes through the potential interac-

tions to determine their geometry precisely and decide which ones are
real interactions - for which forces are finally computed. All particle
types undergo the same broad-phase contact detection regardless of
their detailed shape, whereas the narrow-phase contact detection dif-

fers for each combination of shapes, i.e. the precise contact detection
for sphere-sphere pairs is different from the one for sphere-polyhedra
or polyhedra-polyhedra pairs.

The broad phase is based on a sweep-and-prune algorithm [94]: each

body is assigned an axis-aligned bounding box (AABB), and the extrema

Computer Physics Communications 304 (2024) 109293V. Angelidakis, K. Boschi, K. Brzeziński et al.

Fig. 4. Complex structures and deformable objects: (a) basic GridConnection (rounded cylinder) corresponding to the Minkowski sum of a sphere and a line
segment, (b) basic PFacet corresponding to the Minkowski sum of a sphere and a triangular facet, (c) helicoidal beam made from GridConnections, (d) complex
grid structures made from GridConnections and (e) hollow deformable sphere made from PFacets.
Fig. 5. Concept of rough vs. smooth interaction when moving a sphere along a
sphere assembly and a GridConnection.

of the AABBs are sorted along all three axes to detect new overlaps.
This method is known to be efficient in dynamic problems where, due
to temporal coherence, each sort starts from a highly pre-ordered list.
In addition, the size of the AABBs includes an extra length (often called
“Verlet distance”) such that it is not necessary to execute the broad
phase detection at every iteration. The sorting algorithm is parallelized
by dividing the list of extrema into multiple chunks.

2.4. Interaction models

2.4.1. Framework of classical interaction models

An interaction model defines the interaction force between two bod-

ies as a function of their relative motion and, possibly, of other physical
variables. On this aspect YADE’s framework is highly generic and flex-

ible, allowing users to extend or introduce new models. As a matter of
fact, many different models have been implemented and validated over
the years [97], modeling both shear and normal force components, as
well as rolling and twisting torques, linear and non-linear responses,
elastic and inelastic contacts, bubble interactions, friction, adhesion/-

cohesion, viscosity, and damage. Some interaction models include the
effects of interstitial fluids, such as capillary or lubrication forces.

The collection of models includes, for dry contacts, linear-elastic
5

contacts with Coulombian friction as in Cundall and Strack [29]
(Law2_ScGeom_FrictPhys_CundallStrack), the linear spring-

dashpot of Walton [106] (Law2_ScGeom_ViscElPhys_Basic), as
well as more sophisticated variants which cancel attractive forces
[92]. Non-linear, Hertzian, and optionally viscous contacts models are
available with, namely, the Law2_ScGeom_MindlinPhys_Mindlin
class, where two formulations are available, for constant [105] and
velocity-dependent coefficients of restitution [76], respectively. The
viscoelastic Hertz-Mindlin contact model (no-slip solution) was re-

cently benchmarked against analytical solutions and numerical results
from other DEM software packages in Dosta et al. [33], alongside
most of the active open-source DEM codes, in an effort to enhance
transparency within the open-source DEM developers’ community. An
extension of the Hertz-Mindlin formulation employing the Conical Dam-

age Model [50] is also implemented to capture the accumulation of
damage at interparticle contacts via the Law2_ScGeom_Mindlin-
PhysCDM_HertzMindlinCDM class [100]. Adhesion can be simulated
using either the Derjaguin-Muller-Toporov (DMT) formulation with
Hertzian normal forces or a simpler linear-stiffness adhesive model
[71] via the Law2_ScGeom_LudingPhys_Basic class. Models defin-

ing rolling and twisting torques in addition to the contact forces are
available in, namely, Law2_ScGeom6D_CohFrictPhys_Cohesion-
Moment (linear-elastic torques limited by a cohesive-frictional failure
criterion) or Law2_ScGeom_ImplicitLubricationPhys (viscous
torques). An exhaustive list of the contact models currently available
in YADE and what physics are included in these models can be found in
Table 1.

2.4.2. Cohesive materials with predefined planar discontinuities

Discontinuity surfaces, either isolated or organized in networks, of-

ten govern the behavior of cohesive frictional materials (e.g., fractures
in rock masses). Inspired by the contact logic proposed by Mas Ivars
et al. [74], YADE enables to overlay planar surfaces on a set of dis-

crete elements to define such discontinuities using the Jointed Cohe-

sive Frictional Particle Model (JCFPM) implemented in the Law2_Sc-
Geom_JCFpmPhys_JointedCohesiveFrictionalPM class [90,51,

36]. The planar surfaces, defined as triangulated meshed surfaces, can
be created externally with a CAD software (Blender, Gmsh, etc.) and
imported into YADE in stl format or defined internally using the ded-

icated utils.facet() function (Fig. 6(a)). Once incorporated into a
discrete elements set, every interaction occurring between elements lo-

cated on either side of the surfaces is identified (Fig. 6(b)), and their me-

chanical behavior is eventually adjusted to model, for instance, planes

of weakness in otherwise cohesive media (e.g., fractures in rocks) or,

Computer Physics Communications 304 (2024) 109293V. Angelidakis, K. Boschi, K. Brzeziński et al.

Table 1

Overview of interaction models in YADE.

Contact law - Class name Non-linear
elasticity

Viscosity Moments* Shear
forces**

Normal
plasticity

Adhesion/
cohesion

Additional information
and references

Law2_ChCylGeom6D_CohFrictPhys_CohesionMoment ✓ ✓ ✓ ✓ [13]

Law2_CylScGeom6D_CohFrictPhys_CohesionMoment ✓ ✓ ✓ [13]

Law2_CylScGeom_FrictPhys_CundallStrack ✓ [13]

Law2_GridCoGridCoGeom_FrictPhys_CundallStrack ✓ [41]

Law2_L3Geom_FrictPhys_ElPerfPl ✓
Law2_L6Geom_FrictPhys_Linear ✓
Law2_PolyhedraGeom_PolyhedraPhys_Volumetric ✓ ✓ [42]

Law2_SCG_KnKsPBPhys_KnKsPBLaw ✓ ✓ ✓ ✓ [11]

Law2_SCG_KnKsPhys_KnKsLaw ✓ ✓ ✓ ✓ [12]

Law2_ScGeom6D_CohFrictPhys_CohesionMoment ✓ ✓ ✓ ✓ [1], shear creep available

Law2_ScGeom6D_InelastCohFrictPhys_CohesionMoment ✓ ✓ ✓ ✓ Plasticity in compression,
tension, bending and twisting

Law2_ScGeom_BubblePhys_Bubble [24]

Law2_ScGeom_CapillaryPhys_Capillarity

and CapillarityEngine

✓ ✓ ✓ ✓ Global engines for
capillarity [88,37]

Law2_ScGeom_CpmPhys_Cpm ✓ ✓ ✓ [96]

Law2_ScGeom_FrictPhys_CundallStrack ✓ [87] and many more

Law2_ScGeom_FrictViscoPhys_CundallStrackVisco ✓ ✓ [103]

Law2_ScGeom_ImplicitLubricationPhys ✓ ✓ ✓ Lubrication forces [28]

Law2_ScGeom_JCFpmPhys_JointedCohesiveFrictionalPM ✓ ✓ ✓ Bonded particles [90,91]

Law2_ScGeom_LudingPhys_Basic ✓ ✓ ✓
Law2_ScGeom_MindlinPhysCDM_HertzMindlinCDM ✓ ✓ Conical Damage Model [100]

Law2_ScGeom_MindlinPhys_HertzWithLinearShear ✓ ✓
Law2_ScGeom_MindlinPhys_Mindlin ✓ ✓ ✓ ✓ ✓ [75]

Law2_ScGeom_MortarPhys_Lourenco ✓ ✓ ✓
Law2_ScGeom_PotentialLubricationPhys ✓ ✓ ✓ Lubrication forces

Law2_ScGeom_VirtualLubricationPhys ✓ ✓ ✓ Lubrication forces

Law2_ScGeom_ViscElCapPhys_Basic ✓ ✓ ✓ Capillarity

Law2_ScGeom_ViscElPhys_Basic ✓ ✓ ✓
Law2_ScGeom_ViscoFrictPhys_CundallStrack ✓ ✓
Law2_ScGeom_WirePhys_WirePM ✓ ✓ [104]

Law2_ScGridCoGeom_CohFrictPhys_CundallStrack ✓ ✓ ✓ ✓ [13,41]

Law2_ScGridCoGeom_FrictPhys_CundallStrack ✓ ✓ ✓ [13,41]

Law2_TTetraSimpleGeom_NormPhys_Simple ✓ ✓

* Includes rolling friction.
** Includes sliding friction.

Fig. 6. Integration of discontinuity surfaces into a DEM model: (a) predefined meshed fracture network (stl format) incorporated into a particle assembly, (b)
identification of contacts along the discontinuity surface 𝐷, and (c) associated contact logic: classical (top), which is according to the contact geometry, or smooth
(bottom), according to the discontinuity surface geometry.
conversely, reinforcement sheets (e.g., steel mesh sheets in concrete).
The JCFPM contact logic allows the reorientation of all the interactions
that intersect the plane surface so that the surface is discretized into a
set of contacts that share the same predefined orientation and mechan-

ical properties, ensuring the emergent behavior is independent of the
inherent roughness produced by the arrangement of spheres at the in-

terface (Fig. 6(c)). In its current formulation, the approach allows the
creation of interacting deformable and breakable blocks in a given vol-

ume of material as done, for instance, in grain-based models (GBM)
6

[84].
2.4.3. Capillary models

Simulating surface tension in the pendular regime (small degree of
saturation) has been a frequent application of the DEM for at least two
decades (e.g. [69,45,68,60] and many subsequent papers). In the pen-

dular regime, wetting liquid forms distinct bridges between particle
pairs, and the mechanical contribution from the fluid mixture reduces
to an attractive force in a pair interaction [69]. The popularity of this
topic is reflected in the variety of capillary force models available
in YADE. Several closed-form expressions are available in the Vis-

cElCap* classes [47], while CapillarityEngine and Law2_Sc-
Geom_CapillaryPhys_Capillarity [88,37] are based on direct

V. Angelidakis, K. Boschi, K. Brzeziński et al.

numerical resolution of the Laplace-Young equation, linking the shape
of the interface between immiscible fluids to the surface tension.

2.4.4. Lubrication models

When particles immersed in a viscous fluid are in relative motion,
the fluid mediates remote pair interactions that resist any motion. At
close range, the associated viscous forces and torques can be computed
using the lubrication approximation. The analytical expression of such
forces is the cornerstone of the Stokesian dynamics method for rigid
spheres [14]. An interaction model that combines solid contacts and lu-

brication is implemented in YADE’s Law2_ScGeom_ImplicitLubri-

cationPhys. It uses (i) the lubrication expressions from [44] and [58]

to compute the remote viscous effects together with (ii) a (repulsive)
linear-frictional model when the particles are in direct contact. When
it is assumed that the two types of forces simultaneously contribute to
some elastic deformation of the spheres, the equations for solid contact
and for lubrication are intimately coupled. Following [73] and later
[28], YADE’s implementation integrates this coupled viscoelastic prob-

lem with an implicit scheme (motion integration remains explicit). It
is to be noted that the viscous resistance by lubrication is theoretically
infinite when the spheres are in contact. For this reason, many lubrica-

tion models introduce a cut-off distance related to roughness to avoid
numerical issues. In contrast, the viscoelastic solver of YADE admits zero
roughness since elasticity regularizes the problem, and the implicit in-

tegration is unconditionally stable.

2.5. Boundary conditions

2.5.1. Rigid and viscoelastic boundaries

YADE provides multiple methods of imposing mechanical boundary
conditions. The most straightforward approach is fixing the bodies in
place to create a rigid boundary for the particles. Usually, facets or
walls are used for such a purpose. Nevertheless, all shapes can be con-

strained by reducing their degrees of freedom. Imposing stress via a
rigid boundary needs a servo-mechanism that controls the position of
external walls to achieve and maintain a prescribed state (stress, strain,
or porosity). Imposing deformation or stress on the faces of a cuboid
containing packed particles is key to simulating element tests. The en-

gine TriaxialStressController helps control six rigid boundaries
in this context [97]. Each direction can be assigned either a strain rate
or a pressure. The pressure is maintained by servo-controlling the po-

sition of the boundaries; knowing the instantaneous total stiffness of
the boundary-packing interface, the target pressure is reached almost
exactly at each time iteration. The engine also returns post-processing
data such as the stresses (when strain is controlled), the strains (when
pressure is controlled), or the average porosity.

Alternatively, one can constrain the bodies with a viscoelastic
boundary condition. In this way, the constrained body is connected
to its reference position with a virtual viscoelastic element. In the
current implementation, the Burgers model defines the behavior of
the viscoelastic element and can be set up to represent simpler ones
(Maxwell, Kelvin-Voigt, or purely elastic) [18]. Creating an array of
bodies constrained by this condition is a convenient technique for mod-

eling deformable boundaries. It can simulate foundations, particularly
in geotechnical issues, pavement design, etc. Fig. 7 shows a sphere over
a deformable boundary consisting of an array of cuboids with applied
boundary conditions. When the ball falls on the boundary, cuboids
pressed by the sphere are displaced and the boundary elements gen-

erate a reaction force depending on the amplitude and velocity of the
displacement. The remaining cuboids are unaffected since viscoelastic
constraints imposed on each body act independently.

2.5.2. Uniform boundaries

YADE supports uniform boundary conditions on domains of arbitrary
7

shapes through continuous boundary surface tracking [83,82]. This
Computer Physics Communications 304 (2024) 109293

Fig. 7. Modeling a deformable boundary by applying viscoelastic boundary con-

dition to rigid elements (cuboids): (a) initial state and (b) deformed state.

surface tracking is accomplished by pairing the Alpha shape surface re-

construction algorithm of the CGAL library [30] with a power-diagram
construction algorithm. The former identifies all particles on the bound-

ary of the model, while the latter partitions the boundary surface into
polygonal cells associated with each boundary particle. Power diagrams
are shown in Fig. 8 for three different model topologies. Knowing both
a list of the particles on the model boundary and the surface area vec-

tor associated with each boundary particle allows for the application
of uniform boundary conditions. The Static Uniform Boundary Con-

dition (SUBC) is simply imposed by applying a force vector on each
boundary particle obtained by multiplying the uniform stress tensor
by the area vector of that particle. Since the boundary surface is up-

dated continuously, the force vectors are always up-to-date, even when
the model is subject to large strains. Likewise, the Kinematic Uniform
Boundary Condition (KUBC) is imposed by applying velocity vectors on
each boundary particle obtained by multiplying the uniform velocity
gradient tensor by the position vector of the centroid of the polygo-

nal cell of the boundary particle. Orthogonal-mixed uniform boundary
conditions are also possible by alternating between KUBC and SUBC
and applying appropriate (non-conflicting) uniform stress and uniform
strain tensors.

2.5.3. Periodic boundaries

Periodic boundary conditions (PBC) impose homogeneous condi-

tions in an infinite, periodic space. This technique was originally de-

veloped for use in MD simulations [2], and it presents the advantage of
avoiding boundary effects. An intuitive explanation of PBCs is that par-

ticles are modeled inside a unit cell, and if a particle leaves the cell, it
re-enters immediately from the other side. Nevertheless, YADE’s imple-

mentation does not constrain positions to a single periodic cell. Instead,
periodicity is realized by the collision detection algorithm generating
interactions between bodies and their periodic images [97].

The deformation of space is prescribed via the macro-scale velocity
gradient. It is integrated over time, accumulating deformation. The ve-

locity gradient is assigned directly by the user or servo-controlled by
some engines to reach some prescribed stress (engines PeriIsoCom-
pressor and PeriTriaxController).

In Fig. 9, a small number of particles is compacted by shrinking
the space isotropically. The 3D rendering of these highlights periodic
images (the wired shapes) of some particles from the reference cell. Pe-

riodic packings like this one are sometimes used to fill large volumes
by placing the same elementary microstructure repeatedly on a regular
grid.

2.6. Coupling approaches

2.6.1. PFV-DEM coupling: FlowEngine and TwoPhaseFlowEngine
YADE provides a set of coupled solvers for single-phase and mul-

tiphase flow based on the pore-scale finite volume (PFV) approach
(Fig. 10). This technique implements a pore-network decomposition of
the pore space in granular systems, and it couples fluid flow to the

movements of the individual particles.

Computer Physics Communications 304 (2024) 109293V. Angelidakis, K. Boschi, K. Brzeziński et al.

Fig. 8. Power diagrams on discrete element models with different topologies: (a) cubic, (b) toroidal and (c) internal cavity.

Fig. 9. Compaction of polyhedra packing by shrinking the periodic space.

Fig. 10. Regression test of viscous fluid injections into a dry dense sphere packing: (a) PFV-DEM Model and (b) temporal evolution of 𝑉𝑏 and 𝑉𝑣. 𝑉𝑏 is the difference
between the total viscous fluid volume injected from the bottom boundary and fluid volume losses due to air bubble generations, and 𝑉𝑣 is the total viscous fluid
volume flowing inside dry or partially saturated pores.
The single phase solver is FlowEngine. Its first version was ded-

icated to incompressible Stokes’ flow [26,19]. It has been later ex-

tended to compressible flow [89], and combined with the JCFPM (see
Section 2.4.2) to deal with permeability contrasts in fractured media
[80,109].

Two-phase flow with capillarity is solved with a similar pore-

space partitioning in the UnsaturatedEngine [108] and TwoPhase-

FlowEngine [102] (the latest differ by the local rule controlling imbi-

bition), enabling the simulation of partially-saturated materials without
the restriction to small water content of the pendular bridge models (cf.
Section 2.4.3). The algorithms track drainage-imbibition events at the
pore scale when two immiscible fluids occupy the pore space (such as
water and air). It handles all states from saturated to dry, tracks the for-

mation of liquid clusters of various sizes (down to a pendular bridge),
8

and evaluates the capillary forces on the particles in generic conditions.
2.6.2. GPU acceleration of the FlowEngine
FlowEngine was accelerated using a variety of methods, including

matrix factor reuse, parallel task management, and GPU computing.
Combined, these techniques yield an increase of performance by an as-

tonishing 170x as highlighted in [23]. Instructions for exploiting GPU
acceleration are detailed in an online tutorial.6 GPU acceleration can be
enabled during compilation using the CMake flag CHOLMOD_GPU.7

2.6.3. ThermalEngine

ThermalEngine opens up a wide range of Thermal-Hydraulic-

Mechanical (THM) modeling possibilities, such as non-isothermal flow
through a conductive sphere packing and geomechanical thermo-poro-

6 https://yade -dem .org /doc /GPUacceleration .html.

7 Requires SuiteSparse version 2.0.0.

https://gitlab.com/yade-dev/trunk/-/blob/master/scripts/checks-and-tests/checks/checkDEM-PFVPressureInjection.py
https://yade-dem.org/doc/GPUacceleration.html

Computer Physics Communications 304 (2024) 109293V. Angelidakis, K. Boschi, K. Brzeziński et al.

Fig. 11. Example of an advection and conduction numerical simulation of a warm fluid passing through a packing of cold spheres (modified after [20]): (a)
temperature distribution in the PFV-DEM model and (b) temporal evolution of the temperature (comparison with predictions from ANSYS-CFX [6]).
Fig. 12. Example of CFD-DEM simulation with OpenFOAM: 50 000 spheres in
lid-driven cavity flow.

elasticity. Conductive heat transfer is simulated between particles using
a connectivity network, while advective heat transfer is plugged into
the fluxes given by FlowEngine (Fig. 11). Caulk et al. [20] describes
the framework in detail and shows a complex THM experimental val-

idation. Furthermore, YADE’s Python wrapping enables users to easily
modify, debug, visualize, and extend the existing THM framework.

2.6.4. CFD-DEM coupling with OpenFOAM
YADE supports coupling with Computational Fluid Dynamics (CFD)

solvers using OpenFOAM. It implements an Euler-Lagrange scheme as
described in [66]. The coupling supports massively parallel execution
using a Message Passing Interface (MPI) scheme for both the solid phase
(YADE) and the fluid (OpenFOAM). One of the solution methods imple-

mented uses a point-force coupling approach, whereas the other uses
a volume-averaged coupling, which accounts for the particle volume
fraction with Gaussian interpolation of field and particle variables, re-

spectively. The current framework enables the future inclusion of fully
resolved flow description around the particle by the Immersed Bound-

ary Method (IBM) and full parallel coupling between YADE-MPI and

OpenFOAM. An example simulation is shown in Fig. 12.

2.6.5. Hierarchical multiscale coupling

A multiscale framework is available to model boundary value prob-

lems (BVPs) with a combined FEM×DEM approach. It relies on the
FEM solver Escript8 [86] to produce a hierarchical FEM×DEM coupling
[48,49]. FEM is used to discretize the large-scale problem, while DEM
9

8 https://github .com /esys -escript /esys -escript .github .io.
is used at each Gauss point to provide the local incremental response of
a simulated material. This approach, pioneered by [78], eliminates the
need for phenomenological assumptions at the continuum scale.

With a similar logic, the DEM can be embedded into the Material
Point Method (MPM) [70]. Such an MPM×DEM coupling using YADE
and CB-Geo for the MPM9 is presented in [38].

2.6.6. Multidomain coupling

Due to its flexible design, YADE can easily be coupled with other
numerical methods or packages. The most commonly implemented cou-

pling approach is surface or interface coupling. Stránský [99] presented
a general framework that allows coupling of YADE with the open-source
framework OOFEM [81]. It was successfully applied to model the in-

teraction between ballast and sleepers [98]. Thereby, the problem is
physically split into two domains and solved separately in each code.
Contact forces and boundary surfaces are shared and updated as the
simulation progresses. More recently, YADE has been coupled with the
transient formulation of the Boundary Element Method (BEM) [9,10].
This interface coupling allows the accurate representation of infinite
domains. Several DEM regions can be embedded in the BEM domain.
The latter is assumed to behave as linear elastic and is generally used to
represent the far-field. The relevant BEM matrices can be pre-computed,
and YADE handles the simulation. Another method that has been cou-

pled with YADE is Peridynamics [95]. A generalized force coupling
approach with a staggered time integration scheme was developed that
allowed to directly implement Peridynamics in YADE [52].

3. General overview

3.1. User interface and live processing

YADE’s user interface comprises a graphical user interface (GUI)
with several windows and an interactive IPython shell (Fig. 13). The
GUI includes a Qt interface with basic functionalities (save/load/run/-

pause) and variable explorer, real-time 3D-rendering of the scene using
QGLViewer, and a plotting window based on the python library mat-
plotlib. The GUI exposes all variables for all bodies, engines, and
interactions in a simulation, with read-write access in most cases and
the documentation associated with these variables.

Most YADE users do not manipulate any C++ code. This is only
necessary for the sake of performance when truly new models and fea-

tures need to be implemented. Instead, the Python interpreter is the
primary interface for most advanced use. It lets users combine the basic
components needed for a specific simulation (the “components” being
implemented in C++, typically) in a Python script. This includes custom
9 https://github .com /cb -geo /mpm.

https://github.com/esys-escript/esys-escript.github.io
https://github.com/cb-geo/mpm

Computer Physics Communications 304 (2024) 109293V. Angelidakis, K. Boschi, K. Brzeziński et al.

Fig. 13. Overview of the YADE user interface. Top left: the simplest python script for a complete simulation. Top right: visualization capabilities. Bottom right:
tab-completion lists all available functions to use.
engine lists, dynamic time-step control, body/interaction data extrac-

tion, event-based boundary conditions, transitions between multiple
stages of a simulation, live plotting, and possibly even post-processing.
A simulation job described in a script is executed with the command

yade script.py.

The interactivity of the IPython shell makes it well-suited for explor-

ing variables and performing various operations at run time, while it
also provides in-line documentation. In addition, it is possible to im-

port YADE as a Python module and use it in another software or a
custom Python program. For users running parametric sweeps with a
large number of parameters, YADE offers yade-batch for launching
and monitoring the simulations. The batch mode uses a table of param-

eters as input in addition to the script to be executed.

YADE has a ready-to-use module based on the matplotlib library
for both plotting live data and saving plot data (shown in Fig. 13) into
optionally compressed files (yade.plot module). In addition to the pos-

sibility of manipulating GUI views within YADE, for more advanced
graphical illustrations, simulation data can readily be exported in a VTK
format for post-processing and 3D rendering of simulation results with
Paraview.10

3.2. Post-processing

3.2.1. From discrete to continuum results

Some of the processed data that can be visualized in Paraview is gen-

erated by the TessellationWrapper, which defines continuum scale
strain and stress from DEM results. This class handles the triangulation
of spheres in a scene, builds a tessellation on request, and gives ac-

cess to computed quantities, such as volume, porosity, micro-strain, and
micro-stress associated with individual spheres (Figs. 14(a) and 14(b)),
as explained in [19]. This feature can also be used to process exper-

imental data from X-ray computed tomography [3] (see Fig. 14(c)).
Figs. 14(d) and 14(e) show results from a plate load test simulation.
10

10 https://www .paraview .org.
The strain field is directly the output of TessellationWrapper, the
stress field is interpolated by triangulating the per-sphere data.

3.2.2. Acoustic emissions module

YADE can simulate acoustic emission (AE) events in cohesive dis-

crete element assemblies. Following a strain energy approach, the AE
module, currently implemented in the JCFPM, tracks the release of
strain energy associated with interparticle bond breakages to estimate
AE properties. The module enables the clustering of bonds that break
close to one another which enables the realistic quantification of AE
magnitude during material failure. YADE users can easily post-process
and visualize the AE events using the existing data export tools in YADE
(Fig. 15). Caulk [21] demonstrates the new functionality by running
three-point bending tests on rock samples containing various levels of
heterogeneity to ultimately show the spatial distributions and magni-

tudes of AE during pre- and post-failure.

3.3. Installation

Starting from the 0.60.0 version released in 2011, major releases of

YADE have been systematically proposed in all Debian, Ubuntu, and
other DEB-based distributions as a pre-compiled package. While the
installation of YADE with apt (apt install yade) installs a stable
version corresponding to the release date of one specific Linux system,
binary packages reflecting the development branch daily are available
in a separate personal package archive (PPA) providing yadedaily.11

Recompilation on the host system is only necessary when one needs
to modify the code or implement new algorithms. For further details,
the YADE documentation [97] provides extensive instructions about
package dependencies and compilation on various Linux versions.

3.4. Code development, continuous integration, deployment and packaging

YADE development occurs on a dedicated gitlab.com repository,
where a master branch evolves through reviewed merge requests from
11 https://yade -dem .org /doc /installation .html #packages.

https://yade-dem.org/doc/yade.plot.html
https://www.paraview.org
https://yade-dem.org/doc/installation.html#packages

Computer Physics Communications 304 (2024) 109293V. Angelidakis, K. Boschi, K. Brzeziński et al.

Fig. 14. From discrete to continuum results: (a) particle-centered domain for the definition of micro-strain, (b) particle-centered domain for the definition of micro-

stress, (c) example of micro-strain visualized with Paraview (analyzing X-ray CT data on sand [3]), (d) example of micro-strain visualized with Paraview (results of
plate load test simulation), and (e) example of micro-stress.

Fig. 15. Example of acoustic emission (AE) processing along the tensile fracture developing in a three-point bending test simulation (modified after [21]): (a) DEM
model and (b) clustering of AE events. The AE events are clustered and labeled with their magnitudes.
developer branches, and issues are reported. To ensure a smooth, ever-

going development, a Continuous Integration (CI) pipeline configured
for YADE performs automated builds, tests, and checks for every merge
request every two days on the master branch. The builds are done in-

side docker images of all the major releases of Debian (from Stretch to
Bookworm) and Ubuntu (from 16.04 to 22.04) as well as ArchLinux and
OpenSuse. The CentOS build is currently in progress. Apart from the
default amd64 architecture, the automated builds are also performed
inside the qemu emulator of other architectures: arm64, ppc64el, and
s390x. In total, there are about 100 jobs with different Linux versions
and different combinations of compilation options. CI facilitates early
detection of any kind of regression or bug introduced in packages YADE

depends on, and accurate reporting to the third-party developers.

The tests come in three different variants. First, basic tests (yade
-test) consider the internals of YADE, such as serialization, math-
11

ematical functions for all numerical precisions (number of decimal
places used in computations [65]) or other basic functionalities of
the software. Second, more elaborate checks (yade -check or yade
-checkall) run short simulations using different physical models,
which correspond to realistic use cases, to check the reproducibility of
results across changes to the source code. Finally, GUI tests run simple
simulations and compare their screenshots with the reference screen-

shots to identify possible issues in the GUI.

After an accepted merge request, the Gitlab pipelines build newer

yadedaily packages for installation/update by end-users. DEB yadedai-

ly packages are built for the last four stable Debian versions (begin-

ning from Debian 9 Stretch) and for the last 4 Ubuntu LTS versions
(beginning from Ubuntu 16.04 Xenial). The yade-dem.org server peri-

odically pulls the last successfully built DEB-artefacts from the YADE

Gitlab projects, signs them with GPG-key, and puts them into the

DEB-repository with the aptly package-management system. The new

https://yade-dem.org

Computer Physics Communications 304 (2024) 109293V. Angelidakis, K. Boschi, K. Brzeziński et al.

Table 2

Options to build YADE from source.

Build option Description Reference

DISABLE_ALL Disable all options (OFF by default).

ENABLE_ASAN AddressSanitizer build, please see documentation, useful for fixing memory leaks (OFF by default).

ENABLE_CGAL Enable Triangulation using (CGAL) (ON by default). [56]

ENABLE_COMPLEX_MP Requires boost >= 1.71: use boost::multiprecision for ComplexHP: (1) complex128

(2) mpc_complex (3) complex_adaptor (ON by default); Otherwise use std::complex<. . . >.

ENABLE_DEFORM Enable constant volume deformation engine (OFF by default). [53]

ENABLE_FAST_NATIVE Use maximum possible optimization, compiled code runs only on the same processor type; speedup about
2% with gcc compiler, and above 5% with clang compiler, which requires

ENABLE_USEFUL_ERRORS=OFF (OFF by default).

[65]

ENABLE_FEMLIKE Enable meshed solids (FEM-like) (ON by default).

ENABLE_GL2PS Enable postscript export of OpenGL rendering (ON by default).

ENABLE_GTS Enable features using the GNU Triangulated Surface (GTS) library (ON by default).

ENABLE_GUI Enable Graphical User Interface (ON by default).

ENABLE_LBMFLOW Enable Lattice Boltzmann Method for fluid flow (ON by default).

ENABLE_LINSOLV Use efficient linear solvers based on SuiteSparse, OpenBLAS and Metis (ON by default). [23]

ENABLE_LIQMIGRATION Enable liquid migration (OFF by default). [72]

ENABLE_LOGGER Use powerful boost::log library for logging (ON by default).

ENABLE_LS_DEM Enable level-set shape description (ON by default). [35,54]

ENABLE_MASK_ARBITRARY Enable arbitrarily large size of group mask (OFF by default)

ENABLE_MPFR Use https://www .mpfr .org/ library, can be used for higher precision calculations or for CGAL exact
predicates (OFF by default).

[65]

ENABLE_MPI Enable MPI communications in YADE. Used for distributed memory parallelization and YADE-OpenFOAM

coupling.

[25]

ENABLE_MULTI_REAL_HP Allow using twice, quadruple or higher precisions: RealHP<N> for N∈ {1, 2, 3, 4, 8, 10, 20}. It is not
advertised in yade.config.features because of frequent confusion with output of

yade.math.usesHP() as described in https://gitlab .com /yade -dev /trunk /-/issues /247. Use

yade.math.getRealHPCppDigits10() and yade.math.getRealHPPythonDigits10() to check
how many decimal digits each of available precisions has. (ON by default).

[65]

ENABLE_OAR Generate a script for oar-based task scheduler (OFF by default)

ENABLE_OPENMP Enable OpenMP parallelization (ON by default)

ENABLE_PARTIALSAT Enable the partially saturated clay engine, under construction (OFF by default). [22]

ENABLE_PFVFLOW Enable the FlowEngine (ON by default). [26,19]

ENABLE_POTENTIAL_BLOCKS Enable potential blocks option (ON by default). [11]

ENABLE_POTENTIAL_PARTICLES Enable potential particles option (ON by default). [12]

ENABLE_PROFILING Enable profiling, e.g. show some more metrics, which can help in locating bottlenecks in the code (OFF
by default)

ENABLE_SPH Enable Smoothed Particle Hydrodynamics (OFF by default)

ENABLE_THERMAL Enable thermal engine (ON by default, experimental). [20]

ENABLE_TWOPHASEFLOW Enable TwoPhaseFlowEngine (ON by default) [108,101]

ENABLE_USEFUL_ERRORS Enable useful compiler errors, which help a lot in error-free development (ON by default).

ENABLE_VTK Enable VTK export option (ON by default).
documentation is also built and uploaded to yade-dem.org (html pages,
pdf and epub outputs).

Stable versions are typically released approximately once a year,
sourced from the master branch. For the past eight years, these versions
have followed a naming convention of YYYY.MMa-z. The letter suffix
is used to indicate bug-fix releases.

3.5. Build system

The current build system is CMake, which automatically detects the
build platform, searches for dependencies, performs all the necessary
system checks and handles custom compilation options: debug build,
optional features such as GUI, parallelization, specific solvers, etc. (see
Table 2 for the complete list of build options and Fig. 16 for YADE mod-

ules and simplified dependency tree).

CMake generates various build files, including the Makefile, which
is essential for compiling the source code. Additionally, CMake moni-

tors changes in the source code, automatically regenerating the build
files when necessary, and installs the binary files in the user defined lo-

cation. Furthermore, CMake simplifies the generation of documentation
by replacing it with a simple make doc command and concealing the
complexity of the documentation generation process. The documenta-

tion is written in reStructuredText (reST) markup language and built
12

with Sphinx [15].
4. Framework features

4.1. Serialization

YADE features robust serialization routines. Every variable and at-

tribute in every class is wrapped and registered, which allows to:

• save and load a whole simulation to binary files (or .xml files,
which is useful when porting a saved file to a different YADE ver-

sion).

• browse the entire simulation and inspect the registered member
variables in a QT GUI.

• read and modify the contents of the simulation from the IPython
frontend by accessing the registered variables.

Additionally, upon registering variables to these three targets, each
variable is accompanied by a doc help string, which is readily available
from the IPython shell as mentioned in Section 3.1. These doc help
strings are also used when building the YADE reference manual [97].
They are a significant part of the whole YADE manual (Chapters 2.3
and 2.4, about 596 pages therein out of a total of 906 pages).

4.2. OpenMP and MPI parallelizations

4.2.1. Shared memory

Since the work of Ŝmilauer [96], parallel execution of YADE through

shared memory is supported using the OpenMP library. Typical par-

https://www.mpfr.org/
https://gitlab.com/yade-dev/trunk/-/issues/247
https://yade-dem.org

Computer Physics Communications 304 (2024) 109293V. Angelidakis, K. Boschi, K. Brzeziński et al.

Fig. 16. Simplified dependency tree showing the interaction among YADE modules (yellow), core parts of the framework (green) and external dependencies (blue).

Fig. 17. OpenMP speed up for a quasi-static axisymmetric compression of a packing including 8 000 grains, using two shape descriptions of different complexities,
on different machines with different Intel processors (modified after [34]): (a) simple spheres and (b) LevelSet shapes, see Section 2.1.
allel sections involve splitting the loop over bodies when integrating
motion equations or over contacts when computing and summing the
contact forces for each body over several threads. In many cases, the
shared memory parallelization was achieved by the mere insertion of a
#pragma directive in the C++ source code before an existing, purely
sequential loop. In some cases, additional synchronization operations
were necessary to ensure the thread safety of a naive multi-threaded
sum. The accumulation of interaction forces on bodies is such a case.
This parallelization technique is deep in the source code and, therefore,
invisible to the user. There is no need to think about it when formu-

lating a simulation script. There is often a limit to how far additional
cores increase performance, but this limit depends greatly on the type
of simulation and hardware. Fig. 17 shows the performance increase
versus the number of threads, where the performance is measured by
Cundall’s number: the number of discrete elements times the number
of time-steps divided by the wall clock time. The timing data in Fig. 17

and Fig. 18 include a small overhead from the timing module of YADE

and have been obtained either on a 4-core (8 threads) Intel i7-7700
3.60 GHz (0.8–4.2 GHz) processor with 8 MB of cache memory and 2.4
GHz RAM or on two Intel Xeon Platinum 8270 2.7 GHz (4.0 GHz max)
processors with 26 cores each and 36 MB of cache memory, i.e. a total
of 52 cores and 104 threads, together with a 2.9 GHz RAM. With simple
spheres, the best performance is obtained with 6 cores, slightly above
106 particles×iterations/s. This is approximately four times faster than
single-threaded execution (Fig. 18). Using a more complex shape model
lowers the overall performance but makes using more threads relatively
13

more efficient.
4.2.2. Distributed memory

Distributed memory parallelism through domain decomposition has
been implemented more recently to take advantage of computing clus-

ters using the MPI protocol [25]. It is available in the mpy module.

Implementing a distributed memory approach is sometimes consid-

ered an intrusive technique in terms of source code (which is a problem
with a large multi-author code base like YADE), yet YADE’s implemen-

tation did not require substantial changes in the C++ source code.
Instead, the implementation was started in Python (mpi4py module
[31]), such that one master Python process can control multiple running
instances of YADE and communicate data and instructions to them in-

teractively. Each instance is essentially MPI-blind internally. Only a few
critical functions have been translated from Python to C++ at a later
stage. That was the case, namely, for functions involving multiple loops
on bodies and interactions, needing to form a large message. In such
cases, because of the loops and pickling overhead, the C++ versions
outperformed their Python counterparts significantly. Nevertheless, the
core of the code remained independent of those utility functions. Each
running instance can exploit shared memory parallelism inside a node,
enabling hybrid parallelism (OpenMP + MPI).

In practice, each YADE instance handles a subset of the particles, i.e.
a “subdomain”. These subdomains are fundamentally Lagrangian: they
contain a subset of bodies regardless of their positions in space. The
interactions between subdomains are detected by the same collision de-

tection algorithm as used for conventional bodies, based on the AABB
of the subset (see Fig. 19). When two subdomains’ AABB’s intersect,

the corresponding instances communicate to each other the positions

Computer Physics Communications 304 (2024) 109293V. Angelidakis, K. Boschi, K. Brzeziński et al.

Fig. 18. Cundall Number obtained during OpenMP runs of two different simulations on different machines with different Intel processors: (a) quasi-static axisym-

metric compression with two possible shape descriptors for 8 000 grains (after Fig. 17 and data from [34]) and (b) dynamic collapse of 1 000 LevelSet-shaped
particles (after data from [35]).

Fig. 19. Subdomains and their AABBs as defined by domain decomposition in the mpy (MPI) module. Subdomain=0 owns the floor, and it passes the bounding
boxes of the other subdomains to handle collision detection between subdomains. Every other subdomain controls a subset of the bodies (strong colors), and it
collects the positions of bodies from other subdomains (light colors) if they are in the overlapping region to compute interactions with them.
Fig. 20. YADE’s throughput with mpy’s domain decomposition and a constant
number of spheres per core (weak scaling). The dotted line indicates a linear
trend. The maximum number of spheres (1 200 cores with 64 × 103 spheres) is
76.8 × 106.

and velocities of particles in the intersection. They also trade bodies
with one another to maximize compactness and minimize intersections
in future communications and, eventually, detach when possible. The
detection of collisions between subdomains, the main centralized oper-

ation, is executed in a master process which may also handle special
bodies such as the floor in Fig. 19. That floor is receiving summary
forces and torques from every subdomain. The master process does not
know the content of any subdomains. As seen in Fig. 20, the perfor-
14

mance in a heap problem is only slightly sublinear up to 1 200 cores.
4.3. Available floating-point precisions

YADE features high-precision calculations for floating point num-

bers [65]. It is implemented in such a way that the YADE-default Real
floating type may stand for different working precisions, depending
on compilation options. By default, Debian and Ubuntu packages are
provided for the Real type to be: double, long double, float128
and mpfr150 through different executables, respectively yade, yade-
longdouble, yade-float128 or yade-mpfr150. They feature cal-

culation precisions of 15, 18, 33, and 150 digits.

Even when working with the Real type to be the regular double
type, it is still possible to use the higher precision types in the sensitive
parts of the C++ algorithms: the RealHP<N> for N∈ {1, 2, 3, 4, 8, 10, 20}
is a convenient C++ typedef which provides a floating point type
with N times higher precision than the base precision RealHP<1>
which is the regular Real. Additionally, when working in Python the

RealHP<2> type is accessible inside the yade.math.HP2 module.
Other precision types can also be exported to Python by changing the

YADE_MINIEIGEN_HP inside the RealHPConfig.hpp12 file, if neces-

sary.

5. Summary and future outlook

This paper describes the current state of the YADE simulation frame-

work, focusing more specifically on aspects that have made it both a
powerful and popular tool for the modeling and simulation of partic-

ulate systems. YADE currently includes modeling features that go far
beyond the earlier version dedicated to the simulation of spherical dis-

crete elements. YADE can now deal with multiple particle shapes and

12 https://gitlab .com /yade -dev /trunk /-/blob /2023 .02a /lib /high -precision /

RealHPConfig .hpp #L18.

https://gitlab.com/yade-dev/trunk/-/blob/2023.02a/lib/high-precision/RealHPConfig.hpp#L18
https://gitlab.com/yade-dev/trunk/-/blob/2023.02a/lib/high-precision/RealHPConfig.hpp#L18

V. Angelidakis, K. Boschi, K. Brzeziński et al.

deformable particles, as well as with deformable structures. Its extended
library of contact models and boundary conditions, combined with its
capabilities in terms of multiscale and multiphysics couplings as well as
its recent parallelization strategy, make it suitable for tackling bound-

ary value problems in many fields of science and technology.

Moving forward, YADE has been built with the desire to constantly
evolve thanks to the feedback and input of its users and contributors. Its
future is thus not entirely written in stone. Nonetheless, current efforts
focus on enhancing or extending some of its newest features, such as:

• consolidating the MPI strategy to support applications involving
millions of particles,

• extending the thermo-hydro-mechanical coupling scheme to frac-

tured media,

• optimizing and parallelizing the coupling with other methods such
as Peridynamics and BEM,

• incorporating additional features to existing contact models for
specific processes, such as fatigue in brittle materials, additive man-

ufacturing, bio-cementation etc., and

• optimizing the current contact detection scheme for polyhedra,
level-sets, and possibly other complex shapes.

CRediT authorship contribution statement

Vasileios Angelidakis: Writing – original draft. Katia Boschi:

Writing – original draft. Karol Brzeziński: Writing – original draft.

Robert A. Caulk: Writing – original draft. Bruno Chareyre: Writing
– original draft. Carlos Andrés del Valle: Writing – original draft.

Jérôme Duriez: Writing – original draft. Anton Gladky: Writing – orig-

inal draft. Dingeman L.H. van der Haven: Writing – original draft.

Janek Kozicki: Writing – original draft. Gerald Pekmezi: Writing –
original draft. Luc Scholtès: Writing – original draft. Klaus Thoeni:

Writing – original draft.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

All data created during this research is openly available from GitLab
at https://gitlab .com /yade -dev /trunk.

Acknowledgements

YADE has been developed and tested by many people over the years,
and the code would not exist without the support of all these people
who have contributed to making it what it is today.

The authors would like to acknowledge support from the following
funding sources:

• the Engineering and Physical Sciences Research Council (grant
number EP/R511584/1) via the project “OCULAR: Automated Ac-

quisition & Classification of Particles”;

• COST action CA18222 “Attosecond Chemistry”;

• the Australian Coal Association Research Programme (ACARP
C19026) and The Australian Research Council (ARC DP190102407);

• the Institute for Mineral Processing Machines and Recycling Sys-

tems Technology at TU Bergakademie Freiberg;

• the French Sud region during the LS-ENROC project;

• Warsaw University of Technology within the Excellence Initiative:
Research University (IDUB) programme;

• FP7 Grant “DIGA” (HPRN-CT-2002-00220);
15

• FP7-people “Mumolade” (289911);
Computer Physics Communications 304 (2024) 109293

• Grenoble INP - UGA Graduate schools of Engineering and Manage-

ment (“Emergence” funding and PhD grant Catalano); and

• the French C2D2 program (“Hydrofond” project).

In addition, the authors thank the Division of Theoretical Physics
and Quantum Information, Faculty of Applied Physics and Mathemat-

ics, at Gdańsk University of Technology, and the support unit Greno-

ble Alpes Research Infrastructure for Scientific Computing and Data
(UAR 3758 GRICAD) for hosting the GitLab Continuous Integration (CI)
pipeline for YADE.

References

[1] R. Aboul Hosn, L. Sibille, N. Benahmed, B. Chareyre, Discrete numerical model-

ing of loose soil with spherical particles and interparticle rolling friction, Granul.
Matter 19 (2017) 1–12, https://doi .org /10 .1007 /s10035 -016 -0687 -0.

[2] B.J. Alder, T.E. Wainwright, et al., Phase transition for a hard sphere system, J.
Chem. Phys. 27 (1957) 1208, https://doi .org /10 .1063 /1 .1743957.

[3] E. Andò, S.A. Hall, G. Viggiani, J. Desrues, P. Bésuelle, Grain-scale experimental in-

vestigation of localised deformation in sand: a discrete particle tracking approach,
Acta Geotech. 7 (2012) 1–13, https://doi .org /10 .1007 /s11440 -011 -0151 -6.

[4] D. André, J. Charles, I. Iordanoff, J. Néauport, The GranOO workbench, a new
tool for developing discrete element simulations, and its application to tribo-

logical problems, Adv. Eng. Softw. 74 (2014) 40–48, https://doi .org /10 .1016 /j .
advengsoft .2014 .04 .003.

[5] V. Angelidakis, S. Nadimi, M. Otsubo, S. Utili, CLUMP: a code library to generate
universal multi-sphere particles, SoftwareX 15 (2021) 100735, https://doi .org /10 .
1016 /j .softx .2021 .100735.

[6] ANSYS Inc., ANSYS CFX, https://www .ansys .com /products /fluids /ansys -cfx.

[7] M. Asadi, A. Mahboubi, K. Thoeni, Discrete modeling of sand-tire mixture consid-

ering grain-scale deformability, Granul. Matter 20 (2018) 18, https://doi .org /10 .
1007 /s10035 -018 -0791 -4.

[8] M. Asadi, A. Mahboubi, K. Thoeni, Towards more realistic modelling of sand-

rubber mixtures considering shape, deformability and micro-mechanics, Can.
Geotech. J. 60 (2023), https://doi .org /10 .1139 /cgj -2021 -0710.

[9] G. Barros, A. Pereira, J. Rojek, J. Carter, K. Thoeni, Efficient multi-scale staggered
coupling of discrete and boundary element methods for dynamic problems, Com-

put. Methods Appl. Mech. Eng. 415 (2023) 116227, https://doi .org /10 .1016 /j .
cma .2023 .116227.

[10] G. Barros, V. Sapucaia, P. Hartmann, A. Pereira, J. Rojek, K. Thoeni, A novel BEM-

DEM coupling in the time domain for simulating dynamic problems in continuous
and discontinuous media, Comput. Methods Appl. Mech. Eng. 410 (2023) 116040,
https://doi .org /10 .1016 /j .cma .2023 .116040.

[11] C. Boon, G. Houlsby, S. Utili, A new algorithm for contact detection between con-

vex polygonal and polyhedral particles in the discrete element method, Comput.
Geotech. 44 (2012) 73–82, https://doi .org /10 .1016 /j .compgeo .2012 .03 .012.

[12] C. Boon, G. Houlsby, S. Utili, A new contact detection algorithm for three-

dimensional non-spherical particles, Powder Technol. 248 (2013) 94–102, https://

doi .org /10 .1016 /j .powtec .2012 .12 .040.

[13] F. Bourrier, F. Kneib, B. Chareyre, T. Fourcaud, Discrete modeling of granular
soils reinforcement by plant roots, Ecol. Eng. (2013), https://doi .org /10 .1016 /j .
ecoleng .2013 .05 .002.

[14] J.F. Brady, G. Bossis, Stokesian dynamics, Annu. Rev. Fluid Mech. 20 (1988)
111–157, https://doi .org /10 .1146 /annurev .fl .20 .010188 .000551.

[15] G. Brandl, Sphinx documentation, http://sphinx -doc .org /sphinx .pdf, 2021.

[16] K. Brzeziński, P. Ciężkowski, S. Bąk, Tricking the fractal nature of granular
materials subjected to crushing, Powder Technol. 425 (2023) 118601, https://

doi .org /10 .1016 /j .powtec .2023 .118601.

[17] K. Brzeziński, A. Gladky, Clump breakage algorithm for DEM simulation of
crushable aggregates, Tribol. Int. 173 (2022) 107661, https://doi .org /10 .1016 /
j .triboint .2022 .107661.

[18] K. Brzeziński, A. Zbiciak, A. Gladky, Implementation of a viscoelastic boundary
condition to Yade–open source DEM software, J. Theor. Appl. Mech. 61 (2023)
355–364, https://doi .org /10 .15632 /jtam -pl /163053.

[19] E. Catalano, B. Chareyre, E. Barthélemy, Pore-scale modeling of fluid-particles
interaction and emerging poromechanical effects, Int. J. Numer. Anal. Methods
Geomech. 38 (2014) 51–71, https://doi .org /10 .1002 /nag .2198.

[20] R. Caulk, L. Scholtès, M. Krzaczek, B. Chareyre, A pore-scale thermo–hydro-

mechanical model for particulate systems, Comput. Methods Appl. Mech. Eng. 372
(2020) 113292, https://doi .org /10 .1016 /j .cma .2020 .113292.

[21] R.A. Caulk, Modeling acoustic emissions in heterogeneous rocks during tensile
fracture with the discrete element method, Open Geomech. 2 (2020), https://

doi .org /10 .5802 /ogeo .5.

[22] R.A. Caulk, Modélisation micro-macro par la méthode des éléments discrets
(DEM) du comportement à long terme des scellements de puits sous sollici-

tation hydraulique-gaz, Ph.D. thesis, Université Grenoble Alpes, 2022, http://

www .theses .fr /2022GRALI003, thèse de doctorat dirigée par Chareyre, Bruno

Matériaux, mécanique, génie civil, électrochimie Université Grenoble Alpes 2022.

https://gitlab.com/yade-dev/trunk
https://doi.org/10.1007/s10035-016-0687-0
https://doi.org/10.1063/1.1743957
https://doi.org/10.1007/s11440-011-0151-6
https://doi.org/10.1016/j.advengsoft.2014.04.003
https://doi.org/10.1016/j.advengsoft.2014.04.003
https://doi.org/10.1016/j.softx.2021.100735
https://doi.org/10.1016/j.softx.2021.100735
https://www.ansys.com/products/fluids/ansys-cfx
https://doi.org/10.1007/s10035-018-0791-4
https://doi.org/10.1007/s10035-018-0791-4
https://doi.org/10.1139/cgj-2021-0710
https://doi.org/10.1016/j.cma.2023.116227
https://doi.org/10.1016/j.cma.2023.116227
https://doi.org/10.1016/j.cma.2023.116040
https://doi.org/10.1016/j.compgeo.2012.03.012
https://doi.org/10.1016/j.powtec.2012.12.040
https://doi.org/10.1016/j.powtec.2012.12.040
https://doi.org/10.1016/j.ecoleng.2013.05.002
https://doi.org/10.1016/j.ecoleng.2013.05.002
https://doi.org/10.1146/annurev.fl.20.010188.000551
http://sphinx-doc.org/sphinx.pdf
https://doi.org/10.1016/j.powtec.2023.118601
https://doi.org/10.1016/j.powtec.2023.118601
https://doi.org/10.1016/j.triboint.2022.107661
https://doi.org/10.1016/j.triboint.2022.107661
https://doi.org/10.15632/jtam-pl/163053
https://doi.org/10.1002/nag.2198
https://doi.org/10.1016/j.cma.2020.113292
https://doi.org/10.5802/ogeo.5
https://doi.org/10.5802/ogeo.5
http://www.theses.fr/2022GRALI003
http://www.theses.fr/2022GRALI003

V. Angelidakis, K. Boschi, K. Brzeziński et al.

[23] R.A. Caulk, E. Catalano, B. Chareyre, Accelerating Yade’s poromechanical coupling
with matrix factorization reuse, parallel task management, and GPU computing,
Comput. Phys. Commun. 248 (2020) 106991, https://doi .org /10 .1016 /j .cpc .2019 .
106991.

[24] D. Chan, E. Klaseboer, R. Manica, Film drainage and coalescence between de-

formable drops and bubbles, Soft Matter 7 (2011) 2235–2264, https://doi .org /
10 .1039 /c0sm00812e.

[25] B. Chareyre, W. Chevremont, T. Guntz, F. Kneib, J. Pourroy, Calcul distribué mpi
pour la dynamique de systèmes particulaires, https://www .yade -dem .org /publi /
YadeTechnicalArchive /YadeMPIhackathon .pdf.

[26] B. Chareyre, A. Cortis, E. Catalano, E. Barthélemy, Pore-scale modeling of viscous
flow and induced forces in dense sphere packings, Transp. Porous Media 94 (2012)
595–615, https://doi .org /10 .1007 /s11242 -012 -0057 -2.

[27] H. Cheng, H. Yamamoto, K. Thoeni, Y. Wu, An analytical solution for geotextile-

wrapped soil based on insights from DEM analysis, Geotext. Geomembr. 45 (2017)
361–376, https://doi .org /10 .1016 /j .geotexmem .2017 .05 .001.

[28] W. Chèvremont, H. Bodiguel, B. Chareyre, Lubricated contact model for numerical
simulations of suspensions, Powder Technol. 372 (2020) 600–610, https://doi .org /
10 .1016 /j .powtec .2020 .06 .001.

[29] P. Cundall, O. Strack, A discrete numerical model for granular assemblies, Geotech-

nique (1979) 47–65, https://doi .org /10 .1680 /geot .1979 .29 .1 .47.

[30] T.K.F. Da, S. Loriot, M. Yvinec, 3D alpha shapes, in: CGAL Editorial Board (Ed.),
CGAL User and Reference Manual. 4.11.3, 2018, https://doc .cgal .org /4 .11 .3 /
Manual /packages .html #PkgAlphaShapes3Summary.

[31] L. Dalcin, Y.L.L. Fang, mpi4py: status update after 12 years of development, Com-

put. Sci. Eng. 23 (2021) 47–54, https://doi .org /10 .1109 /mcse .2021 .3083216.

[32] C.A. del Valle, V. Angelidakis, S. Roy, J.D. Muñoz, T. Pöschel, SPIRAL: An efficient
algorithm for the integration of the equation of rotational motion, Comput. Phys.
Commun. 297 (2024) 109077, https://doi .org /10 .1016 /j .cpc .2023 .109077.

[33] M. Dosta, D. Andre, V. Angelidakis, R. Caulk, M. Celigueta, B. Chareyre, J.F. Di-

etiker, J. Girardot, N. Govender, C. Hubert, R. Kobyłka, A. Moura, V. Skorych, D.
Weatherley, T. Weinhart, Comparing open-source DEM frameworks for simulations
of common bulk processes, Comput. Phys. Commun. 296 (2024) 109066, https://

doi .org /10 .1016 /j .cpc .2023 .109066.

[34] J. Duriez, S. Bonelli, Precision and computational costs of Level Set-Discrete El-

ement Method (LS-DEM) with respect to DEM, Comput. Geotech. 134 (2021)
104033, https://doi .org /10 .1016 /j .compgeo .2021 .104033.

[35] J. Duriez, C. Galusinski, A Level Set-Discrete Element Method in YADE for numer-

ical, micro-scale, geomechanics with refined grain shapes, Comput. Geosci. 157
(2021) 104936, https://doi .org /10 .1016 /j .cageo .2021 .104936.

[36] J. Duriez, L. Scholtès, F.V. Donzé, Micromechanics of wing crack propagation for
different flaw properties, Eng. Fract. Mech. 153 (2016) 378–398, https://doi .org /
10 .1016 /j .engfracmech .2015 .12 .034.

[37] J. Duriez, R. Wan, Contact angle mechanical influence for wet granular soils, Acta
Geotech. 12 (2017) 67–83, https://doi .org /10 .1007 /s11440 -016 -0500 -6.

[38] S. Duverger, A multi-scale, MPMxDEM, numerical modelling approach for geotech-

nical structures under severe loading, Ph.D. thesis, Aix-Marseille Université (AMU),
2023, https://theses .hal .science /tel -04101270.

[39] S. Duverger, V. Angelidakis, S. Nadimi, S. Utili, S. Bonelli, P. Philippe, J. Duriez,
Investigation techniques and physical aspects of the angle of repose of granular
matter, Granul. Matter 26 (2024) 20, https://doi .org /10 .1007 /s10035 -023 -01378 -
z.

[40] Sacha Duverger, Jérôme Duriez, Pierre Philippe, Stéphane Bonelli, Rattlers´ in-

volvement for possibly looser critical states under higher mean stress, in: Proc. of
Powders & Grains 2021, EPJ Web Conf. 249 (2021) 11002, https://doi .org /10 .
1051 /epjconf /202124911002.

[41] A. Effeindzourou, B. Chareyre, K. Thoeni, A. Giacomini, F. Kneib, Modelling of
deformable structures in the general framework of the discrete element method,
Geotext. Geomembr. 44 (2016) 143–156, https://doi .org /10 .1016 /j .geotexmem .
2015 .07 .015.

[42] J. Eliáš, Simulation of railway ballast using crushable polyhedral particles, Powder
Technol. 264 (2014) 458–465, https://doi .org /10 .1016 /j .powtec .2014 .05 .052.

[43] D. Fincham, Leapfrog rotational algorithms, Mol. Simul. 8 (1992) 165–178,
https://doi .org /10 .1080 /08927029208022474.

[44] N. Frankel, A. Acrivos, On the viscosity of a concentrated suspension of solid
spheres, Chem. Eng. Sci. 22 (1967) 847–853, https://doi .org /10 .1016 /0009 -
2509(67)80149 -0.

[45] J.A. Gili, E.E. Alonso, Microstructural deformation mechanisms of unsaturated
granular soils, Int. J. Numer. Anal. Methods Geomech. 26 (2002) 433–468, https://

doi .org /10 .1002 /nag .206.

[46] A. Gladkyy, M. Kuna, DEM simulation of polyhedral particle cracking using a
combined Mohr–Coulomb–Weibull failure criterion, Granul. Matter 19 (2017) 41,
https://doi .org /10 .1007 /s10035 -017 -0731 -8.

[47] A. Gladkyy, R. Schwarze, Comparison of different capillary bridge models for ap-

plication in the discrete element method, Granul. Matter (2014) 1–10, https://

doi .org /10 .1007 /s10035 -014 -0527 -z.

[48] N. Guo, Multiscale characterization of the shear behavior of granular media, Ph.D.
thesis, Hong Kong University of Science and Technology, 2014, https://doi .org /
16

10 .14711 /thesis -b1334193.
Computer Physics Communications 304 (2024) 109293

[49] N. Guo, J. Zhao, A coupled FEM/DEM approach for hierarchical multiscale mod-

elling of granular media, Int. J. Numer. Methods Eng. 99 (2014) 789–818, https://

doi .org /10 .1002 /nme .4702.

[50] J. Harkness, A. Zervos, L. Le Pen, S. Aingaran, W. Powrie, Discrete element sim-

ulation of railway ballast: modelling cell pressure effects in triaxial tests, Granul.
Matter 18 (2016) 1–13, https://doi .org /10 .1007 /s10035 -016 -0660 -y.

[51] B. Harthong, L. Scholtès, F.V. Donzé, Strength characterization of rock masses,
using a coupled DEM–DFN model, Geophys. J. Int. 191 (2012) 467–480, https://

doi .org /10 .1111 /j .1365 -246X .2012 .05642 .x.

[52] P. Hartmann, K. Thoeni, J. Rojek, A generalised multi-scale Peridynamics-DEM
framework and its application to rigid-soft particle mixtures, Comput. Mech. 71
(2023) 107–126, https://doi .org /10 .1007 /s00466 -022 -02227 -1.

[53] M. Haustein, A. Gladkyy, R. Schwarze, Discrete element modeling of deformable
particles in YADE, SoftwareX 6 (2017) 118–123, https://doi .org /10 .1016 /j .softx .
2017 .05 .001.

[54] D.L.H. van der Haven, I.S. Fragkopoulos, J.A. Elliott, A physically consistent dis-

crete element method for arbitrary shapes using volume-interacting level sets,
Comput. Methods Appl. Mech. Eng. 414 (2023) 116165, https://doi .org /10 .1016 /
j .cma .2023 .116165.

[55] D.L.H. van der Haven, I.S. Fragkopoulos, J.A. Elliott, Volume-interacting level set
discrete element method: the porosity and angle of repose of aspherical, angular,
and concave particles, Powder Technol. 433 (2024) 119295, https://doi .org /10 .
1016 /j .powtec .2023 .119295.

[56] C. Jamin, S. Pion, M. Teillaud, 3D triangulations, in: CGAL Editorial Board (Ed.),
CGAL User and Reference Manual. 5.6, 2023, https://doc .cgal .org /5 .6 /Manual /
packages .html #PkgTriangulation3.

[57] M. Jean, The non-smooth contact dynamics method, Comput. Methods Appl. Mech.
Eng. 177 (1999) 235–257, https://doi .org /10 .1016 /S0045 -7825(98)00383 -1.

[58] D. Jeffrey, Y. Onishi, The forces and couples acting on two nearly touching spheres
in low-Reynolds-number flow, Z. Angew. Math. Phys. 35 (1984) 634–641, https://

doi .org /10 .1007 /bf00952109.

[59] A.X. Jerves, R.Y. Kawamoto, J.E. Andrade, Effects of grain morphology on critical
state: a computational analysis, Acta Geotech. 11 (2016) 493–503, https://doi .org /
10 .1007 /s11440 -015 -0422 -8.

[60] M. Jiang, S. Leroueil, J. Konrad, Insight into shear strength functions of unsaturated
granulates by DEM analyses, Comput. Geotech. 31 (2004) 473–489, https://doi .
org /10 .1016 /j .compgeo .2004 .07 .001.

[61] R. Kawamoto, E. Andò, G. Viggiani, J.E. Andrade, Level set discrete element
method for three-dimensional computations with triaxial case study, J. Mech. Phys.
Solids 91 (2016) 1–13, https://doi .org /10 .1016 /j .jmps .2016 .02 .021.

[62] L. Kettner, 3D polyhedral surface, in: CGAL Editorial Board (Ed.), CGAL
User and Reference Manual.4.11.3, 2018, http://doc .cgal .org /4 .11 .3 /Manual /
packages .html #PkgPolyhedronSummary.

[63] C. Kloss, C. Goniva, A. Hager, S. Amberger, S. Pirker, Models, algorithms and val-

idation for opensource DEM and CFD-DEM, Prog. Comput. Fluid Dyn. 12 (2012)
140–152, https://doi .org /10 .1504 /pcfd .2012 .047457.

[64] J. Kozicki, F. Donzé, A new open-source software developed for numerical simu-

lations using discrete modeling methods, Comput. Methods Appl. Mech. Eng. 197
(2008) 4429–4443, https://doi .org /10 .1016 /j .cma .2008 .05 .023.

[65] J. Kozicki, A. Gladky, K. Thoeni, Implementation of high-precision computation
capabilities into the open-source dynamic simulation framework YADE, Comput.
Phys. Commun. 270 (2022) 108167, https://doi .org /10 .1016 /j .cpc .2021 .108167.

[66] D. Kunhappan, B. Harthong, B. Chareyre, G. Balarac, P.J.J. Dumont, Numerical
modeling of high aspect ratio flexible fibers in inertial flows, Phys. Fluids 29 (2017)
093302, https://doi .org /10 .1063 /1 .5001514.

[67] B. Leimkuhler, C. Matthews, Molecular Dynamics, Springer, Cham, 2015, https://

doi .org /10 .1007 /978 -3 -319 -16375 -8.

[68] X. Li, Effective stress in unsaturated soil: a microstructural analysis, Géotechnique
53 (2003) 273–277, https://doi .org /10 .1680 /geot .2003 .53 .2 .273.

[69] G. Lian, C. Thornton, M.J. Adams, A theoretical study of the liquid bridge forces
between two rigid spherical bodies, J. Colloid Interface Sci. 161 (1993) 138–147,
https://doi .org /10 .1006 /jcis .1993 .1452.

[70] W. Liang, J. Zhao, Multiscale modelling of large deformation in geomechanics,
Int. J. Numer. Anal. Methods Geomech. 43 (2019) 1080–1114, https://doi .org /10 .
1002 /nag .2921.

[71] S. Luding, Cohesive, frictional powders: contact models for tension, Granul. Matter
10 (2008) 235–246, https://doi .org /10 .1007 /s10035 -008 -0099 -x.

[72] R. Mani, D. Kadau, H.J. Herrmann, Liquid migration in sheared unsaturated gran-

ular media, Granul. Matter 15 (2012) 447–454, https://doi .org /10 .1007 /s10035 -
012 -0387 -3.

[73] D. Marzougui, B. Chareyre, J. Chauchat, Microscopic origins of shear stress in dense
fluid–grain mixtures, Granul. Matter 17 (2015) 297–309, https://doi .org /10 .1007 /
s10035 -015 -0560 -6.

[74] D. Mas Ivars, M.E. Pierce, C. Darcel, J. Reyes-Montes, D.O. Potyondy, R. Paul
Young, P.A. Cundall, The synthetic rock mass approach for jointed rock mass mod-

elling, Int. J. Rock Mech. Min. Sci. 48 (2011) 219–244, https://doi .org /10 .1016 /j .
ijrmms .2010 .11 .014.

[75] C. Modenese, Numerical study of the mechanical properties of lunar soil by the
discrete element method, Ph.D. thesis, Oxford University, UK, 2013, https://ora .

ox .ac .uk /objects /uuid :c8908ef8 -9652 -4e8d -9b2f -49770f3ce815.

https://doi.org/10.1016/j.cpc.2019.106991
https://doi.org/10.1016/j.cpc.2019.106991
https://doi.org/10.1039/c0sm00812e
https://doi.org/10.1039/c0sm00812e
https://www.yade-dem.org/publi/YadeTechnicalArchive/YadeMPIhackathon.pdf
https://www.yade-dem.org/publi/YadeTechnicalArchive/YadeMPIhackathon.pdf
https://doi.org/10.1007/s11242-012-0057-2
https://doi.org/10.1016/j.geotexmem.2017.05.001
https://doi.org/10.1016/j.powtec.2020.06.001
https://doi.org/10.1016/j.powtec.2020.06.001
https://doi.org/10.1680/geot.1979.29.1.47
https://doc.cgal.org/4.11.3/Manual/packages.html#PkgAlphaShapes3Summary
https://doc.cgal.org/4.11.3/Manual/packages.html#PkgAlphaShapes3Summary
https://doi.org/10.1109/mcse.2021.3083216
https://doi.org/10.1016/j.cpc.2023.109077
https://doi.org/10.1016/j.cpc.2023.109066
https://doi.org/10.1016/j.cpc.2023.109066
https://doi.org/10.1016/j.compgeo.2021.104033
https://doi.org/10.1016/j.cageo.2021.104936
https://doi.org/10.1016/j.engfracmech.2015.12.034
https://doi.org/10.1016/j.engfracmech.2015.12.034
https://doi.org/10.1007/s11440-016-0500-6
https://theses.hal.science/tel-04101270
https://doi.org/10.1007/s10035-023-01378-z
https://doi.org/10.1007/s10035-023-01378-z
https://doi.org/10.1051/epjconf/202124911002
https://doi.org/10.1051/epjconf/202124911002
https://doi.org/10.1016/j.geotexmem.2015.07.015
https://doi.org/10.1016/j.geotexmem.2015.07.015
https://doi.org/10.1016/j.powtec.2014.05.052
https://doi.org/10.1080/08927029208022474
https://doi.org/10.1016/0009-2509(67)80149-0
https://doi.org/10.1016/0009-2509(67)80149-0
https://doi.org/10.1002/nag.206
https://doi.org/10.1002/nag.206
https://doi.org/10.1007/s10035-017-0731-8
https://doi.org/10.1007/s10035-014-0527-z
https://doi.org/10.1007/s10035-014-0527-z
https://doi.org/10.14711/thesis-b1334193
https://doi.org/10.14711/thesis-b1334193
https://doi.org/10.1002/nme.4702
https://doi.org/10.1002/nme.4702
https://doi.org/10.1007/s10035-016-0660-y
https://doi.org/10.1111/j.1365-246X.2012.05642.x
https://doi.org/10.1111/j.1365-246X.2012.05642.x
https://doi.org/10.1007/s00466-022-02227-1
https://doi.org/10.1016/j.softx.2017.05.001
https://doi.org/10.1016/j.softx.2017.05.001
https://doi.org/10.1016/j.cma.2023.116165
https://doi.org/10.1016/j.cma.2023.116165
https://doi.org/10.1016/j.powtec.2023.119295
https://doi.org/10.1016/j.powtec.2023.119295
https://doc.cgal.org/5.6/Manual/packages.html#PkgTriangulation3
https://doc.cgal.org/5.6/Manual/packages.html#PkgTriangulation3
https://doi.org/10.1016/S0045-7825(98)00383-1
https://doi.org/10.1007/bf00952109
https://doi.org/10.1007/bf00952109
https://doi.org/10.1007/s11440-015-0422-8
https://doi.org/10.1007/s11440-015-0422-8
https://doi.org/10.1016/j.compgeo.2004.07.001
https://doi.org/10.1016/j.compgeo.2004.07.001
https://doi.org/10.1016/j.jmps.2016.02.021
http://doc.cgal.org/4.11.3/Manual/packages.html#PkgPolyhedronSummary
http://doc.cgal.org/4.11.3/Manual/packages.html#PkgPolyhedronSummary
https://doi.org/10.1504/pcfd.2012.047457
https://doi.org/10.1016/j.cma.2008.05.023
https://doi.org/10.1016/j.cpc.2021.108167
https://doi.org/10.1063/1.5001514
https://doi.org/10.1007/978-3-319-16375-8
https://doi.org/10.1007/978-3-319-16375-8
https://doi.org/10.1680/geot.2003.53.2.273
https://doi.org/10.1006/jcis.1993.1452
https://doi.org/10.1002/nag.2921
https://doi.org/10.1002/nag.2921
https://doi.org/10.1007/s10035-008-0099-x
https://doi.org/10.1007/s10035-012-0387-3
https://doi.org/10.1007/s10035-012-0387-3
https://doi.org/10.1007/s10035-015-0560-6
https://doi.org/10.1007/s10035-015-0560-6
https://doi.org/10.1016/j.ijrmms.2010.11.014
https://doi.org/10.1016/j.ijrmms.2010.11.014
https://ora.ox.ac.uk/objects/uuid:c8908ef8-9652-4e8d-9b2f-49770f3ce815
https://ora.ox.ac.uk/objects/uuid:c8908ef8-9652-4e8d-9b2f-49770f3ce815

Computer Physics Communications 304 (2024) 109293V. Angelidakis, K. Boschi, K. Brzeziński et al.

[76] P. Müller, T. Pöschel, Collision of viscoelastic spheres: compact expressions for the
coefficient of normal restitution, Phys. Rev. E 84 (2011) 021302, https://doi .org /
10 .1103 /PhysRevE .84 .021302.

[77] D. Nishiura, M.Y. Matsuo, H. Sakaguchi, ppohDEM: Computational performance
for open source code of the discrete element method, Comput. Phys. Commun. 185
(2014) 1486–1495, https://doi .org /10 .1016 /j .cpc .2014 .02 .014.

[78] M. Nitka, G. Combe, C. Dascalu, J. Desrues, Two-scale modeling of granular
materials: a DEM-FEM approach, Granul. Matter 13 (2011) 277–281, https://

doi .org /10 .1007 /s10035 -011 -0255 -6.

[79] I.P. Omelyan, Algorithm for numerical integration of the rigid-body equations of
motion, Phys. Rev. E 58 (1998) 1169–1172, https://doi .org /10 .1103 /PhysRevE .
58 .1169.

[80] E. Papachristos, L. Scholtès, F. Donzé, B. Chareyre, Intensity and volumetric char-

acterizations of hydraulically driven fractures by hydro-mechanical simulations,
Int. J. Rock Mech. Min. Sci. 93 (2017) 163–178, https://doi .org /10 .1016 /j .ijrmms .
2017 .01 .011.

[81] B. Patzák, Oofem — an object-oriented simulation tool for advanced modeling
of materials and structures, Acta Polytech. 52 (2012), https://doi .org /10 .14311 /
1678.

[82] G. Pekmezi, B. Chareyre, D. Littlefield, Uniform boundary conditions on models
of spherical particles through alpha shape surface tracking and Laguerre–Voronoi
diagrams, Comput. Phys. Commun. 301 (2024) 109214, https://doi .org /10 .1016 /
j .cpc .2024 .109214.

[83] G. Pekmezi, D. Littlefield, B. Chareyre, Statistical distributions of the elastic moduli
of particle aggregates at the mesoscale, Int. J. Impact Eng. 139 (2020) 103481,
https://doi .org /10 .1016 /j .ijimpeng .2019 .103481.

[84] D.O. Potyondy, A grain-based model for rock: approaching the true microstructure,
in: Proceedings of Rock Mechanics in the Nordic Countries, 2010, pp. 9–12.

[85] D.O. Potyondy, The bonded-particle model as a tool for rock mechanics research
and application: current trends and future directions, Geosyst. Eng. 18 (2015)
1–28, https://doi .org /10 .1080 /12269328 .2014 .998346.

[86] R. Schaa, L. Gross, J. du Plessis, PDE-based geophysical modelling using finite
elements: examples from 3D resistivity and 2D magnetotellurics, J. Geophys. Eng.
13 (2016) S59–S73, https://doi .org /10 .1088 /1742 -2132 /13 /2 /S59.

[87] L. Scholtès, B. Chareyre, F. Darve, Micromechanics of granular materials with cap-

illary effects, Int. J. Eng. Sci. 47 (2009) 64–75, https://doi .org /10 .1016 /j .ijengsci .
2008 .07 .002.

[88] L. Scholtès, P.Y. Hicher, F. Nicot, B. Chareyre, F. Darve, On the capillary stress
tensor in wet granular materials, Int. J. Numer. Anal. Methods Geomech. 33 (2009)
1289–1313, https://doi .org /10 .1002 /nag .767.

[89] L. Scholtès, B. Chareyre, H. Michallet, E. Catalano, D. Marzoughi, Modeling wave-

induced pore pressure and effective stress in a granular seabed, Contin. Mech.
Thermodyn. 27 (2015) 305–323, https://doi .org /10 .1007 /s00161 -014 -0377 -2.

[90] L. Scholtès, F.V. Donzé, Modelling progressive failure in fractured rock masses
using a 3d discrete element method, Int. J. Rock Mech. Min. Sci. 52 (2012) 18–30,
https://doi .org /10 .1016 /j .ijrmms .2012 .02 .009.

[91] L. Scholtès, F.V. Donzé, A DEM model for soft and hard rocks: role of grain
interlocking on strength, J. Mech. Phys. Solids 61 (2013) 352–369, https://

doi .org /10 .1016 /j .jmps .2012 .10 .005.

[92] T. Schwager, T. Pöschel, Coefficient of restitution and linear–dashpot model re-

visited, Granul. Matter 9 (2007) 465–469, https://doi .org /10 .1007 /s10035 -007 -
0065 -z.

[93] J. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University
Press, 1999, https://math .berkeley .edu /~sethian /Books /hold _sethian _book .pdf.

[94] M.I. Shamos, D. Hoey, Geometric intersection problems, in: 17th Annual Sympo-

sium on Foundations of Computer Science (sfcs 1976), IEEE, 1976, pp. 208–215,
https://doi .org /10 .1109 /sfcs .1976 .16.

[95] S. Silling, Reformulation of elasticity theory for discontinuities and long-range
forces, J. Mech. Phys. Solids 48 (2000) 175–209, https://doi .org /10 .1016 /s0022 -
5096(99)00029 -0.

[96] V. Ŝmilauer, Cohesive Particle Model using the Discrete Element Method on the
Yade Platform, Ph.D. thesis, Czech Technical University in Prague, Faculty of Civil
Engineering & Université Grenoble I – Joseph Fourier, 2010, https://tel .archives -
ouvertes .fr /tel -00502402 /document.

[97] V. Ŝmilauer, V. Angelidakis, E. Catalano, R. Caulk, B. Chareyre, W. Chèvremont,
S. Dorofeenko, J. Duriez, N. Dyck, J. Elias, B. Er, A. Eulitz, A. Gladky, N. Guo, C.
Jakob, F. Kneib, J. Kozicki, D. Marzougui, R. Maurin, C. Modenese, G. Pekmezi, L.
Scholtès, L. Sibille, J. Stransky, T. Sweijen, K. Thoeni, C. Yuan, Yade documenta-

tion, in: The Yade Project, 3rd ed., 2021, http://yade -dem .org /doc/.

[98] W. Song, B. Huang, X. Shu, J. Stránský, H. Wu, Interaction between railroad ballast
and sleeper: a DEM-FEM approach, Int. J. Geomech. 19 (2019), https://doi .org /10 .
1061 /(asce)gm .1943 -5622 .0001388.

[99] J. Stránský, Mesoscale Discrete Element Model for Concrete and Its Combina-

tion with FEM, Ph.D. thesis, Czech Technical University in Prague, 2018, https://

dspace .cvut .cz /handle /10467 /75647.

[100] B. Suhr, W.A. Skipper, R. Lewis, K. Six, DEM modelling of railway ballast using the
conical damage model: a comprehensive parametrisation strategy, Granul. Matter
24 (2022) 40, https://doi .org /10 .1007 /s10035 -021 -01198 -z.

[101] T. Sweijen, S.M. Hassanizadeh, B. Chareyre, L. Zhuang, Dynamic pore-scale model
of drainage in granular porous media: the pore-unit assembly method, Water Re-

sour. Res. 54 (2018) 4193–4213, https://doi .org /10 .1029 /2017WR021769.

[102] T. Sweijen, E. Nikooee, S.M. Hassanizadeh, B. Chareyre, The effects of swelling and
porosity change on capillarity: DEM coupled with a pore-unit assembly method,
Transp. Porous Media 113 (2016) 207–226, https://doi .org /10 .1007 /s11242 -016 -
0689 -8.

[103] K. Thoeni, A. Giacomini, C. Lambert, S. Sloan, J. Carter, A 3D discrete element
modelling approach for rockfall analysis with drapery systems, Int. J. Rock Mech.
Min. Sci. 68 (2014) 107–119, https://doi .org /10 .1016 /j .ijrmms .2014 .02 .008.

[104] K. Thoeni, C. Lambert, A. Giacomini, S. Sloan, Discrete modelling of hexagonal
wire meshes with a stochastically distorted contact model, Comput. Geotech. 49
(2013) 158–169, https://doi .org /10 .1016 /j .compgeo .2012 .10 .014.

[105] C. Thornton, S.J. Cummins, P.W. Cleary, An investigation of the comparative be-

haviour of alternative contact force models during inelastic collisions, Powder
Technol. 233 (2013) 30–46, https://doi .org /10 .1016 /j .powtec .2012 .08 .012.

[106] O.R. Walton, Numerical simulation of inclined chute flows of monodisperse, inelas-

tic, frictional spheres, Mech. Mater. 16 (1993) 239–247, https://doi .org /10 .1016 /
0167 -6636(93)90048 -V, special Issue on Mechanics of Granular Materials.

[107] T. Weinhart, L. Orefice, M. Post, M.P. van Schrojenstein Lantman, I.F. Denis-

sen, D.R. Tunuguntla, J. Tsang, H. Cheng, M.Y. Shaheen, H. Shi, P. Rapino,
E. Grannonio, N. Losacco, J. Barbosa, L. Jing, J.E. Alvarez Naranjo, S. Roy,
W.K. den Otter, A.R. Thornton, Fast, flexible particle simulations – an intro-

duction to MercuryDPM, Comput. Phys. Commun. 249 (2020) 107129, https://

doi .org /10 .1016 /j .cpc .2019 .107129.

[108] C. Yuan, B. Chareyre, A pore-scale method for hydromechanical coupling in
deformable granular media, Comput. Methods Appl. Mech. Eng. 318 (2017)
1066–1079, https://doi .org /10 .1016 /j .cma .2017 .02 .024.

[109] L. Zhang, L. Scholtès, F. Donzé, Discrete element modeling of permeability evolu-

tion during progressive failure of a low-permeable rock under triaxial compression,
Rock Mech. Rock Eng. 54 (2021) 6351–6372, https://doi .org /10 .1007 /s00603 -
021 -02622 -9.

[110] S. Zhao, J. Zhao, SudoDEM: unleashing the predictive power of the discrete el-

ement method on simulation for non-spherical granular particles, Comput. Phys.
Commun. 259 (2021) 107670, https://doi .org /10 .1016 /j .cpc .2020 .107670.
17

https://doi.org/10.1103/PhysRevE.84.021302
https://doi.org/10.1103/PhysRevE.84.021302
https://doi.org/10.1016/j.cpc.2014.02.014
https://doi.org/10.1007/s10035-011-0255-6
https://doi.org/10.1007/s10035-011-0255-6
https://doi.org/10.1103/PhysRevE.58.1169
https://doi.org/10.1103/PhysRevE.58.1169
https://doi.org/10.1016/j.ijrmms.2017.01.011
https://doi.org/10.1016/j.ijrmms.2017.01.011
https://doi.org/10.14311/1678
https://doi.org/10.14311/1678
https://doi.org/10.1016/j.cpc.2024.109214
https://doi.org/10.1016/j.cpc.2024.109214
https://doi.org/10.1016/j.ijimpeng.2019.103481
http://refhub.elsevier.com/S0010-4655(24)00216-9/bibA9F79CBA2DF7D0FEC7566FA37ED38C7Bs1
http://refhub.elsevier.com/S0010-4655(24)00216-9/bibA9F79CBA2DF7D0FEC7566FA37ED38C7Bs1
https://doi.org/10.1080/12269328.2014.998346
https://doi.org/10.1088/1742-2132/13/2/S59
https://doi.org/10.1016/j.ijengsci.2008.07.002
https://doi.org/10.1016/j.ijengsci.2008.07.002
https://doi.org/10.1002/nag.767
https://doi.org/10.1007/s00161-014-0377-2
https://doi.org/10.1016/j.ijrmms.2012.02.009
https://doi.org/10.1016/j.jmps.2012.10.005
https://doi.org/10.1016/j.jmps.2012.10.005
https://doi.org/10.1007/s10035-007-0065-z
https://doi.org/10.1007/s10035-007-0065-z
https://math.berkeley.edu/~sethian/Books/hold_sethian_book.pdf
https://doi.org/10.1109/sfcs.1976.16
https://doi.org/10.1016/s0022-5096(99)00029-0
https://doi.org/10.1016/s0022-5096(99)00029-0
https://tel.archives-ouvertes.fr/tel-00502402/document
https://tel.archives-ouvertes.fr/tel-00502402/document
http://yade-dem.org/doc/
https://doi.org/10.1061/(asce)gm.1943-5622.0001388
https://doi.org/10.1061/(asce)gm.1943-5622.0001388
https://dspace.cvut.cz/handle/10467/75647
https://dspace.cvut.cz/handle/10467/75647
https://doi.org/10.1007/s10035-021-01198-z
https://doi.org/10.1029/2017WR021769
https://doi.org/10.1007/s11242-016-0689-8
https://doi.org/10.1007/s11242-016-0689-8
https://doi.org/10.1016/j.ijrmms.2014.02.008
https://doi.org/10.1016/j.compgeo.2012.10.014
https://doi.org/10.1016/j.powtec.2012.08.012
https://doi.org/10.1016/0167-6636(93)90048-V
https://doi.org/10.1016/0167-6636(93)90048-V
https://doi.org/10.1016/j.cpc.2019.107129
https://doi.org/10.1016/j.cpc.2019.107129
https://doi.org/10.1016/j.cma.2017.02.024
https://doi.org/10.1007/s00603-021-02622-9
https://doi.org/10.1007/s00603-021-02622-9
https://doi.org/10.1016/j.cpc.2020.107670

	YADE - An extensible framework for the interactive simulation of multiscale, multiphase, and multiphysics particulate systems
	1 Introduction
	2 Modeling features
	2.1 Particle shapes
	2.2 Deformable particles and flexible structures
	2.3 Broad-phase and narrow-phase collision detection
	2.4 Interaction models
	2.4.1 Framework of classical interaction models
	2.4.2 Cohesive materials with predefined planar discontinuities
	2.4.3 Capillary models
	2.4.4 Lubrication models

	2.5 Boundary conditions
	2.5.1 Rigid and viscoelastic boundaries
	2.5.2 Uniform boundaries
	2.5.3 Periodic boundaries

	2.6 Coupling approaches
	2.6.1 PFV-DEM coupling: FlowEngine and TwoPhaseFlowEngine
	2.6.2 GPU acceleration of the FlowEngine
	2.6.3 ThermalEngine
	2.6.4 CFD-DEM coupling with OpenFOAM
	2.6.5 Hierarchical multiscale coupling
	2.6.6 Multidomain coupling

	3 General overview
	3.1 User interface and live processing
	3.2 Post-processing
	3.2.1 From discrete to continuum results
	3.2.2 Acoustic emissions module

	3.3 Installation
	3.4 Code development, continuous integration, deployment and packaging
	3.5 Build system

	4 Framework features
	4.1 Serialization
	4.2 OpenMP and MPI parallelizations
	4.2.1 Shared memory
	4.2.2 Distributed memory

	4.3 Available floating-point precisions

	5 Summary and future outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

