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Abstract: First-order approximations have been used with some success for criticality analysis, sen- 12 
sitivity analysis of physical networks, such as water distribution systems, and uncertainty propaga- 13 
tion of model parameters. Certain limitations have been reported regarding the accuracy of results, 14 
particularly when non-linearity is dominant. In this paper, we show how to efficiently derive the 15 
first and second order sensitivities with respect to the variation of their parameters. This makes it 16 
possible to improve the first order estimate when necessary. The method is illustrated on a small 17 
example system. 18 

Keywords: Sensitivities; Schur complement; linear equations; sparse matrix; steady state: demand 19 
driven modeling; pressure driven modeling; water distribution systems. 20 
 21 

1. Introduction 22 
Water distribution systems (WDSs) are complex, aging and need to be protected and 23 

made more resilient to natural and man-made disasters. There are considerable preserva- 24 
tion, health & safety, and sustainability issues at stake in being able to properly manage 25 
and understand the operation of such systems.  26 

Modeling tools can be very useful for handling such complex systems, to make sus- 27 
tainable management and crisis response decisions. Nevertheless, this may require solv- 28 
ing optimization problems using large hydraulic digital models and may prove impossi- 29 
ble due to the curse of dimensionality. In response, some authors have suggested 1) using 30 
first-order estimates (e.g. the graph Laplacian matrix) [1,2], or 2) using graph partitioning 31 
and reduced-order models [3,4] to make the problem tractable. Depending on the problem 32 
under consideration, sub-optimality or some kind of limitation may be reported, particu- 33 
larly when precision is required for decision-making and non-linearity is important. 34 

In addition, uncertainty in the input parameters requires the digital model to be com- 35 
bined with real-time observations to reduce the output uncertainty. Consequently, three 36 
main challenges in real-time modeling are 1) reducing computation time, 2) quantifying 37 
uncertainties and 3) coupling numerical models with observations. The sensitivity of 38 
steady-state solutions to variations in model parameters provides a way of solving the 39 
first two challenges [5-7]. 40 

In this research, we show how to derive the first and second order sensitivities of 41 
model outputs to variations in parameters by solving linear systems additional to the 42 
global gradient algorithm solution. First, we derive explicit formulae for the first and sec- 43 
ond order sensitivities to parameters. Next, we describe an efficient and low-cost imple- 44 
mentation, which uses the Cholesky decomposition of the Schur matrix to calculate 45 
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sensitivities. Finally, an illustrative example is used to show the potential application for 1 
hydraulic modeling of water distribution networks.  2 

2. Methods 3 
The method consists of observing that the following general conservation form sys- 4 

tem can be used to calculate 1st and 2nd order sensitivities of q (the flow rate) and h (the 5 
head) wrt parameters: 6 

𝐅𝐪𝒙𝒚 − 𝐀𝐡𝒙𝒚 =  𝐱, (1) 

−𝐀#𝐪𝒙𝒚 − 𝐄𝐡𝒙𝒚  = 𝐲. (2) 

Where 𝐅 = ∇$𝛏 ∈ ℝ%&,%& is the Jacobian of the head loss function	𝛏; 𝐀 ∈ ℝ%&,%( is the junc- 7 
tion node-arc incidence matrix; 𝐄 = ∇)𝐜 ∈ ℝ%(,%( is the Jacobian of the pressure outflow 8 
relationship (POR) function c (for the demand-driven modeling (DDM) case 𝐄	 = 	𝟎); 𝐱 ∈ 9 
ℝ%&,%* and 𝐲 ∈ ℝ%(,%+ are appropriate vectors or matrices that are specified in Table 1; 10 
and 𝐪𝒙𝒚 (resp.1 𝐡𝒙𝒚) are flow-rate related quantities (resp. head-related quantities). 11 

Table 1. The right-hand sides for system (1-2) and their application. 12 

Application x y 𝐪𝒙𝒚 𝐡𝒙𝒚 
Hydraulic state from 
the linearized system  

e2 0 qlin hlin 

1st order sensitivities 
wrt demand 

𝟎%&,%( ∇,𝐜 ∇,𝐪 ∇,𝐡 

1st order sensitivities 
wrt 𝜃, defined in3 
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 13 
Indeed, system (1-2) is generic as it can be seen in Table 1. if we choose 𝐱	 = 𝐞	 and 𝐲 = 14 
	𝟎𝒏𝒋, system (1-2) is the linearized system of pressure-driven modeling (PDM) equations, 15 
and 𝐪𝒙𝒚 and 𝐡𝒙𝒚 are the estimates of q and h when the head loss and POR models are 16 
linear. Likewise, if 𝐱	 = 𝟎𝒏𝒑,𝒏𝒋 and 𝐲 = 	∇,𝐜, then 𝐪𝒙𝒚 = ∇,𝐪 and 𝐡𝒙𝒚 = ∇,𝐡 (see [7] for 17 
the derivation). Also, for differentiation wrt	𝜃( =	𝑟( 	or	𝐷(	𝑜𝑟	𝜀(/𝐷( (𝑟( the resistance factor, 18 
𝐷( the pipe diameter, 𝜀(/𝐷( the relative roughness of pipe j) the 1st order sensitivities wrt 19 
𝛉 are solutions of (1-2). Just choose 𝐱	 = −∇-𝛏 and 𝐲 = 	𝟎𝒏𝒋,𝒏𝒚 (also derived in [7]). 20 
 21 
We now consider double scalar differentiation with 𝑑/ then 𝑑% (resp. 𝜃/ then 𝜃%); the 22 
system (1-2) can then be used to calculate the 2nd order sensitivities with appropriate 23 
choice of x and y as shown in Table 1. The meaning behind this property is that the flows 24 
and heads with their derivatives are sharing similar spatial structures or patterns. 25 
 26 
Multiplying Eq. (1) by 𝐀#𝐅J𝟏 and adding it to Eq. (2) gives: 27 

𝐡𝒙𝒚 = −(𝐀#𝐅J𝟏𝐀 + 𝐄)J𝟏(𝐀#𝐅J𝟏𝐱 + 𝐲),	 (3) 

 
1 resp.: respectively 
2 The vector e represents the energy available from source and resource nodes. It is defined as 𝐞	 = 	𝐀𝟎𝐡𝟎. 
3 Where 𝜃! is a characteristic parameter of pipe j, such as resistance factor, diameter and relative roughness. 
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It follows from (1) that: 1 

𝒒𝒙𝒚 = 𝐅J𝟏(𝐀𝐡𝒙𝒚 + 𝐱). (4) 

Eqs. (3-4) provide a solution template for a linearized estimate of q and h, and the corre- 2 
sponding first order and second order sensitivities. 3 

Eq. (3) requires the solution of a symmetric matrix equation with the form: 4 

(𝐀#𝐅J𝟏𝐀 + 𝐄)𝐳 = 𝐰. (5) 

and this is true for the calculation of all the sensitivities discussed here. If the sensitivities 5 
of the solutions to more than one parameter are required, then a significant computational 6 
economy can be made. Suppose a first solution is computed using the Cholesky factoriza- 7 
tion 𝐋𝐋#=(𝐀#𝐅J𝟏𝐀 + 𝐄). Sensitivity calculations for any other parameters can be solved 8 
with about 2𝑛.  floating-point operations each rather than the full Cholesky cost of 9 
O(𝑛M 6⁄ ) if the same L factor is used with forward- and backward-substitutions. In addi- 10 
tion, further savings can be made by exploiting the sparsity of the Cholesky factor. 11 

The solution of Eqs (3-4) in this paper was coded with Matlab 2023b. The 1st and 2nd 12 
order sensitivities can be calculated for a specific component vector or selected values of 13 
interest. This is what we propose in the results. Meanwhile, it is possible to organize the 14 
calculation if we are interested in getting an overall view. For example, for the 2nd order 15 
sensitivities of q wrt all the demand, there are nj symmetrical matrices 𝐕𝒅𝒌

𝒒 , each of dimen- 16 
sion 𝑛𝑝	 × 	𝑛𝑗. Each matrix gives the 2nd order sensitivities of all the flows wrt to all the 17 
demands and one single demand. Thus, for example, the matrix for the sensitivities of 18 
flows 𝑞Q, 𝑞., . . . , 𝑞%( to 𝑑R and all of 𝑑Q, 𝑑., . . . , 𝑑%( has the following structure: 19 

𝐕𝒅𝒌
𝒒 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

∂.𝑞Q
∂𝑑R ∂𝑑Q

⋯
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∂𝑑R.
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∂𝑑R ∂𝑑RSQ

⋯
∂.𝑞Q

∂𝑑R ∂𝑑%"
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⋯

∂.𝑞.
∂𝑑R ∂𝑑RJQ

∂.𝑞.
∂𝑑R.

∂.𝑞.
∂𝑑R ∂𝑑RSQ

⋯
∂.𝑞.

∂𝑑R ∂𝑑%"
⋮ ⋮ ⋮ ⋮ ⋮

∂.𝑞%&
∂𝑑R ∂𝑑Q

⋯
∂.𝑞%&

∂𝑑R ∂𝑑RJQ
∂.𝑞%&
∂𝑑R.

∂.𝑞%&
∂𝑑R ∂𝑑RSQ

⋯
∂.𝑞%#
∂𝑑R ∂𝑑%"⎠

⎟
⎟
⎟
⎟
⎟
⎞

  

3. Results 20 

 21 
Figure 1. Example system with two tanks. Pipe lengths are 1000 m; diameters 250 mm; pipe 22 
roughness 0.25 mm; source heads are both 100 m; junction node elevations all zero; initial demand 23 
at node 1 (resp. node 2) is 60 L/s (resp. 50 L/s). 24 

The network used to illustrate the application is shown in Figure 1. The Darcy- 25 
Weisbach headloss model and the 1-side regularized Wagner model POR with regulari- 26 
zation parameter = 1/10 of [7] were used. The demand at node 1 was increased by 5, 10, 20 27 
and 40 L/s. The 2nd order Taylor polynomial approximations to q and h around the point 28 
𝑑Q are given by X(𝑑Q + 𝛿) = X(𝑑Q) +

TU
T,$

𝛿 + Q
.!
T%W
T,$%

𝛿.. The results for the heads at junction 29 
nodes and the flow rates are reported at Table 2. We can see the 2nd order estimates are 30 
not significantly different from the exact values in column 3.   31 

csym2-Matlab labelling

1 2 3

1 23 4
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Table 2. 1st and 2nd order estimates for the example network with a demand perturbation of 40 L/s. 1 

Name h(d1) h(d1+40) 𝝏𝑿 𝝏𝒅𝟏⁄  𝛛𝟐𝐗 𝛛𝐝𝟏
𝟐⁄  1st order Est. Error in m 2nd order Est. Error in m 

Node 
1 

94.64 89.72 -0.099382 -0.001223 90.67 -0.95 89.69 0.03 
 Node 

2 
94.70 90.71 -0.089746 -0.000450 91.11 -0.40 90.75 -0.04 

 q (d1)          q (d1+ 40) 𝝏𝑿 𝝏𝒅𝟏⁄  𝛛𝟐𝐗 𝝏𝒅𝟏
𝟐⁄  1st order Est. Error in L/s 2nd order Est. Error in L/s 

Pipe 1 55.14 76.94 0.524218 0.001617 76.11 0.83 77.41 -0.47 
Pipe 2 -4.86 -23.06 -0.475782 0.001617 -23.89 

 
0.83 -22.59 -0.47 

Pipe 3 -54.86 -73.06 -0.475782 0.001617 -73.89 0.83 -72.59 -0.47 

4. Discussion and Conclusions 2 
In this paper, the same generic conservative-form system is used to derive linearized 3 

estimates of flow and head. and the first order and, for the first time, for the second-order 4 
sensitivities. The right-hand-sides of the governing equations change appropriately. Ex- 5 
plicit formulae are given and the fact that the same Cholesky factor and sparse solution 6 
matrix are shared explains why significant savings can be made in the calculation. It is 7 
possible to extend the method to higher order sensitivities. 8 

The development presented in this paper is useful for assessing the probability dis- 9 
tributions for link flow rates and nodal piezometric heads. Additionally, it permits Taylor 10 
approximation for q and h around known working points. This opens the way to solve 11 
difficult problems using a quadratic approximation or to speed up extended period sim- 12 
ulations by improving the initial guesses. 13 
 14 
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