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Abstract

In polygynous species, male reproductive success is often

determined by their ability to dominate female harems.

Harem-holders sire a disproportionate number of offspring.

Male dominance tends to correlate with age, but intense

competition and early male mortality limit most males from

achieving high social status. To maximize reproductive suc-

cess despite low rank, offspring sex ratio adjustment may

have evolved, favoring the sex with higher fitness. If traits

influencing dominance are heritable and confer reproduc-

tive advantages, we expect fathers with higher reproductive

success to produce more sons, as they are more likely to

become dominant. In contrast, subordinate males with

lower success may benefit from siring more daughters. We

tested this hypothesis on a colony of southern elephant

seals breeding on the Kerguelen Archipelago. We used

genetic markers to link the paternity of 540 pups to

58 breeding males. We found that the probability of siring a

son increases from 43% to 54% with paternal relative

reproductive success, supporting the offspring sex ratio

adjustment hypothesis. Given that various factors influence

sex ratio in a population, future studies should tease apart

these ecological processes (e.g., paternal dominance,
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maternal condition, local density, or adult sex ratio) and

investigate how they interact with each other.

K E YWORD S

Mirounga leonina, offspring sex ratio, polygyny, reproductive
success

1 | INTRODUCTION

In polygynous mating systems, commonly found in mammalian species (Clutton-Brock, 1989), sexual selection favors

male phenotypes that promote the monopolization of receptive females (Andersson, 1994). The strength of selection

depends on the ability of males to defend female groups, which could vary with females' distribution in space and

time, predation pressures, costs of social living, and activity of competitors (Clutton-Brock, 1989; Emlen &

Oring, 1977). When females are highly aggregated and predictable in space and time, most dominant males defend

and control aggregations of females (also called harems), resulting in strong reproductive skew favoring harem-

holders (Clutton-Brock, 1985; Hoelzel et al., 1999; Hoffman et al., 2003; Lukas & Clutton-Brock, 2014). Male domi-

nance rank is typically assumed to increase with age as males acquire key physical attributes (e.g., body size and sec-

ondary sexual characteristics) and experience to compete successfully against other males (Festa-Bianchet, 2012;

Heckel & Helversen, 2002). However, when intermale competition is extremely strong combined with high mortality

rates over successive life stages, most males in the population fail in holding a harem. This results in a strongly

skewed distribution in reproductive success among males and null or very low lifetime reproductive success for most

of them (Clinton & Le Boeuf, 1993; Clutton-Brock, 2007; Loison et al., 1999).

In this context, the adaptive adjustment of offspring sex ratio (defined as the proportion of offspring that are

males) weakens the strength of sexual selection, which stabilizes the variance of the fitness among males

(Booksmythe et al., 2013; Fawcett et al., 2011). Parents should bias the sex ratio of their offspring towards the sex

that will have the greatest improvement on their fitness (Charnov, 1982; Trivers & Willard, 1973). The reproductive

benefit of producing a male or a female offspring for parents should depend on the relative fitness of sons and

daughters, the costs of producing and rearing each sex, and the sex differences in any future competition or coopera-

tion with parents or other kin (Clutton-Brock & Iason, 1986; Emlen et al., 1986; Frank, 1986).

The most influential hypothesis on offspring sex ratio adjustment—the Trivers and Willard hypothesis—predicts

that, when variation in reproductive success is higher in males than in females and maternal condition has a stronger

effect on the fitness of sons than daughters, females in good condition should produce more sons, whereas females

in poor condition should produce more daughters (Trivers & Willard, 1973). The Trivers and Willard hypothesis can

be generalized and applied to any factor that has a differential effect on the fitness of sons and daughters

(West, 2009), such as local density (local resource competition; Silk, 1983), the need for helpers (local resource

enhancement; Komdeur et al., 1997), or parents' phenotype (male attractiveness and female mating preference;

Burley, 1981; Kirkpatrick, 1982).

The mate attractiveness hypothesis posits that females can manipulate the sex ratio of their progeny according

to their mate's attributes (Burley, 1981; Pen & Weissing, 2001). Females breeding with attractive males (e.g., larger

body size, weapons, or ornaments), should capitalize on this advantage by biasing their offspring production in favor

of sons, because sons of attractive males are more likely to have higher fitness than daughters (Cox &

Calsbeek, 2010; Fawcett et al., 2007). In contrast, females breeding with nonattractive males make the best of a bad

job by biasing their progeny in favor of daughters, because sons of nonattractive males may have a lower fitness than

daughters (Burley, 1981; Cox & Calsbeek, 2010; Fawcett et al., 2007). Various cryptic choice mechanisms may allow

females to bias sex determination in response to male attractiveness. This can be done from differential mortality or
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fertilization of X- and Y-chromosome bearing spermatozoa (CBS) in the female reproductive tract (Grant &

Chamley, 2010; Krackow, 1995; Navara, 2013) which could be driven by levels of testosterone, glucose, estrogen,

and stress (Geiringer, 1961; Helle et al., 2008; Lane & Hyde, 1973; Perret, 2005).

Trivers and Willard (1973) originally assumed that only mothers influence offspring sex determination.

Recent evidence, however, shows that fathers may also drive offspring sex ratio—especially in mammalian males as

they are the heterogametic sex (Douhard & Geffroy, 2021; Edwards & Cameron, 2014). For example, red deer

(Cervus elaphus) hinds, artificially inseminated with no knowledge of male phenotypes, produced twice as many sons

than daughters when the sire's fertility was higher (Gomendio et al., 2006). Fathers may influence offspring sex

ratio by varying the proportion of the X- and Y-CBS as a higher proportion of Y-CBS results in a higher probability of

producing a son (Chandler et al., 2007; Douhard & Geffroy, 2021; Edwards et al., 2016; Saragusty et al., 2012). Varia-

tion in X- and Y-CBS proportions could be driven by mating frequency (James, 1996), hormonal variation

(James, 2008), competitiveness between X- and Y-CBS (Malo et al., 2005), and seminal fluid composition (Edwards &

Cameron, 2017).

The objective of this study was to test for the relationship between father's phenotypes and offspring sex

ratio in a highly polygynous species, the southern elephant seal (Mirounga leonina). Elephant seals gather on land

once a year for the breeding season (Figure 1). Males arrive before females, and immediately begin interacting

with each other to establish dominance hierarchy (Le Boeuf, 1974; McCann, 1981). Pregnant females arrive a few

weeks later and gather in harems of high density. Females give birth ca. 5 days after hauling out and nurse their

pup for ca. 24 days. Females come into estrus the last ca. 4 days before returning to sea to forage (Laws, 1956;

Le Boeuf, 1972). Dominant males adopt a central position in harems and actively prevent other males from

accessing females, while subordinate males stay at the periphery and opportunistically look for copulation

attempts. Reproductive success in males is highly skewed, with harem holders generally siring more than 75% of

the pups (Fabiani et al., 2004; Modig, 1996). Variance in lifetime reproductive success is approximately four times

greater in males than in females (Le Boeuf & Reiter, 1988). For example, in northern elephant seals (Mirounga

angustirostris), successful males inseminate up to 121 females (Le Boeuf & Reiter, 1988), whereas most successful

females give birth to 20 pups (Le Boeuf et al., 2019) during their lifetime. Holding a harem is a highly successful

mating tactic. However, intermale competition is intense and mortality rate is high, and most of the males die

F IGURE 1 Diagram summarizing approximately the progression of the breeding season in southern elephant

seals.
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before reaching the physical condition and the experience required to hold a harem (Clinton & Le Boeuf, 1993; Le

Boeuf, 1974; Lloyd et al., 2020).

We hypothesize that, in southern elephant seals, a polygynous species where the probability of a male holding a

harem (i.e., high reproductive success) is extremely low, natural selection will favor offspring sex ratio adjustment as

one of the mechanisms stabilizing fitness variance among males. We expect offspring sex ratio to vary with the siring

probability of males. Assuming that breeding males with high reproductive success sire sons with higher average fit-

ness than daughters, and that breeding males with low reproductive success sire sons with lower average fitness

than daughters, we should find a positive relationship between the probability that a breeding male sires a son and

its relative reproductive success.

2 | METHODS

2.1 | Study site, observations, and sample collection

We tested our hypothesis on a colony of southern elephant seals breeding at the Rivière du Nord (RdN) site

between September 2 and November 10, 2017. The RdN breeding site is located north of the Kerguelen Archipel-

ago (49.176�S, 70.138�E) and is characterized by 500 m long sandy beaches mixed with pebbles. We walked

around the colony, almost daily, to record the presence of each male. Individuals were photographed at the first

encounter, then identified according to their body scars. We used a 3-m-long aluminum pole equipped with a

stainless-steel biopsy tip with barb (7 mm diameter and 40 mm length) to sample tissue biopsies from the lateral

back area of the seals. We sampled 74 breeding males among all males (n = 113) accessible at RdN. We could not

sample the remaining males because they were never accessible, i.e., stayed at RdN for short time or were most of

the time inside a harem. In 2018, we returned to RdN and sexed all accessible weaned pups (n = 951, approxi-

mately 80% to 95% of all pups) in addition to sampling tissue biopsies from the trailing edge of one of their hind

flippers using dissecting scissors. We conducted these manipulations while two people were restraining the pup.

All tissue samples were preserved in 70% ethanol until laboratory genetic analysis for paternity assignment. Pre-

weaning mortality in elephant seals generally ranges between 2% and 8% (Campagna et al., 1993; Hindell &

Burton, 1987; McMahon & Hindell, 2003; Pistorius et al., 2001), and there is no evidence for differential mortality

between the sexes (Le Bœuf et al., 1989).

2.2 | Relative body length

We estimated the relative body length of the breeding male seals from photos taken when they were laying straight

and flat on the ground (Bell et al., 1997). We used a Canon camera (EOS 5D 12.8 MP DSLR) with a 100–400 mm

zoom lens to take the photographs. We photographed the seal at a distance of about 10 m, perpendicularly to the

longitudinal axis of its body, and approximately at the height of the center of its body. We placed a calibrated rope

(marked every 50 cm) along the seal's body and used it as a reference for the scale. We disregarded the caudal flip-

pers and the head of the seal as their position varied between the photographs. We considered the length of the seal

from the eye to the base of the hind flippers. This measure correlates with the total length, i.e., from the tip of the

nose to the end of hind flippers r = 0.99, Carlini et al., 2006). We measured the body length of 80 seals from

the photos using the software ImageJ version 1.53f51. As we took multiple photographs per seal (M = 2.3 photo-

graphs, range = 1–8; Supplementary Material 1), we estimated a unique value of the relative body length for each

seal by extracting the best linear unbiased predictors from an univariate linear mixed-effect model fitted in a Bayes-

ian framework using the brms R package (Bürkner, 2017). The model included the body length as response variable

and the seal identifier as random intercept (Supplementary Material 1). We calculated the repeatability of body
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length according to Nakagawa and Schielzeth (2010). The repeatability is used as an indicator of the error in measur-

ing body length of the same individual between photographs.

2.3 | Genetic analysis

2.3.1 | DNA extraction

The samples of skin biopsies were digested with proteinase K. We then extracted DNA using the Nucleospin 96 Tis-

sue Kit (Macherey-Nagel), following the manufacturer's instructions, and randomly distributed samples into the

plates. We replicated 50 individuals twice at the extraction stage to check the repeatability of the results. We

assessed DNA concentration and purity with Qubit DSDNA Assay kit (ThermoFisher) on a Berthold Tristar2 micro-

plate reader.

2.3.2 | Microsatellite development and sequence-based microsatellite genotyping

We identified microsatellite markers from a random shotgun sequencing of a DNA pool extracted from ten individ-

uals purified using 1.8X Agencourt AMPure XP beads (Beckman Coulter, High Wycombe, UK) and quantified with a

Qubit 2.0 fluorometer (ThermoFisher). We prepared the DNA library using QIASeq FX DNA library kit (Qiagen) and

sequenced it on an Illumina MiSeq sequencer using a v2 nano sequencing kit (2 � 250 bp). Raw sequences are pub-

licly available in the European Nucleotide Archive accession number ERR10752787. We used the software BBmerge

v38.87 (Bushnell et al., 2017) to merge paired reads and the software QDD v3.1.2 (Meglécz et al., 2014) to discover

microsatellites. We fixed the QDD primer design parameters to target amplicon lengths between 100 and 180 bp

and optimized them for multiplex PCR (Lepais et al., 2020). We selected 60 primer pairs based on different criteria to

increase polymorphism content and amplification success (Meglécz et al., 2014). We tagged the locus-specific

primers at 5 -end with universal Illumina adapter overhang sequences: TCGTCGGCAGCGTCAGATGTGTATA

AGAGACAG for forward primers and GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG for reverse primers

(Supplementary Material 2). We tested the amplification of each of the 60 primer pairs in a simplex PCR performed

on the DNA pool of the elephant seals. We prepared the PCR in a volume of 10 l containing 2 L of 5X Hot Firepol

Blend master mix (Solis Biodyne), 1 L of 2 M primer pairs, 1 l of DNA pool (10 ng/L), and 6 L of PCR-grade water.

We performed the PCR on a Veriti 96-Well Fast thermal cycler (ThermoFisher) which consisted in an initial denatur-

ation at 95�C for 15 min, followed by 35 cycles of denaturation at 95�C for 20 s, annealing at 59�C for 60 s, exten-

sion at 72�C for 30 s, and a final extension step at 72�C for 10 min. We checked the amplification on a 3%

agarose gel.

We validated the developed markers by repeated genotyping of a set of 95 samples. We performed a multi-

plexed PCR amplification of the 60 markers in a volume of 10 L using 2 L of 5X Hot Firepol Multiplex master mix

(Solis Biodyne), 1 L of multiplex primer mix (0.5 M of each primer), 2 L of DNA (10 ng/L), and 5 L of PCR-grade

water. We performed the PCR on a Veriti 96-Well Fast thermal cycler (ThermoFisher), which consisted of an initial

denaturation at 95�C for 12 min followed by 30 cycles of denaturation at 95�C for 30 s, annealing at 59�C for 180 s,

extension at 72�C for 30 s, and a final extension step at 72�C for 10 min. We performed a second PCR to attach the

adapters and sample-specific pairs of indexes (8 bp unique sequences) to each side of the amplicons by targeting

the universal sequence attached to the locus-specific primers. We carried out this indexing PCR in a volume of 20 L

using 5X Hot Firepol Multiplex master mix (Solis Biodyne), 5 L of amplicon, and 0.5 M of each of the forward and

reverse adapters. The PCR conditions consisted in an initial denaturation at 95�C for 12 min followed by 15 cycles

of denaturation at 95�C for 30 s, annealing at 59�C for 90 s, extension at 72�C for 30 s, and a final extension step at

72�C for 10 min. We then pooled the libraries and purified them with 1.8X Agencourt AMPure XP beads (Beckman
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Coulter). We checked quality on a Tapestation 4200 (Agilent) and conducted the quantification using QIAseq Library

Quant Assay kit (Qiagen, Hilden, Germany) in a Roche LightCycler 480 quantitative PCR. We sequenced the pool on

an iSeq 100 sequencer (Illumina, San Diego, CA) with a 2 � 150 bp kit.

We used the bioinformatics pipeline (Lepais et al., 2020) integrating the FDSTools software (Hoogenboom

et al., 2017) to call genotypes from raw sequences. We performed a first analysis on the 95 repeated samples for

which we used a negative control to optimize the bioinformatic pipeline to each locus, to estimate the locus-level

allelic error rate, and to select the loci that produced repeatable genotypes for the final genotypic data set.

For the final genotyping, we performed a multiplex PCR on the validated markers in 384 format plates in a vol-

ume of 5 L using 1 L of 5X Hot Firepol Multiplex master mix (Solis Biodyne), 0.5 L of multiplex primer mix (0.5 M),

1 L of DNA (10 ng/L), and 2.5 L of PCR-grade water. We realized the second PCR in a volume of 5 L using 1 L of 5X

Hot Firepol Multiplex master mix (Solis Biodyne), 1.25 L of amplicon, and 0.5 L of each of the forward and reverse

adapters (5 M). The PCR conditions for these two PCR are the same as for genotyping validation except the reac-

tions were performed on a Veriti 384-Well thermal cycler (ThermoFisher). We then pooled the libraries from

384 samples, purified them with 1.8X Ampure beads, and quantified them with QIAseq Library Quant Assay kit. We

sequenced each pool on an iSeq 100 sequencer (Illumina) with a 2 � 150 bp kit. We performed genotyping analysis

with the same bioinformatics pipeline (see above) using optimized parameters determined during the validation

phase (Supplementary Material 2).

All the 60 developed primer pairs from the whole genome shotgun sequencing produced specific amplification and

were kept in the multiplexed PCR (Supplementary Material 2). Among the 60 loci, 37 produced repeatable genotypes

with low missing data (<30%) and were polymorphic, representing a total of 363 alleles that showed differences in their

sequences (M = 9.8 alleles per loci) and only 253 alleles that showed differences in their sizes (M = 6.8 alleles per loci)

with an average of 0.7% of allelic error among the 95 repeatedly genotyped samples (Supplementary Material 2).

The 37 loci were tested from Hardy–Weinberg equilibrium and their frequency of null alleles were determined

using the software CERVUS 3.0.7 (Kalinowski et al., 2007). Only one locus (SSRseqMir_002) exhibited significant

deviation from Hardy–Weinberg equilibrium and a high frequency of null alleles (0.10; Supplementary Material 2)

and was, therefore, eliminated for further analyses. According to Waits et al. (2001), we calculated the probability of

observing identical genotypes (PID) between two different individuals using the function pid implemented in the R

package “PopGenUtils” (Tourvas, 2023). This probability was very low (7.94 � 10�12). Although fathers can sire mul-

tiple offspring within the same breeding season, mothers produce one pup per year and twinning is extremely rare

(McMahon & Hindell, 2003).

2.4 | Paternity analyses

Genotypes were excluded from the paternity analyses when less than 15 loci were typed (n = 5 for the pups and

n = 0 for the candidate fathers). The average inbreeding coefficient within the candidate fathers was estimated at

�0.004 ± 0.009 SE. The mean relatedness between the candidate fathers was estimated at �0.014 ± 0.001. Both

estimators were obtained using the R package “related” (Pew et al., 2014) using the methods described by Lynch

and Ritland (1999).

The paternity assignment analyses were conducted using CERVUS 3.0.7 (Kalinowski et al., 2007) for a set of

36 polymorphic microsatellite loci (Supplementary Material 3) typed on 74 males (candidate fathers), and 946 pups.

The proportion of loci typed was 0.94 and the nonexclusion probability was 2.5 � 10�9.

A male was considered as a likely father when no mismatches were detected between the pup genotype and

the candidate male genotype (81% of the pup-father pairs). When a candidate male exhibited one single mismatch

with the pup genotype, we considered this male as the father only if the pair confidence was 95% (or more,

i.e., strict confidence, 19% of the pup-father pairs). When the confidence of the pair was too low and/or the number

of mismatches higher than 1, we considered that we did not sample the father of this pup.

6 of 19 ALLEGUE ET AL.
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2.5 | Statistical analysis

We ran all our analysis on R (R Core Team, 2021). We used a test to compare the number of male and female

weaned pups in RdN in 2018. To test for our hypothesis that offspring sex ratio in southern elephant seals varies

with paternal relative reproductive success, we used a generalized linear model with a binomial distribution to model

the probability of siring a son as a function of the relative reproductive success of the male. The response variable

was the number of sons relative to the number of pups each male sired. We calculated each male relative reproduc-

tive success as the number of pups sired by a male divided by the mean number of pups sired by all breeding males.

Note that the sex ratio of pups is taken at weaning, which we refer to as offspring sex ratio in our analysis. Repro-

ductive success strongly increases with age in southern elephant seals (Clinton & Le Boeuf, 1993; Lloyd et al., 2020),

and paternal age was shown to affect offspring sex ratio in other mammalian species (Edwards & Cameron, 2014;

Santos et al., 2015; Tanaka et al., 2019). We, thus, added the relative body length to our model as a proxy for age

(McLaren, 1993). The model included all seals that sired at least one pup and for which we measured body size

(n = 57). We found that some males that sired few pups were sighted for a brief period or only at the beginning of

the breeding season before females arrived. We concluded that these fertilizations must have occurred in a neigh-

boring breeding site and that females moved to RdN the following year (2018) when we sampled skin biopsies on

the pups. This means that the number of pups sired and the offspring sex ratio for these males may not be represen-

tative of their actual reproductive status. To minimize the effect of these off-site copulations, we weighted our

model by the tenure of each male, i.e., the number of days they spent at RdN (Supplementary Material 4). We also

weighed all computed statistics related to male reproductive success by the tenure such as the mean and the stan-

dard deviation of the number of sired pups.

We used a Bayesian framework to fit our model using the brms R package (Bürkner, 2017; Supplementary Material

4). We normalized all predictors, i.e., mean centered and unit variance. To investigate for potential collinearity issues in

our model, we computed the correlation between the relative reproductive success and the relative body length by

extracting the regression coefficient from a linear regression between both normalized variables (Supplementary Material

5). This approach allowed us to weight the correlation value between the relative reproductive success and the relative

body length by the number of days individuals spent at RdN.

3 | RESULTS

3.1 | Paternity assignments

We found that 58 out of 74 candidate fathers sired 540 (437 with zero mismatch and 103 with one mismatch but

with at least 95% pair confidence) out of 946 pups. The number of pups sired was highly skewed with a weighted

mean of 12.7 pups and a weighted sd of 17.5 (Figure 2). Approximately 20% of the sampled males were responsible

for siring 80% of the pups with the known sire. The maximum number of pups sired by the same male was

66 pups (7%).

3.2 | Weanling sex ratio model

The proportion of sons among all the weaned pups observed at RdN in 2018 did not differ from 0.5 (474 sons and

472 daughters; proportion test: χ2 = 0.00, p = .97). We found a positive effect between a male relative reproductive

success and its probability of producing a son, and the 95% credible intervals did not overlap with zero (Figures 3

and 4, Table 1). According to our model, the male with the lowest relative reproductive success has a probability of

43% to produce a son and the one with the highest relative reproductive success has a probability of 54%. We did
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not find any evidence that the effect of the relative body length (used as a proxy for age) on the probability of pro-

ducing a son was different from zero as the posterior distribution of the effect estimate had a great dispersion and

overlapped with zero (Figure 3, Table 1). The mean (± SE [95%CI]) repeatability of body length was 0.94 ± 0.01 [0.91,
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F IGURE 2 The number of pups sired by each male southern elephant seal in our sample of pups.
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F IGURE 3 Parameter posterior distributions of the generalized linear model predicting the probability that a male
southern elephant seal sires a son as a function of its relative reproductive success and relative body length (a proxy
for age). The relative reproductive success is calculated as the number of offspring sired by a male divided by the
mean number of offspring sired by all sampled males. The mean of the parameter posterior distribution is marked by
a vertical dark blue line and the area representing the 95% credible intervals is colored in light blue.
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F IGURE 4 The predictive probability that a male southern elephant seal sires a son as a function of its relative
reproductive success. The relative reproductive success is calculated as the number of offspring sired by a male

divided by the mean number of offspring sired by all sampled males. 95% credible intervals (gray area) were added
around the mean effect (blue line). Points represent the proportion of sons each male sired and are colored by the
seal tenure at the RdN site.

TABLE 1 Parameter mean estimates of the generalized linear model predicting the probability that a male
southern elephant seal sires a son as a function of its relative reproductive success and relative body length (a proxy
for age). The relative reproductive success is calculated as the number of offspring sired by a male divided by the
mean number of offspring sired by all sampled males. Parameter mean estimates are presented with standard errors
(SE) and 95% credible intervals (CI).

Parameter Estimate SE CI

Intercept �0.22 0.10 [�0.42, �0.01]

Relative reproductive success 0.10 0.04 [0.01, 0.18]

Relative body length 0.05 0.07 [�0.09, 0.18]
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0.96] and the weighted correlation between male relative reproductive success and relative body length was 0.40

± 0.09 [0.23, 0.57], which we do not consider large enough to lead to concerning collinearity issues.

4 | DISCUSSION

We found that sex ratio of weaned pups increased with paternal relative reproductive success in a colony of

southern elephant seals breeding on the Kerguelen Archipelago. This is consistent with previous studies on polyg-

ynous species showing a general positive trend between male attributes and offspring sex ratio (e.g., Douhard

et al., 2016; Gomendio et al., 2006; Malo et al., 2017; Perret, 2018; Røed et al., 2007). We found that the probabil-

ity of producing a son increases by 11% with parental relative reproductive success, which is slightly lower com-

pared to other similar studies (e.g., 29%, Douhard et al., 2016; 35%, Gomendio et al., 2006; 20%, Røed

et al., 2007). Nonetheless, few studies explicitly showed that the relationship between paternal reproductive suc-

cess and offspring sex ratio can be adaptive (Cox & Calsbeek, 2010; Douhard et al., 2016). The effect size esti-

mated by our model was weak (Table 1) as predicted by theoretical models (Booksmythe et al., 2013; Fawcett

et al., 2007) and supported by a meta-analysis on empirical studies, albeit mostly on bird species (Booksmythe

et al., 2017).

4.1 | Adaptive offspring sex ratio adjustment

The capacity of offspring sex ratio adjustment to evolve with paternal reproductive success in polygynous species

may depend on the heritability of the competitive ability of males and the resulting differential fitness outcome of

sons and daughters (Clutton-Brock & Iason, 1986; Trivers & Willard, 1973). In elephant seals, reproductive success

increases with the competitive capacity of males to hold a harem (Hoelzel et al., 1999). We expect the traits that

influence this ability, such as large body size, physical stamina, aggressiveness, and boldness, to be heritable

(e.g., Kruuk et al., 2000). A harem holder would benefit from producing sons that inherit its competitive ability which

will also increase their likelihood to hold a harem. In contrast, peripheral (subordinate) males should benefit more

from producing daughters if the average fitness of daughters exceeds the fitness of sons that never hold a harem.

Sexually antagonistic genetic variance for fitness could be a genetic mechanism favoring the evolution of offspring

sex ratio adjustment (Blackburn et al., 2010). Variation of some specific alleles may be beneficial to one sex but dele-

terious to the other, leading to a trade-off between optimal genotypes for males and females (Connallon &

Jakubowski, 2009; Fedorka & Mousseau, 2004; Foerster et al., 2007). Given the very small proportion of males that

reach dominant status, and a high reproductive success, biasing offspring sex ratio in favor of sons corresponds to a

high-risk high-reward strategy, whereas biasing it in favor of females corresponds to a bet-hedging strategy

(Gillespie, 1974; Slatkin, 1974). Bet hedging can help explain the maintenance of these two alternative strategies,

even if at first sight lifetime reproductive success in polygynous species can be much higher for males than females

(Simons, 2011). Offspring sex ratio adjustment is thus expected to erode the strength of sexual selection by stabiliz-

ing the fitness variance among males and consequently preventing an evolutionary collapse due to traits that are

“too exaggerated” (Iwasa & Pomiankowski, 1995).

In our study, we did not measure the differential relative fitness between producing sons and daughters in

relation to paternal reproductive success and, to our knowledge, this has not been measured in any other colony

of elephant seals studied so far. However, this has been investigated in others polygynous species. For example,

the fitness outcome of producing daughters in bighorn rams (Ovis canadensis; Douhard et al., 2016) with

lower reproductive success and in brown anole lizard males (Anolis sagrei; Cox & Calsbeek, 2010) with smaller

sizes is greater than of producing sons, supporting the adaptive relationship between male attractiveness and

offspring sex ratio.
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Although we based our hypothesis on how offspring sex ratio affects the variance of male fitness, it also affects

the variance of female fitness (Booksmythe et al., 2013). Both effects can be in agreement or in conflict depending

on the differential costs females pay to raise a son or a daughter (Clutton-Brock & Iason, 1986). In elephant seals,

several studies found that weaning sons is more costly than daughters as sons weigh more than daughters at

weaning and have longer lactation periods (Carrick et al., 1962; Reiter et al., 1978). The underlying reason for this is

not clear. For example, it could be because sons are heavier than daughters at birth (Arnbom et al., 1994; Le Boeuf

et al., 1989) or sons need to be heavier than daughters to reach equivalent postweaning survival rates (McMahon

et al., 2000). Therefore, mothers may favor the production of sons over daughters only if they can afford the extra

energetic costs as suggested by the Trivers and Willard hypothesis (Trivers & Willard, 1973).

In accordance with the Trivers and Willard hypothesis, young and small female elephant seals produce more

daughters than sons, conversely to larger and older females that favor the production of sons (Arnbom et al., 1994;

Le Boeuf et al., 1989, 2019; Wilkinson & Aarde, 2001). Additionally, in southern elephant seals breeding on

Macquarie Island, larger females devote more energy to their sons than to their daughters whereas smaller females

devote more energy to their daughters than to their sons (McMahon et al., 2017). Le Boeuf et al. (1989) also found

that young mother northern elephant seals were less successful at raising sons than daughters compared to older

mothers. Therefore, it seems that both effects of offspring sex ratio adjustment by males and females are in

accordance when harem-holders breed more often with older and larger females. Otherwise, both effects of off-

spring sex ratio adjustment are in conflict resulting in a canceled overall effect.

We did not design our study to identify the mechanisms causing offspring sex ratio adjustment, similarly to most

previous studies on this topic (Cameron, 2004; Helle et al., 2008). Although initial hypotheses assumed that mothers

exclusively control offspring sex ratio (Burley, 1981; Trivers & Willard, 1973), recent evidence shows that offspring

sex ratio can be driven by fathers, mothers, or both simultaneously (Douhard & Geffroy, 2021; Edwards &

Cameron, 2014). In the following sections, we discuss some possible causal mechanisms of these different pathways

that could explain the result we found in this study on southern elephant seals.

4.2 | Offspring sex ratio adjustment by females

Accordingly with the differential allocation and the mate attractiveness hypotheses (Burley, 1981; Sheldon, 2000),

mothers may adjust the sex of their offspring in response to fathers' phenotypes in a way to maximize their long-

term fitness output (Booksmythe et al., 2017). Mating with an attractive male increases the probability of producing

sons, as they inherit the phenotypes of their fathers (e.g., ornaments, armaments, or dominance rank, Burley, 1981;

Cox & Calsbeek, 2010; Ellegren et al., 1996).

Elephant seal females may perceive the quality of males through their physical attributes, such as body size or

their dominance status (i.e., harem-holder vs. peripheral) (Carlini et al., 2006; Hoelzel et al., 1999; Modig, 1996). For

example, elephant seal females resist and protest more against copulation attempts of low rank males than higher

rank males (Galimberti et al., 2000a). Dependent on the male attractiveness, various mechanisms of cryptic choice

can allow females to skew their offspring sex ratio. This can be done through differential mortality or fertilization

success of the X- and Y-CBS in the reproductive tract (Grant & Chamley, 2010; Krackow, 1995; Navara, 2013). For

example, female field voles (Microtus agrestis) with higher levels of testosterone and glucose (Helle et al., 2008) and

female gray mouse lemurs (Microcebus murinus) with lower levels of estrogen (Perret, 2005) produced male-biased lit-

ters. In highly dense harems, such as in elephant seals, more centrally located females are more protected from

harassment by peripheral males and are more likely to mate with harem-holders (Le Boeuf, 1972, 1974). Females

reproductive experience and dominance capacity seem to drive their spatial structure (McMahon & Bradshaw, 2004;

Reiter et al., 1981). Testosterone levels may play an important role here as it is associated with social dominance

(Rada et al., 1976; Williamson et al., 2017) and offspring sex ratio adjustment (Navara, 2013). Females with higher

levels of testosterone may monopolize more central locations in harems and thus more likely to mate with harem-
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holders. At the same time, higher testosterone levels promote the production of sons, for example, via a higher fertil-

ization probability of Y-CBS (Grant et al., 2008), which benefits centrally located females because their sons may

inherit the capacity of their fathers to obtain a high lifetime reproductive success.

Stress may also be an important factor influencing offspring sex ratio adjustment by mothers (Navara, 2018).

Females experiencing higher levels of stress tend to produce more daughters than sons (Geiringer, 1961; Lane &

Hyde, 1973). For example, female house mice (Mus musculus domesticus) exposed to higher density of males were

more stressed (higher blood corticosterone levels) and produced female-biased offspring sex ratios (Firman, 2020).

Stress alters the mother's physiology and thus, similarly, may induce a sex chromosome-specific mortality or fertiliza-

tion (Ideta et al., 2009; Navara, 2018). According to harem characteristics, elephant seal females experience different

levels of male harassment (Galimberti et al., 2000a,b) resulting in varying stress levels among females. Females that

are more subject to male harassment (higher stress levels) are less likely to be fertilized by harem-holders and thus

benefit to produce more daughters than sons.

4.3 | Offspring sex ratio adjustment by males

In mammals, males are the heterogametic sex producing X- and Y-CBS which determine the sex of the offspring.

Hence, paternal offspring sex ratio adjustment represents a parsimonious explanation compared to maternal offspring

sex ratio adjustment in response to male attributes (Douhard & Geffroy, 2021; Edwards & Cameron, 2014). Fathers

may adjust offspring sex ratio by varying the proportion of the X- and Y-CBS, where a higher proportion of Y-CBS

results in a higher probability of producing a son (Chandler et al., 2007; Edwards et al., 2016; Saragusty et al., 2012).

Variation in the proportion of X- and Y-CBS may be driven by mating frequency variation between harem-

holders and peripheral males. Harem holders that have a higher mating frequency compared to peripheral males may

produce more Y-CBS because they are smaller—i.e., less costly to produce—than X-CBS which contains 4% more

DNA (Douhard & Geffroy, 2021; Seidel, 1999). For example, the proportion of X-CBS in humans (Homo sapiens)

increased with sexual abstinence (Hilsenrath et al., 1997) and mating frequency influences offspring sex ratio in

horses, rabbits, rats, and mice (James, 1996). As the breeding season progresses, harem-holders become exhausted

resulting in increasing the production of Y-CBS and thus the likelihood of siring sons. Older females arrive at breed-

ing sites later than younger females (McMahon & Bradshaw, 2004), which may lead to positive assortative mating as

older females are more likely to bear the additional energetic costs of rearing a son (Arnbom et al., 1994; Le Boeuf

et al., 1989). Furthermore, the date at which females arrive to breed is heritable (h2 = 0.4; Oosthuizen et al., 2023),

which reinforces the evolutionary potential of the positive assortative mating between males and females.

Variation in the proportion of X- and Y-CBS may also be driven by hormonal variation among males correlated

to their breeding status and performance (James, 2008). Social dominance increases with testosterone through more

aggressive behaviors (Rada et al., 1976; Williamson et al., 2017). For example, castrated rats showed a decrease in

aggressiveness with a loss of social dominance (Albert et al., 1986). Testosterone level is also higher in harem-holders

in various species of deer (Chunwang et al., 2004) and horse (McDonnell & Murray, 1995). Testosterone levels in

blood and semen are correlated to Y-CBS in bulls (Kholghi et al., 2020). Therefore, testosterone levels may link social

dominance (reproductive success) with offspring sex ratio adjustment. For example, in spotless starling females

(Sturnus unicolor), ibex females (Capra nubiana), and grey mouse lemur males, high levels of testosterone were associ-

ated with higher social ranks and son-biased offspring sex ratio (Perret, 2018; Shargal et al., 2008; Veiga et al., 2004).

4.4 | Conclusion

Our study shows that offspring sex ratio increased with paternal relative reproductive success in a colony of south-

ern elephant seals breeding on the Kerguelen Archipelago. This finding brings additional support to the potential
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adaptive adjustment of offspring sex ratio by parents. However, we could not identify the underlying mechanisms

driving the relationship between offspring sex ratio adjustment and paternal relative reproductive success.

Studies on offspring sex ratio adjustment have produced inconsistent and contradictory results in many verte-

brate species (Clutton-Brock & Iason, 1986; Cockburn et al., 2002; Douhard, 2017; Silk et al., 2005). This can be

explained by the complexity of the factors influencing offspring sex ratio (Brown, 2001; Komdeur & Pen, 2002;

Packer et al., 2000). For example, three interacting processes such as maternal condition (the Trivers-Willard hypoth-

esis; Trivers & Willard, 1973), local density (the local resource competition hypothesis; Schaik & Hrdy, 1991), and

adult sex ratio (the homeostatic hypothesis; Hamel et al., 2016) may result in an unbiased or biased sex ratio towards

either males or females (Wild & West, 2007). This was empirically demonstrated in red deer, where the offspring

son-biased production by dominant females declined with population density and winter rainfall, both environmental

factors associated with preparturition nutritional stress (Kruuk et al., 1999). In elephant seals, offspring sex ratio was

shown to vary with maternal age (Le Boeuf et al., 2019), maternal body condition in relation to preparturition envi-

ronmental conditions (Lee & Sydeman, 2009; Vergani et al., 2004), and paternal reproductive success (this study).

We, therefore, advocate that future studies should be specifically designed to tease apart the different ecological

and evolutionary processes responsible for the offspring sex ratio adjustment as understanding these mechanisms

may have important wildlife management and conservation implications (Clout et al., 2002; Vetter & Arnold, 2018).
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