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Abstract: Soil compaction is one of the most important and readily mitigated threats to soil health.
Digital Soil Mapping (DSM) has emerged as an efficient method to provide broad-scale maps by
combining soil information with environmental covariates. Until now, soil information input to DSM
has been mainly composed of point-based quantitative measurements of soil properties and/or of
soil type/horizon classes derived from laboratory analysis, point observations, or soil maps. In this
study, we used field estimates of soil compaction to map soil behavior to compaction at a national
scale. The results from a previous study enabled clustering of six different behaviors using the in situ
field observations. Mapping potential responses to soil compaction is an effective land management
tool for preventing future compaction. Random forest was used to make spatial predictions of soil
behavior to compaction over cultivated soils of mainland France (about 210,000 km2). Modeling was
performed at 90 m resolution. The map enabled us to spatially identify clusters of possible responses
to compaction. Most clusters were consistent with known geographic distributions of some soil
types and properties. This consistency was checked by comparing maps with both national and
local-scale external sources of soil information. The best spatial predictors were available digital
maps of soil properties (clay, silt, sand, organic carbon (SOC) content, and pH), some indicators of soil
structural quality using SOC and clay content, and environmental covariates (T ◦C and relief-related
covariates). Predicted maps were interpretable to support management recommendations to mitigate
soil compactness at the soil–scape scale. Simple observational field data that are usually collected by
soil surveyors, then stored and available in soil databases, provide valuable input data for digital
mapping of soil behavior to compaction and assessment of inherent soil sensitivity to compaction.

Keywords: soil; compactness; on-field observations; indicators; sensitivity to compaction; clustering;
digital soil mapping; random forest

1. Introduction

Digital soil mapping (DSM) started to emerge as a mature soil mapping method
at the beginning of the 2000s [1,2]. The initial concept of DSM relied on mapping soil
properties and/or soil classes using information on soils and spatially exhaustive covariates.
In their seminal article, McBratney et al. [2] proposed a model called SCORPAN (Soil,
Climate, Organisms, Relief, Parent material, Age, and N for location). The basic principle
of SCORPAN is to model statistical relationships between information from soil sample
measurements, soil descriptions, or pre-existing soil maps, and spatialized environmental
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covariates. The SCORPAN model is based on the work and concepts initially developed
by Jenny [3]. Minasny and McBratney [4] provided a brief history of the DSM from the
beginning. They identified the development of the first approaches towards the end of the
1970s, followed by significant development between the 1980s and the beginning of 2000,
and then by exponential growth after 2000. Initially developed in the academic realm, DSM
is now operational at numerous scales and on many continents, delivering many products
from landscape to world scale (see reviews and syntheses [5–10]). One of the recent trends
is the move from DSM of soil attributes to digital soil assessment (DSA) of soil function,
behaviors, and services [11].

Most of the DSM soil input data come largely from georeferenced soil databases
(e.g., [9,11–22]). Consequently, soil input data to DSM are most frequently quantitative
data, e.g., point-based laboratory soil analyses at various soil depths or proximal- or remote
sensing-derived soil data (e.g., [23–29]), though some studies use conventional soil maps
(e.g., [30–35]).

However, qualitative data from field expertise and soil pit descriptions have been
much less used as soil input data for DSM, though some inferences were derived from
soil types or classes (e.g., [36–40]) or from specific soil features and diagnostic horizons
(e.g., [41–47]).

Soil scientists and soil surveyors conduct many soil descriptions during their field
work. These descriptions use national instructions and standard protocols described in
detail in field books (e.g., [48–50]). However, the qualitative information gathered by soil
surveyors and stored in soil databases was rarely used especially for estimating soil physical
properties and behaviors and relating them to quantitative soil properties. Additionally, to
our present knowledge, field observations have never been used as input data for predictive
mapping of soil physical properties. Among these physical properties, we focus on topsoil
compactness. Rather than a static prediction of soil compactness, we aim to map various
soil behaviors to compaction, which is an important component of changes in soil condition
and health.

A previous study [51] used data on numerous in situ topsoil observations conducted in
the framework of conventional soil surveys over the French territory. This study involved
(i) comparing field observations to usual indicators of soil compactness and sensitivity
to compaction, (ii) identifying relationships between field estimates of soil compactness
degree and some of the measured properties, and (iii) distinguishing six clusters of topsoil
behavior to compaction by using hierarchical clustering. However, this study did not fully
explain and interpret all the clusters, as some of them had incomplete data.

We postulate that using a DSM approach for spatial prediction of these clusters could
provide additional information about the controlling factors of soil behavior to compaction.
Indeed, searching for relevant covariates, such as particle-size distribution, indicators of
sensitivity to compaction, and other potentially relevant spatial data (e.g., climate, relief,
soil parent material), could bring new insights to the understanding and interpretation
of soil behavior to compaction. In addition, from a practical point of view, mapping
these behaviors is an essential step to inform local actors and advisers about inherent
soil sensitivity to compaction. Therefore, we aim to use DSM to spatially predict clusters
of cultivated topsoil behavior to compaction over the French territory. This approach
clearly moves from DSM prediction of rather static soil attributes to DSA of soil behavior
to compaction.

Our main objectives are to (i) map soil behavior to compaction at a national scale, (ii)
check if this map makes sense from a soil geography point of view, (iii) provide additional
insights into the controlling factors of soil behavior to compaction, and (iv) check if these
spatial clusters can inform decision-making and at which scale.
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2. Material and Methods
2.1. Study Area

Located in western Europe, mainland France is in the temperate climatic zone, charac-
terized by warm summers and moderately cold winters. Depending on latitude, longitude,
and elevation, mainland France exhibits some contrasts from the climates of oceanic, conti-
nental, and Mediterranean settings. Mainland France covers about 550,000 km2, including
about 210,000 km2 of arable lands. Agricultural systems are very diverse, including large
farms of intensively managed field crops, mainly located on large plains of deep silty soils
and irrigated calcareous soils. Livestock farming is dominant in certain regions such as
Brittany, part of Normandy, and Massif Central. Perennial crops include vineyards and
orchards (Figure 1).

1 
 

 
Figure 1. Main land uses in mainland France after the Theia OSO Land Cover Map [52]. Areas: crop-
land: 160,000 km2; vineyard/orchard: 10,000 km2; forest: 160,000 km2; bare-rock: 34,000 km2; urban:
56,000 km2; water: 6000 km2; glacier: 235 km2; grassland: 80,000 km2 (permanent); 40,000 km2 (non-
permanent). Regions: 1: Alsace; 2: Aquitaine; 3: Auvergne; 4: Basse-Normandie; 5: Bourgogne; 6: Bre-
tagne; 7: Centre-Val-de-Loire; 8: Champagne-Ardennes; 9: Franche-Comté; 10: Haute-Normandie;
11: Ile-de-France; 12: Languedoc-Roussillon; 13: Limousin; 14: Lorraine; 15: Midi-Pyrénées; 16: Nord-
Pas-de-Calais; 17: Pays de la Loire; 18: Picardie; 19: Poitou-Charentes; 20: Provence-Alpes-Côte-
d’Azur; 21: Rhône-Alpes.

The present study is limited to arable soils (croplands, vineyards/orchards, and non-
permanent grasslands). French soils are highly diverse due to a combination of complex
geology, various climates, and a large range of elevations and geomorphology [53].

Mainland France has a diverse range of cropping systems influenced by its varied
climate, soil types, and agricultural traditions. One of the strong trends of the last 50 years
is the specialization of agricultural systems—some producing crops without livestock,
others breeding animals almost without crops—which has led to the specialization of some
regions that were traditionally dedicated to mixed crop agriculture–livestock systems. Some
regions with suitable soil and climate conditions have become major crop regions. Other
regions benefiting from favorable commercial and industrial situations have concentrated
livestock activities or vegetable production. The modernization of agriculture has, therefore,
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resulted in the specialization of some territories to a limited number of productions. Here,
we present a brief overview of the main cropping systems found across different regions.

• Cereal cropping systems mainly include wheat, barley, and maize crops. Wheat is
mainly grown in northern and central France, particularly in regions such as Ile-de-
France, Picardie, and Centre-Val-de-Loire. Winter wheat is the most common variety.
Barley is grown alongside wheat in Lorraine, Nord-Pas-de-Calais, Picardie, and areas
with more marginal soils. Maize is widely cultivated in Aquitaine, Midi-Pyrénées, and
in Alsace.

• Oilseed and protein crops systems are based on rapeseed (Canola), commonly grown
in Nord-Pas-de-Calais and Picardie and in eastern France, including Bourgogne,
Champagne-Ardennes, and Alsace, whereas sunflower and soybean are mainly grown
in Poitou-Charentes, Aquitaine, and Midi-Pyrénées.

• In these two cropping systems, conventional tillage by plowing is the most frequent
practice. However, many practices between direct sowing and conventional tillage
are currently developing. An example of such practices is occasional plowing, which
is carried out to resolve situations that have become problematic after a few years of
stopping plowing.

• Root and tuber cropping systems include sugar beet production and potatoes in Nord-
Pas-de-Calais, Picardie, and Bretagne. Conventional tillage includes deep plowing to
prepare the soil for planting, followed by harrowing and sometimes ridging to ensure
proper root and tuber development.

• Viticulture systems are located in small terroirs characterized by specific combinations
of soil and climate conditions. However, the Languedoc-Roussillon region is character-
ized by a large area of vineyards. Most vines are plowed deeply before planting, then
either grassed or tilled superficially depending on the climate and water availability.
While many vineyards are shifting towards reduced tillage or no-till practices, tillage
is still used in some areas for weed control and soil management. This may include
plowing between vine rows or harrowing to manage the soil surface.

• Vegetable production systems are mainly concentrated in some key regions, including
Bretagne (e.g., artichokes, cauliflower, and carrots), Provence-Alpes-Côte-d’Azur (e.g.,
tomatoes, zucchini, and eggplants), Nord-Pas-de-Calais and Picardie (potatoes, peas,
beans), and along the large valleys of the main rivers. Conventional tillage is common,
with frequent plowing and soil preparation to manage diverse vegetable crops. This
system often involves multiple cropping cycles per year.

• Fruit systems include apple orchards, prominent in Bretagne and Basse-Normandie,
while stone fruits (apricots, peaches, and cherries) are common in the Rhône-Alpes
and Provence-Alpes-Côte-d’Azur. Orchards are either grassed or tilled superficially.

• Forage and pasture systems include permanent extensive grasslands found in regions
like Auvergne, Basse-Normandie, Bretagne, Franche-Comté, and Limousin, support-
ing dairy and beef cattle. These cropping systems were excluded from this study.
Non-permanent forage crops are included in some rotations to support livestock feed
needs, especially in areas where mixed farming systems still exist. In the latter case,
the soils are often plowed before seedling. Non-permanent forage crops are included
in the present study.

While conventional tillage remains common, there is a growing trend towards con-
servation tillage and no-till practices in France, driven by energy costs, environmental
concerns, and the need for sustainable farming practices.

2.2. Soil Data

Soil data extraction and filtering are detailed in [51]. Briefly, topsoil data from cul-
tivated French lands were extracted from available records of the soil profiles from the
French national database. We applied filtering processes to retain only cultivated topsoil
and remove a couple of O horizons that were observed in fields recently converted from
forest to cultivation. Topsoils were collected from a large variety of crop rotations and
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management practices. Soil compactness was described in the field as moisture slightly
lower than field capacity and far from the permanent wilting point. The compactness
is an ordered qualitative variable defined in 4 soil compactness classes (SCC). We chose
this on-field test because of its simplicity and the large amount of available information,
i.e., SCC observations collected on about 14,500 topsoil horizons (Figure S1). For these
horizons, we also extracted quantitative variables corresponding to laboratory analyses,
e.g., particle-size fractions, soil organic carbon content (SOC), bulk density (BD), pH, cation
exchange capacity (CEC), C/N ratio, and CaCO3 content (see Table 2 in [51]).

The SCCs were compared to nine commonly used indicators, either belonging to
general indicators of structural quality and various soil physical properties such as soil
structural stability and soil porosity or specifically focused on soil compactness. These nine
indicators are described in [51]. In an orthonormal space of silt% on the abscissa and clay%
on the ordinate, we divided the space into squares of 2% × 2%, called soil texture cells
(STcells) hereafter. Within each STcell, we calculated the frequency of each SCC. From this
frequency, we derived four quantitative variables (SCC-1, SCC-2, SCC-3, and SCC-4), each
equal to the frequency of a given SCC within an STcell.

We then performed a clustering of STcells using the four above-mentioned quantitative
variables to characterize each STcell. Hierarchical clustering methods and results are
described in [51]. In order to choose the number of clusters, we compared the following
methods: (i) changes in the sum of squared errors with an increasing number of clusters; (ii)
goodness of clustering measure, i.e., the “gap” statistic [54]; (iii) the number of STcells by
cluster with the increasing number of clusters. Full results are detailed in [51]. The optimal
number of clusters was six. Clusters were also assigned to each observation point, which
made it possible to analyze their relationships with soil structure, compaction indicators,
and some soil properties [51].

2.3. Digital Soil Mapping (DSM)
2.3.1. DSM Model, Parameters, and Evaluation

Random forest (RF) is a machine learning algorithm that produces multiple decision
trees, randomly choosing features to make decisions when splitting nodes to create each tree.
It then takes these randomized observations from each tree and averages them out to build
a final model [55]. RF is one of the most used machine learning for DSM at broad-scales [8],
and more details about its theory and applications can be found in [56]. A prediction
model was generated from the SCC observation points using the randomForest package
(version 4.7-1.1 [57]) in R. For model learning or training, we assigned its corresponding
cluster class to each SCC observation point. Random forest algorithms have three main
hyper-parameters that must be set before training. As relying on default parameters can
introduce uncertainty, we performed a sensitivity analysis by testing the effect of increasing
the hyper-parameters values on the out-of-bag error to determine the optimal settings
for these parameters. Figure 2 shows that the default values offered by the randomForest
function, namely 500, 3, and 1, for the number of trees, number of features (mtry), and node
size, respectively, were suitable.

We used 10-fold cross-validation. Note that this 10-fold cross-validation is not com-
parable to the usual process of cross-validation, as the left-out folds of data were not real
point “truth” observations but the STcell cluster classes the points belong to. A confusion
matrix was built in order to compare point predictions with the original clusters to which
they belong. The overall agreement (OA) corresponded to the sum of the points located
in the diagonal of the matrix divided by the total number of points. The Kappa and Tau
agreement indices were calculated as follows.
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The Kappa index is calculated as:

K =
Po − Pe

1 − Pe
(1)

where Po is the proportion of correctly classified samples, and Pe is the probability of
random agreement. Kappa results can range from −1 to +1.

The Tau was calculated to better account for unbalanced sample class distribution.
The Tau index was calculated using the tauW function in the R aqp package (version
2.0.2. [58]). The Tau indicator measures the improvement of the classification over a
random chance [59–61]. When the value of the Tau index is close to 1, it indicates an almost
perfect agreement.

Tau =
θ1 − θ′2
1 − θ′2

(2)

where

θ1 =
r

∑
i=1

Pii (3)

θ′2 =
r

∑
i=1

Pi × P+i (4)

The importance of covariates was assessed using the Gini coefficient [62]. The aver-
age decrease in the Gini coefficient is a measure of how each variable contributes to the
homogeneity of nodes and leaves in the resulting random forest. The higher the value
of the Gini score, the more important the variable is in the model. As we had no clear
indication of what the “true values” are, the Gini index coefficient is more relevant than
accuracy-based indices.

The frequency of SCCs in each predicted point-based cluster was calculated and
compared to the box plots of frequencies of the SCCs in STcell clusters. For each predicted
cluster, box plots of selected quantitative data and/or indices classes were plotted and
compared to the box plots obtained for STcell clusters. Maps of predicted clusters were
displayed. For displaying maps, a mask of non-cropped soil was applied using (OSO [52]).

2.3.2. Covariates

The covariates (Table 1) included raster soil properties predicted from GlobalSoilMap-
France [63] and the 5–15 cm layer for particle-size fractions (clay, silt, sand), pHwater, and
SOC. From these SOC and clay rasters, we calculated a raster of the SOC/clay ratio [64,65]
and a raster of the SOC/SOCexp ratio [66]. The SOC/SOCexp ratio was calculated using a
slightly different method than proposed in [66], and this method is described in [51].
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Table 1. List of covariates: acronyms, types, spatial resolution, unit, and reference.

Name Covariate Resolution Unit Reference

clay_GSM Clay 90 m g kg−1 GlobalSoilMap-France [63]

silt_GSM Silt 90 m g kg−1 GlobalSoilMap-France [63]

sand_GSM Sand 90 m g kg−1 GlobalSoilMap-France [63]

SOC_GSM SOC 90 m g kg−1 GlobalSoilMap-France [63]

ph_GSM pHwater 90 m pH GlobalSoilMap-France [63]

SOC/clay SOC/clay ratio 90 m - calculated from
GlobalSoilMap-France [63]

SOC/SOCexp SOC/SOCexp ratio 90 m - calculated from
GlobalSoilMap-France [63]

tmax maximum annual temperature 1 km2 ◦C
WorldClim

http://www.worldclim.org/
(accessed on 3 July 2024)

typo climate typology 90 m 8 classes [67]

geol Soil parent material 90 m 9 classes [68]

IDPR Rate of river network
development and persistence 1:50 K - [69]

SRTM Elevation 90 m m SRTM (Shuttle Radar Topography
Mission), [70]

OCS Landscape Sentinel-2 2018 10 m 23 classes Theia OSO Land Cover Map [52]

Climatic data included the maximum annual average temperature and a climate
typology in 8 classes [67]. The lithology was derived from the dominant soil parent material
stored in the 1:1,000,000 Geographical Soil Database of France (BDGSF; [68,71,72]). The
soil parent material was classified into 9 classes. The IDPR index (Network Development
and Persistence Index Values) was created by the French Institute for geology and mining
research (BRGM) in 2014 [69]. It assesses the ability of the bedrock to induce water surface
flow or infiltration. The elevation was given by the 90 m SRTM DEM (Shuttle Radar
Topography Mission Digital Elevation Model [70]). Land cover (OCS for “OCcupation du
Sol” in French) came from the Theia OSO Land Cover Map [52]. This product was compiled
from a series of multi-temporal optical images with high spatial resolution (Sentinel-2, 2018).
From this raster, we created a mask in order to keep only the cropped areas. These covariates
were re-sampled using the R terra package (version 1.7-39) to have the same resolution
(Figures S2 and S3). The reference resolution is that of SRTM. Covariates selection was
refined using recursive feature elimination (RFE; rfeControl function of the caret package
version 6.0-94 [73]). From the thirteen types of covariates described in Table 1, ten were
retained by RFE: clay_GSM, silt_GSM, sand_GSM, pH_GSM, SOC/clay, SRTM, IDPR, tmax,
SOC_GSM, and SOC/SOCexp. Strictly speaking, as some qualitative covariates were split
into many presence–absence covariates, RFE dropped the total number of covariates from
50 to 10. The maps of the covariates are available in Figures S2 and S3.

3. Results
3.1. Random Forest Modeling Confusion Matrix

Table 2 shows the confusion matrix derived from 10-fold cross-validation. The lines
are the STcell clusters from which point data were extracted. The columns correspond to
the RF predictions of each individual point belonging to a cluster. Therefore, lines and
columns do not have the same meaning and support. This consideration is important to
keep in mind when interpreting the confusion matrix. Another important point to consider
is the unbalanced number of points between clusters.

http://www.worldclim.org/
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Table 2. Confusion matrix (OA: overall agreement). For each column and line, recall% is the ratio
between the number of points belonging to the same cluster and the total number of points in the
corresponding STcell and RF predicted clusters, respectively.

STcell
Cluster

Random Forest Cluster
Total Recall%

1 2 3 4 5 6

1 309 101 764 93 29 8 1304 23.7

2 92 380 601 190 102 67 1432 26.5

3 338 306 3091 294 120 35 4184 73.9

4 86 228 775 264 78 37 1468 18.0

5 35 138 280 85 154 32 724 21.3

6 11 116 105 49 41 51 373 13.7

Total 871 1269 5616 975 524 230 9485

Recall% 35.5 29.9 55.0 27.1 29.4 22.2 OA = 45%

The overall agreement (OA) between the STcell clusters from which point data were
extracted and the point predicted clusters using RF was 45%. One striking result is that
most of the points (73.9%) belonging to STcells cluster 3 were allocated to cluster 3 by RF.
Conversely, only 55.0% of the points predicted as cluster 3 came from the STcell cluster 3.
Overall, RF predictions tended to smooth the differences between recall% values when
compared to STcell clustering. The Kappa coefficient was 0.20, which was substantially
lower than the OA, indicating that a large portion of the apparent classification agreement
could be due to chance. The Tau index was 0.34, i.e., closest to the OA. Overall, OA, Kappa,
and Tau were rather low if we compare them with the range of values usually observed in
soil map assessments (e.g., [74,75]).

3.2. Covariates Importance

Figure 3 shows, for each variable, its importance in the classification of the data. The
variables are presented in order of decreasing importance according to the Gini coefficient.
Clay and sand were the most important covariates, followed by pH. As expected from
previous results [51], the particle-size fractions were among the most important covariates.
The SOC/clay index was in the fifth position, followed by non-soil covariates (IDPR, SRTM,
tmax), SOC, and SOC/SOCexp.
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Considering the relative importance of pH, we wanted to know if the distributions of
pH and CaCO3 content were different among clusters. Figure 4 displays the distribution of
these covariates among the clusters. Figure 4a shows that the distribution of pH values
was slightly different among clusters, whereas Figure 4b shows that the third quartiles of
CaCO3 were substantially higher for clusters 2, 4, and 6 than for the other ones.
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3.3. Characteristics of the Predicted Clusters
3.3.1. Frequency of Soil Compactness Classes and Selected Soil Properties per
Predicted Cluster

Figure 5 compares the frequency of SCCs in each cluster after the clustering step
with the frequency of SCCs in clusters predicted by DSM. The SCC frequencies of the
DSM-predicted clusters were very similar to those observed by STcell clusters previously
identified by Richer-de-Forges et al. [51].
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For predicted cluster 1 and cluster 5, the point predictions tended to slightly lower the
largest SCC proportions compared to the highest SCC frequencies within STcells clusters.
However, these most frequent SCCs remained the same (SCCS-1 for cluster 1 and SCC-2
for cluster 5). Another small difference appeared in cluster 6, where the frequency of SCC-1
was slightly lower than for the corresponding STcell cluster.

3.3.2. Relationships between Predicted Clusters and Indicators of Soil Compactness and
Soil Properties

Figure 6 displays the relative proportion of two indicators of restrictive bulk density
(BDr1 and BDr2) among the predicted clusters. These two indicators were defined by
Jones [76] according to threshold values for limiting root depth, and both were classified
into three classes. These threshold values are calculated from linear equations using clay
content (BDr1) or (clay + silt) content (BDr2). BDr1 did not exhibit striking differences
between clusters except for cluster 6, where the proportion of class3 was much larger
compared to the other clusters. BDr2 showed a slight decrease in class1 proportion from
cluster 1 to 4 with an increase in class3, whereas class2 proportion remained remarkably
constant (ranging from 49 to 50.9%). Cluster 6 class proportions were exactly the same for
BDr1 and BDr2.
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Figure 7 displays box plots of selected soil properties and threshold values for BDr2
for the DSM-predicted clusters.

The box plots of particle-size fractions of the predicted clusters were consistent with
the distribution of the initial clusters in the ST triangle (see Figure 6 in [51]). Cluster 1 was
the sandiest, whereas cluster 6 was the clayest. Cluster 5 was characterized both by high
values of silt and fine silt and the lowest median value of clay content. BDr2 thresholds
were distributed in the same way. Note the high values for cluster 1 and the very low
median values for cluster 5.

3.4. Mapping

Figure 8 displays the cluster prediction map.
As expected, the predicted map of clusters mainly reflected the national distribution

of topsoil texture as mapped by Mulder et al. [63]. All the large patches of sandy soils that
were identified by the topsoil texture map are visible in the cluster map and correspond
mainly to cluster 1. For example, in the southwest, the “Landes de Gascogne” are covered
by podzols developed nearly in pure quartz sands [43,77]. Large patches of cluster 2
mainly correspond to silty clay textures, a large part of which is developed from calcareous
parent materials. Cluster 3 dominates in large loamy and clayey silt to silty–clayey areas.
Indeed, it dominates all of northwestern France, part of the southwest, and the Alsace plain
(Eastern part of France). Cluster 4 is mainly encountered in somewhat poorly drained
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conditions, such as Stagnosols in flat plains, depressed areas, former marshlands, and soils
under flooding risk, such as some Colluvic cambisols or Fluvisols. As Cluster 4 is mainly
dominated by temporal water-logging conditions, it explains why it is poorly correlated
with texture. Cluster 5 appears to group very different soils, most of which are characterized
by high contents of silt and fine silt (see Figure 7). Cluster 5 is mainly localized either on
silt-rich soils such as Luvic Cambisols (Eutric) and Haplic Luvisols (Hypereutric) (see the
zoom in Figure 9 and silt content in Figure S4) or on soils developed from soft calcareous
materials (Cambisols (Calcaric)) with a lot of fine silt calcareous particles (see the zoom in
Figure 10).
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Figure 8. Map of predicted clusters. Areas left blank are non-cultivated areas and areas where
covariates were not available.

Note that the large cluster 5 patches from this map are characterized by rather extreme
and homogeneous measured silt and fine silt contents when compared to the general box
plot of cluster 5 silt and fine silt contents (Figure S4), as predicted by Mulder et al. [63] (see
Figure 7).

Cluster 6 is mainly found in clayey and rather unstable soil structure situations. The
largest patches of cluster 6 are located in the coastal marshlands in western France, where
the main soils encountered are poorly drained clayey sodic soils (Solonetz, see the zoom in
Figure 10) and poorly drained clayey soils (Epistagnic Regosols (Clayic)) in the Lorraine
region (northeastern France).
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Figure 9. Zoom of the map of predicted clusters on the soil map of Châteaudun [78]. Blue areas
(cluster 5) are Luvic Cambisols (Eutric) and Haplic Luvisols (Hypereutric) developed on loess
deposits covering a calcareous rock and containing a large amount of silt and fine silt in the topsoil
(see Figure S4). Green areas group a variety of soils mainly dominated by loamy topsoils (cluster 3).
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Figure 10. Zoom of the map of predicted clusters in the Charentes region. Maritime sodic marshlands
are in violet (cluster 6); light blue areas are mainly calcareous soils (Cambisols (Calcaric)) with high
contents of silt and fine silt (cluster 5); dark blue areas correspond to non-sodic poorly drained soils
(cluster 4); green areas group a variety of soils mainly dominated by loamy topsoils (cluster 3); orange
areas are silty clays soils developed on calcareous hard rock (cluster 2); red areas are sandy soils
(Cluster 1).
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4. Discussion
4.1. Consistency of the Results and Main Outputs

We previously showed that clustering very simple information gathered in the field
allowed clusters of topsoil behavior to be defined as compaction stress. These clusters were
compared to several soil properties and indicators of soil structure, and spatial predictions
were generated. When mapped and compared to the observed soils, the clusters displayed
both consistent soil properties and geographical distribution with some of the existing
national maps, such as topsoil texture, but also with more detailed maps. One striking
result is that the national distribution of SCCs and soil properties remained very similar
among clusters when defined by STcells and when further mapped at 90 m resolution.

The goal was to assess soil behavior to compaction; however, there was only one
observation at one given time at each point, which required extrapolation techniques for
spatial representation of soil behavior. We previously calculated distributions of SCCs
among STcells and ran a clustering based only on the points and were able to interpret
some of the clusters but with no geographic context. In this article, DSM improved the
interpretation of the clusters, and in addition to confirming previous results, it identified
new spatial factors (covariates) correlated to these behaviors to compaction.

Overall, we were able to map the six clusters that were defined in [51]. Most impor-
tantly, we were able to interpret controlling factors better. Cluster 1 is easily interpretable,
as it corresponds to sandy soils that are the least sensitive to compaction and for which the
compactness can be easily reversed by tillage. Cluster 2 is mainly composed of silty clays
under hypereutric calcareous conditions; they can reach rather high compactness states,
but they are reversible by tillage and/or by favorable pH for biological activity. Cluster
4 is mainly controlled by water-logging, which explains why it is not correlated to soil
texture. It can be more or less easily compacted depending on the seasonal variability of
soil moisture and when pressure to soil is applied.

The unexpected cluster 5 is characterized by large amounts of very fine but not
deformable particles. The effect of compaction can lead to decreases in soil microporosity
because high pressures can change the arrangement of these particles so that they reach
their theoretical maximal BD and their minimum mean sizes of pores. However, as cluster 5
is dominated by one particle size, the theoretical maximal BD is limited when compared to
soils with more heterogeneous particle sizes. Cluster 5 is also characterized by calcareous,
eutric, or hypereutric conditions and rather well-drained situations. Cluster 6 is clearly
linked to some clayey soils with low structural stability and are often water-saturated.
Cluster 3 is still more challenging to interpret, as discussed in Sections 4.3.1 and 4.4.2.

4.2. Comparison with Other Studies

Most national and continental-scale maps of soil compactness or sensitivity to com-
paction used measurements and rather simple indicators such as PD or BDr; thresholds of
porosity and/or PTFs, or pedotransfer rules (PTRs) to derive maps (e.g., [79–83]); or use
models that require many properties that are most often derived from PTFs (e.g., [84–87]).
Combining field observations and covariates to map soil behavior to compaction has almost
never been conducted at the national scale to the best of our knowledge.

Jones et al. [79] estimated and mapped the inherent susceptibility of the subsoil to
compaction using “relatively stable soil properties”, i.e., texture and packing density. They
emphasized the limitations of the European soil and climatic databases that they used. The
ST was estimated to be from only five expert-based classes, and the BD was derived from
expert-based PTRs. Therefore, the estimates of PD they used, depending on both BD and
clay content, were highly uncertain. In addition, Jones et al. used a PTR based on classes of
ST and PD to derive four classes of susceptibility to compaction and used the dominant
soil type of large soil map units to derive their map. Though this map could be considered
as a starting point, it had many flaws, which were fully acknowledged and discussed by
the authors.
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Hollis et al. [81] further developed empirically derived PTFs and PTRs for predicting
bulk density for European soils. Thanks to the growing number of available BD measure-
ments in European topsoils [18], similar approaches were used to derive BD from PTRs
and to provide pan-European maps of topsoil BD and PD [80,88]. All these maps exhibited
a high uncertainty due to accumulated errors propagating from point BD measurements
to inherent uncertainties in PTFs and PTRs models, as well as further uncertainties in
mapping the input parameters of the PTFs and PTRs. In addition, they did not provide
classes of topsoil behavior to compaction but rather classes of static inherent sensitivity to
compaction. Indeed, they were most often used to derive stocks of elements [83,89] rather
than to assess compaction risks in Europe.

Other attempts to map soil compaction risks included the combination of many spatial
data and their use in mechanical models. Van den Akker et al. [90] mapped soil compaction
risk in the Netherlands by combining several information sources (e.g., a land use database,
an inventory of commonly used heavy machinery, a soil map at 1:50,000 scale and its
associated database with descriptions of typical soil profiles), into a mechanical model [85].

D’Or and Destain [91] used precompression stress (Pc) values in the subsoil, derived
from measurements and PTFs, to map compaction risk in Wallonia depending on the
vertical stress created by a wheel of agricultural or forest machinery. Schjønning and
Lamandé [92] estimated soil strength from only three soil parameters: clay content, dry
bulk density, and matric potential. By comparing mechanical stresses with soil strength,
Lamandé et al. [93] evaluated and mapped the risk of subsoil compaction for specific ma-
chinery and soil conditions in Europe, using as soil inputs the 1:1,000,000 soil geographical
base of Europe [71] and the SPADE8 database [94]. However, they pointed out several
limitations linked to missing input data, BD values outside of the validity domain of the
PTF predicting soil strength, and discrepancies at boundaries between countries. More
dynamic approaches included spatially explicit modeling, such as using models incorporat-
ing crop type data, weather information, soil data, machinery information, crop simulation
models, and various PTFs [86,87]. Though all these modeling approaches enabled sub-
stantial progress in compaction risk mapping, one should consider that they are heavily
data-demanding, and their complexity conveys inherent error propagation.

4.3. Limitations

Some limitations of this study come from the rather low number of observations and
time differences when the observations were made. We dealt with them in the study by
Richer-de-Forges et al. [51]. In this section, we discuss only limitations that are specific
to DSM.

4.3.1. One Largely Dominant Cluster

Cluster 3 largely dominated, whereas cluster 6 was rather small. This has statistical
implications for the robustness of our results. The Kappa, Tau, and OA indices were rather
low (0.2, 0.34, and 0.45, respectively). Cohen [95] suggested the Kappa result be interpreted
as follows: values ≤ 0 as indicating no agreement and 0.01–0.20 as none to slight, 0.21–0.40
as fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1.00 as almost perfect
agreement. In this study, the influence of the unbalanced number of points is clearly shown
by the increase from Kappa to Tau and to OA. Note that we are not comparing exactly
the same classes. One classification comes from the hierarchical clustering of the STcells,
and the other one comes from the point prediction of clusters using RF. Therefore, the
Kappa and Tau are just indices of agreements between two different methods, none of
which is considered the “truth”. Thus, they should not be interpreted as indicators of the
prediction performance.

4.3.2. Covariates

As is the case for most of the broad-scale DSM products, the ST fractions that we used
as covariates were inherently smoothed, which may have contributed to capturing only
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rather extreme situations in other clusters compared to cluster 3. However, improving
predictions of ST fractions may be feasible by assembling DSM predictions realized at a
more local scale (e.g., [96]). In addition, we did not search if some more relevant covariates
could be used in the DSM approach. As cluster 4 is clearly related to water-logging,
we could have introduced some DEM derivatives linked to water accumulation (e.g.,
curvatures, water indices, water flow accumulation, wetness index). These covariates could
also have been efficient in better mapping cluster 6. Indeed, our set of covariates is still
rather limited and, in particular, we did not add/test some sensor data that could come
from remote sensing (RS; e.g., [97]). Some soil covariates could also have been useful, as
shown by the large amount of fine silt in cluster 5. However, there is no topsoil fine silt
content high-resolution DSM product for France yet. This lack of covariates advocates for
producing DSM predictions of more detailed classes of soil particle-size distribution.

4.4. Possible Improvements
4.4.1. Refining the Digital Soil Mapping with New Covariates

As mentioned in Section 4.3.2, testing additional covariates could be useful for the
DSM step. One first step could be to incorporate more relevant relief covariates. Producing
and adding maps of more detailed classes of soil particle-size distribution could also help
to map some clusters better. This is likely true for cluster 5 and fine silt. This might also
be the case for cluster 1, as sandy soils may behave differently when they are mainly
composed of coarse sand than when they are a mixture of different sand sizes. Overall,
these maps could be useful not only for predicting compaction but also for other behaviors,
such as slaking and crusting [98], run-off, and sensitivity to erosion [99]. They may also
reveal some processes such as aeolian deposition [100,101], alluvial sedimentation [102], or
pedogenesis [103].

In addition to relief-related covariates, RS could be used to characterize soil compact-
ness. For example, roughness indices are often used in RS studies (e.g., [29]). They are often
considered noise to eliminate or filter when they are not related to the attribute of interest
(e.g., [104–106]). It could be worth testing some of these indices and their temporal changes
from high spatial, temporal, and spectral resolution sensors. High-resolution RS products
could also be used to derive intra-annual variability from soil moisture. The latter may also
be useful in better predicting clusters 4 and 6.

4.4.2. Looking Deeper in the Largest Cluster

We could have further explored cluster 3 composition and behavior by sub-clustering
it using the same method that we used for the entire mainland France and then using
DSM to refine sub-cluster interpretation. However, this objective is out of the scope of
the present study, which was mainly to develop a proof-of-concept of how SCCs derived
from on-field information can be used and how clustering and DSM are complementary
for interpreting‘results.

4.5. Perspectives and Prospects
4.5.1. Adding other Information and Moving from Mapping Behaviors to Monitoring Risks

Field SCC data will potentially increase with time as the database is continuously
growing. The main point will be to make relevant choices in filtering the data, whether
our aim is to map what we could consider as rather stable and inherent soil properties
effects or to monitor changes due to climate, crop rotations and agricultural practices,
and mechanical pressure on the soil. For broad-scale mapping at time t, a preliminary
large-scale delineation of “agrarian” regions could be a solution, as suggested by Bellón
et al. [107]. For monitoring, we might consider that changes in crop rotations and some
agricultural practices will soon be available from RS products (e.g., [108–111]).

Spatial information on mechanical pressure on soil is not easy to derive directly from
RS. However, one may think that if some agricultural systems are delineable from RS
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(e.g., [107,109,112]), the loads and periods of machinery interventions may be assessed and
classified. Another solution is an expert-based delineation that could rely on agricultural
statistics at a rather fine resolution when available (e.g., in France [113]). As suggested
and reviewed by Peng et al. [114], RS products offer a high potential for mapping soil
moisture at high resolution. This will enable the capture of seasonal effects and matching
soil moisture status and pressures from agricultural machinery. As suggested by Khuwald
et al. [87], another possible advance would be to gather high-resolution data from global
navigation satellite systems received and recorded by modern farm vehicles to monitor
traffic intensity and traffic loads.

4.5.2. Moving to Deeper Horizons

Subsoil compaction is a severe problem mainly due to its persistence, and its effects
may even be permanent [115–117]. Moreover, soil compaction has been a rising concern
since the adoption of reduced tillage and/or no-till agricultural practices (e.g., [118–120]).
Therefore, it would be worth testing our approach in subsoil. We already stressed the
limitations that could arise from field observations in a previous study [51]. Obviously, we
should explore the database to check if our method can be applied to subsoil.

4.5.3. Better Communicating on the Map by Using Loss-Function Approaches and
Spatially Targeting the Audience

The patterns of the map suggest that they could be used to prioritize public interven-
tion to enhance or preserve soil structure. Relevant recommendations could be provided at
the soil–scape scale. We classified clusters without giving weight to the consequences of
misclassification. From a practical point of view, we could have used weights to take into
account the losses due to misclassification [121,122]. The use of such loss functions could
enable better communication to end-users. Whatever the case may be, communicating the
impacts of compaction appears to be a prerequisite to the adoption of good practices for
sustainable soil management. Indeed, the spatial distribution and patterns of most of the
clusters (except cluster 3) suggest that efficient communication on good practices could be
modulated and implemented at a broad soil–scape scale.

5. Conclusions

Incorporating cost-effective and multi-temporal field observation data into DSM is
one of the ways forward to increase the number of observations and the relevance of
moving from DSM to DSA to capture complex soil responses to various pressures. We
previously used about 14,500 field observations of topsoil compactness classes (SCCs)
collected by qualified soil surveyors in mainland France. We used the clustering of the SCCs
to differentiate various topsoil behaviors from compaction. In this article, we successfully
mapped these clusters using a DSM approach.

The main outputs of this study are as follows:

1. The SCC clustering, along with a choice of relevant covariates, enabled DSM to predict
the location of clusters and their corresponding SCC proportions.

2. A map of soil behavior to compaction was produced. This map was interpretable
from both geographical and topographic as well as pedological conditions.

3. DSM helped to discover patterns of clusters that provided additional explanations
and controlling factors to soil behaviors to compaction.

4. The use of covariates enabled us to highlight the effects of some of the pedological and
geomorphological characteristics that were not captured when using the soil database
alone.

5. The patterns that we identified are operational for providing recommendations at the
soil–scape scale. Therefore, the maps are DSA tools that help decision-making.

6. Such approaches, involving rescuing and gathering simple observations that are
routinely performed by soil surveyors, are expected to have a great potential for
digital soil assessment of complex soil properties and behaviors.
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The main limitations of this study are linked to the lack of real ground “truth” on soil
behavior to compaction and to the smoothing induced by DSM at a national scale. This
smoothing is inherently linked to the covariates used and to the large area covered by
this DSM.

Improvements could be obtained by gathering other independent information on soil
compactness changes with time and loading and by running DSM at more local scales.
Considering the large amounts of field observations that are available in some national
databases, this study paves the way for their better use in revealing and mapping soil
behaviors and their controlling factors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land13071014/s1. Figure S1. Projection of the soil compactness
class observation points in the texture triangle (after [51]). Figure S2. Maps of the covariates retained
for digital soil mapping after recursive feature elimination. Figure S3. Maps of the covariates
retained for digital soil mapping after recursive feature elimination (continue). Figure S4. Measured
particle-size distribution of the cultivated topsoils encountered in the blue area of the soil map of
Châteaudun [78]; in blue: mean values; in red: ranges covered after excluding the 5% lowest and the
5% highest values.
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