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A B S T R A C T

The estimation of repair costs for car damage is a critical yet challenging task for insurance companies and
repair shops. Accurate and the rapid predictions are essential for providing reliable cost estimates to customers.
Traditional methods in this domain face multiple challenges, including manual processes and inaccuracies in
repair cost estimation, as outlined in our article.

This paper introduces a novel approach that combines regression models with ontology reasoning to
enhance the accuracy of car damage repair cost predictions. An Ontology for Car Damage (OCD)1 ,2 has
been developed, which is meticulously structured and populated using Named Entity Recognition (NER) and
Relation Extraction (RE) techniques. This ontology provides a comprehensive framework for organizing and
understanding the complex domain of car damage, capturing essential semantic relationships and variables
that significantly influence repair costs. By integrating OCD with seven regression models, such as Random
Forest and Decision Tree, we have proposed a hybrid methodology that leverages both structured data and
semantic understanding. Our approach not only accounts for typical variables such as the type and severity
of damage, and labor costs but also identifies novel features through the use of SWRL (Semantic Web Rule
Language) rules, enhancing the model’s predictive capabilities.

The performance of our models was evaluated using a substantial real-world dataset comprising over
300,000 records. This evaluation used metrics such as mean absolute error (MAE), root mean squared error
(RMSE), and R-squared. The results indicate that our hybrid approach, which incorporates ontology reasoning,
significantly outperforms traditional regression models.

The Random Forest model, especially when combined with the OCD ontology, showcased superior
performance, exhibiting a minimal average deviation from the actual repair costs and achieving a low MAE.

This study’s findings demonstrate the potential of combining ontology reasoning with machine learning
techniques for precise cost prediction in the automotive repair industry. Our methodology offers a robust tool
for insurance companies and repair shops to generate more accurate, reliable, and automated cost estimates,
ultimately benefiting both businesses and customers.
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1. Introduction and context

With the exponential growth of data in recent years, handling both
structured and unstructured data has become essential, facilitating
informed decision-making in various sectors (Lu, 2017). In the auto-
motive industry, Syartec,3 a leading software development company for
car dealerships and insurance firms, plays a key role by offering com-
prehensive business management solutions that encompass everything
from manufacturer sales to client deliveries.

A pressing challenge in this sector is the accurate assessment of car
damage and the prediction of repair costs. Where insurance agents once
traditionally inspected vehicles and documented damages in reports.
These reports, often unstructured, necessitate manual data entry, a
time-consuming and error-prone process. Furthermore, agents lack the
means to estimate repair costs in real-time accurately. To address
these issues, Syartec is pioneering the shift from manual to automated,
reliable inspection protocols. However, evaluating car damage for re-
pairs is fraught with challenges (Kyu & Woraratpanya, 2020; Martis,
Sannidhan, Aravinda, & Balasubramani, 2023). The industry currently
lacks standardized criteria for assessing damage based on type, severity,
affected car parts, as well as the make and model of the vehicle.
Moreover, the variability in part costs and labor charges, complicates
this process.

Conventional methods (Department of Consumer Affairs Bureau of
Automotive Repair 10949 North Mather Boulevard Rancho Cordova,
2022) for estimating repair costs often result in inconsistent and inac-
curate figures due to the subjective nature of manual inspections and
reliance on experience-based approximations. This inconsistency poses
frustrations for insurance companies and customers alike, leading to
potential financial discrepancies and delays in repairs. Consequently,
there is a growing demand for more objective, data-driven approaches
to automatically and efficiently estimate repair costs.

Numerous researchers (Kyu & Woraratpanya, 2020; Martis et al.,
2023; Qaddour & Siddiqa, 2023; Sharma, Verma, & Gupta, 2019; Zhang
et al., 2020; Zhu, Liu, Shen, & Zhao, 2021) have dedicated efforts
to explore image-based methodologies for automating car repair cost

3 Syartec website: https://www.syartec.com.
2

estimation, utilizing advanced computer vision and machine learning
algorithms. In parallel, industry experts (Inspektlabs, 2023; Ractable,
2023; Tchek, 2023) have also contributed significantly to this domain,
applying similar technologies in practical, real-world applications. The
process involves detecting the damaged car part, determining the type
and severity of damage, and estimating the repair cost. However,
image-based methods have several limitations. One of the major lim-
itations is the complexity involved in accurately segmenting car parts
in images. This is primarily due to the presence of numerous models
and versions of vehicles, as well as constant updates to vehicle designs.
Another limitation of image-based methods is that the model responsi-
ble for detecting damages can generate errors due to the reflection of
light and the distance between the camera and the car. Additionally, de-
tecting internal damages is challenging, and it is difficult to determine
whether the damage requires replacement or repair.

On the other hand, approaches using tabular data to predict re-
pair costs (Kim, Yum, Park, & Bae, 2021; Stojadinovic, Kovacevic,
Marinkovic, & Stojadinovic, 2017), which leverage advanced statistical
techniques and machine learning algorithms, have emerged as some of
the most promising methods for repair cost estimation. These methods
involve analyzing extensive datasets of tabular data to identify pat-
terns and trends. Despite their potential, these approaches still face
challenges. For instance, the accuracy of predictions is often limited
by the quality of the data, which may be compromised by missing
or incomplete information. Additionally, current methods do not fully
capture the semantic information, and there is a notable gap in re-
search specifically focused on predicting repair costs for car damages.
These limitations highlight the need for a more sophisticated approach
to car repair cost estimation that takes into account the semantic
understanding of the different features involved.

The contributions of this article can be summarized as follows: (i)
Presentation of OCD, an ontology for car damage, and ontology popula-
tion using named entity recognition and relation extraction techniques.
(ii) Definition and integration of semantic web rules for reasoning
and enriching the features used by regression models to predict car
repair costs. (iii) An innovative methodology that integrates ontology
with regression models to enhance the accuracy of car damage repair
cost predictions. (iv) Empirical validation of the proposed methodology
through a comparative analysis of various regression models, both with
and without ontology integration, using a real-world dataset.

https://www.syartec.com


Intelligent Systems with Applications 23 (2024) 200411H. Ahaggach et al.

p
a
a
m
m
d
m
h
T
d
w
n
b
s
t
T
t
c
e
s
o
p

b
u

2

o
t
b
p
s
i
S
s
v
u
s
f

t
p
u
t
a
a
e
e
c
o
B
e
a

The rest of the paper is organized as follows: Section 2 presents
recent work on the use of regression models and ontologies and their
various applications. This section also explores attempts to incorporate
ontology into prediction models. Section 3 details the methodology
for predicting car damage repair costs, outlining the various steps
involved in the process. It also explains the integration of ontology to
improve the accuracy of these predictions. In Section 4, a comparison
of seven popular regression models is presented, both with and without
the integration of ontology, using a real-world dataset. Illustrative
examples for predicting car repair prices using an actual report case.
The article concludes in Section 5 with a summary of the key findings,
and Section 6 offers suggestions for future research directions.

2. Literature review

This section provides a comprehensive overview of existing studies
using regression models and ontologies, highlighting their applications
across various domains. The section also explores the advantages asso-
ciated with using these techniques in forecasting damage repair costs.
Additionally, it examines hybrid approaches that effectively combine
machine learning with ontologies, detailing their effectiveness and
potential in various applications.

In recent years, there have been significant advances in using ma-
chine learning algorithms, especially regression models, to estimate the
cost of repair damage. These techniques can analyze large datasets and
identify patterns and trends that help to estimate repair costs more ac-
curately. Apart from using advanced ML techniques, the use of ontology
can also be beneficial in predicting repair costs. Ontology is a powerful
tool, enables the modeling of domain knowledge and facilitates the
capture of semantic relationships between various features. The use of
ontology can enhance the accuracy of cost predictions by introducing
rules based on the Semantic Web Rule Language (SWRL). These rules
enable the extraction of additional features and implicit knowledge,
thereby improving the predictive capabilities of the model.

2.1. Regression-based approach

One approach to predicting repair costs is through the use of re-
gression analysis (Bishop & Nasrabadi, 2006; Gareth, Daniela, Trevor,
& Robert, 2013; Hastie, Tibshirani, Friedman, & Friedman, 2009),
which is a statistical technique that models the relationship between
a dependent variable, which in this case is the repair cost, and one
or more independent variables, such as the characteristics of the dam-
age and other relevant features. It involves estimating the parame-
ters 𝛽0, 𝛽1,… , 𝛽𝑛 of a linear or nonlinear equation of the form 𝑦 =
𝑓 (𝑥1, 𝑥2,… , 𝑥𝑛) + 𝜖, where 𝜖 is the error term (Lipatov, Belyanova, &
Petunina, 2024). Regression models are used to predict future values
of the dependent variable, identify important predictors, and under-
stand the relationships between variables. However, in some cases, the
relationship between the predictor variables and the response variable
may be more complex and nonlinear, and in these cases, more advanced
regression models may be used, such as polynomial regression (Hastie
et al., 2009), support vector regression (Smola & Schölkopf, 2004),
and neural network regression (Bishop et al., 1995). These advanced
techniques can capture more complex patterns and relationships, and
can result in more accurate predictions. Regression models have been
applied to a wide range of applications in different fields, such as
economics (Ye & Liu, 2022), finance (Cook, Kieschnick, & McCul-
lough, 2008), construction (Jung et al., 2020) and healthcare (Kopitar,
Kocbek, Cilar, Sheikh, & Stiglic, 2020; Stone, Zwiggelaar, Jones, &
Mac Parthaláin, 2022).

In the automotive industry, regression analysis has been applied to
a range of problems, such as estimating vehicle resale values (Gegic,
Isakovic, Keco, Masetic, & Kevric, 2019; Lessmann & Voß, 2017), pre-
dicting a car’s sale time (Ahaggach, Abrouk, Foufou, & Lebon, 2023),
and maintenance prediction (Chen, Liu, Sun, Di Cairano-Gilfedder,
3

m

& Titmus, 2019). Additionally, regression models have been used to
estimate the costs in the automotive industry in many works. Huang,
Huang, and Wu (2016) proposed the use of Partial Least Square Re-
gression (PLSR) to estimate the cost of electric cars throughout their
entire life cycle, considering features such as remaining mileage and
battery capacity. Their study suggests that a reasonable choice of these
features can improve the efficiency and reduce the overall cost of pure
electric family cars. However, estimating the cost of manufacturing
pure electric family cars presents challenges due to limited historical
data availability and the collinearity of design parameters. PLSR is
roposed as a solution to overcome these challenges and achieve more
ccurate cost estimations. Another study by Puripunyavanich, Myojo,
nd Kanazawa (2005) proposed a new method to estimate the lifetime
aintenance and repair cost of durable goods, with a focus on auto-
obiles in the US. The authors profiled the reliability characteristics of
urable goods using statistical techniques and converted cross-sectional
acro data on maintenance and repair expenditure per average house-
old into longitudinal maintenance and repair cost per average good.
he proposed statistical model can be applied to any consumer-oriented
urable goods with significant mechanical components. In another
ork, Adekitan, Bukola, and Kennedy (2018) developed an artificial
eural network (ANN) model to predict vehicle maintenance costs
ased on input data such as fuel volume, fuel cost, and car mileage. The
tudy collected and analyzed data from two corporate organizations
o identify common vehicle faults and their frequency of occurrence.
he developed ANN model showed a significant correlation between
he predictor inputs and the predicted maintenance cost. The model
an be a useful tool for maintenance budget planning, as maintenance
xpenses make up a sizable portion of an organization’s budget. The
tudy suggests that the scope of research can be extended by collecting
ther parameters, both qualitative and quantitative, to improve the
rediction model.

Moving forward, the subsequent section delves into an ontology-
ased approach, exploring relevant studies that have investigated the
tilization of ontologies in prediction.

.2. Ontology-based approach

This section reviews relevant studies that have explored the use of
ntologies in the context of prediction. Ontology is a formal represen-
ation of concepts and relationships within a specific domain denoted
y  = (, ,𝒥 ,), where  is a set of concepts,  is a set of
roperties, 𝒥 of instances, and  is a set of axioms. It provides a
tructured and standardized way of representing knowledge, making
t easier to share and reuse across different applications and systems.
pecifically, in the context of prediction, ontology can be used to
upport the development of predictive models by providing a common
ocabulary for describing the variables and relationships involved. The
se of ontologies in prediction tasks has been explored in various fields
uch as construction, healthcare, seismic risk assessment, construction,
ailure classification, recommendation, and building cost estimation.

In the field of construction, ontologies have been used for au-
omating the process of estimating construction costs. Niknam (2015)
roposed a semantics-based approach to construction cost estimating
sing semantic web technology. The proposed approach uses ontologies
o publish product information and develop ontology-based estimating
pplications. The semantic web services technology allows estimating
pplications to access the latest resource costs when needed, thereby
liminating the need for manual updating and improving estimator
fficiency. Lee, Kim, and Yu (2014) proposed an approach for building
ost estimation that uses building information modeling (BIM) data and
ntological reasoning. The proposed approach emphasizes the use of
IM data to automate the search for work items suitable for building
lements and materials. The proposed methodology can help to provide
ccurate and consistent results. Liu, Li, and Jiang (2016) proposed a

ethod uses ontological modeling to represent cost estimation concepts
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and their relationships, which are extracted from building specifica-
tions, construction documents, and BIM data. The proposed method can
help to extract information more easily and quickly, thereby improving
estimator efficiency. Hu and Liu (2020) proposed an e-maintenance
platform design for public infrastructure maintenance based on IFC
ontology and Semantic Web services. They estimated the cost based
on a combination of BIM, international foundation for interopera-
ble construction (IFC) data, and intelligent algorithms. The proposed
methodology involves item extraction, quota standard selection, unit
price analysis, work item pricing, and cost estimation

In healthcare, Thirugnanam, Thirugnanam, and Mangayarkarasi
(2013) developed an ontology to offer accurate and relevant infor-
mation about human diseases and their symptoms to users. They
implemented SWRL rules for predicting diseases and performed various
ests to ensure the proper functioning of the ontology. In another
tudy (Chandra, Tiwari, Agarwal, & Singh, 2023), An ontology for
ector-borne diseases was constructed, and SWRL was integrated for

diagnostic and classification purposes.
In the field of seismic risk assessment, ontologies have been used

to develop a holistic and probabilistic framework for assessing the
risk of buildings during earthquakes. Xu et al. proposed an ontology-
based holistic and probabilistic framework for seismic risk assessment
of buildings (Xu, Zhang, Cui, & Zhao, 2022). The proposed method uses
an Ontology-based Bayesian Belief Network and SWRL to determine
the probability of a certain level of ground motion occurring within a
specific time frame. The proposed method also helps to determine the
total seismic risk probability of a structure, which can aid in making
decisions about retrofitting or rebuilding the structure.

In recommendation systems, Fudholi, Maneerat, Varakulsiripunth,
and Kato (2009) proposed a daily menu assistance system that suggests
menus based on daily calorie needs. The system uses fuzzy ontology to
provide menu recommendations based on factors such as price, rate,
vote, and taste. The article explains the use of Protégé, SWRL, and
QWRL (Semantic Query-Enhanced Web Rule Language) in designing
he recommendation feature and shows experimental results. The arti-
le also provides a brief review of fuzzy sets, fuzzy ontology, and daily
enu assistance systems.

In fraud detection, Jabardi and Hadi (2021a) proposed an approach
o detect fake Twitter accounts using ontology engineering and SWRL
ules for scores calculation and fake Twitter detection was proposed.
he authors inferred new features from given features and used them
or classification. This article proposes an approach to detect fake
witter accounts using ontology engineering and SWRL rules for scores
alculation and fake Twitter detection. A new features are inferred
rom given features and can be used for classification. The paper
lso discusses the methodology, software, validation, formal analysis,
nvestigation, resources, writing, and visualization.

The following section presents hybrid approaches that combine
oth ontology and machine learning techniques for various prediction
asks. Researchers have extensively explored this integration, aiming to
everage the strengths of both approaches to enhance the accuracy and
ffectiveness of predictions.

.3. Hybrid approach

Many researchers have explored the integration of ontology and
achine learning techniques for various prediction tasks. some works
se the results of machine learning to construct rules that helps to
mprove the accuracy, some work only translates the rules found by
L algorithms into SWRL rules.

Cao, Samet, Zanni-Merk, de Beuvron, and Reich (2019) employed
combination of ontology and fuzzy clustering techniques to classify

roduct failures. The authors utilized historical machine data to learn
he criticality of failures through fuzzy clustering, and then used SWRL
ules to predict the time and criticality of future failures based on the
4

esults of fuzzy clustering. p
Tang, Liu, Yang, and Wei (2018) introduced a financial statement
raud detection system that utilized an ontology and a decision tree
lgorithm for fraud detection. The system combined decision tree rules
o acquire rules SWRL and them to enable the inference engine to
everage existing knowledge and explore new knowledge.

In the same context, Jabardi and Hadi (2021b) use of machine
earning and ontology to learn semantic rules in fraud classification.
he proposed model uses an ontology to represent specific knowledge
nd decision trees as a data-driven rule learning method. They also
iscuss SWRL rules, which is used to mine hidden knowledge from huge
ntologies.

In healthcare, Massari, Sabouri, Mhammedi, and Gherabi (2012)
iscuss the use of ML and ontology in predicting diabetes. In another
ork, El Massari et al. (2022) compared ontology on the prediction
ased on rules and machine learning algorithms to predict cardiovas-
ular disease. In both works, the authors only translate decision tree
ules to SWRL rules to predict the diabetes and cardiovascular disease.
hey conclude that ontologies yield better results when compared to
he decision tree algorithms. This finding appears contradictory, since
oth methods rely on the same rules.

Tiwari, Chandra, and Agarwal (2022) proposed a methodology to
redict the spread of COVID-19 using statistical and semantic web
odeling techniques. They used the ARIMA model for time series

orecasting and The SWRL rules are used for various purposes such as
omputing Body Mass Index (BMI), determining whether a patient is an
dult or a minor, verifying the patient’s gender, predicting COVID-19
ases using the ARIMA model, and calculating the probability of having
OVID-19.

.4. Discussion

Regression models are used to estimate repair costs for damage.
hese models require the analysis of extensive tabular data to dis-
ern patterns. However, despite their potential, there are challenges
o address, particularly when dealing with low-quality data, missing
r incomplete information, and complex patterns that complicate the
ask of capturing the relationship between features and the dependent
ariable.

The existing ontologies find application across various domains.
owever, it is worth noting that within the automotive domain, no

pecific ontology has been defined for car damage assessment. Fur-
hermore, there is a dearth of research on prediction and car damage
ssessment within this context.

The integration of ontology and machine learning techniques has
een widely investigated by researchers for various prediction tasks.
ifferent approaches have been employed to leverage the benefits of
achine learning and ontology in improving accuracy and rule gener-

tion. There are two main approaches observed in the literature when
ntegrating ontology and machine learning techniques. Firstly, certain
tudies utilize the outcomes of machine learning to construct rules,
iming to enhance prediction accuracy. These rules are derived from
he patterns and relationships identified by machine learning models
nd are designed to capture valuable insights, ultimately improving
he overall performance of prediction tasks. Secondly, other research
ocuses on the translation of rules discovered by machine learning
lgorithms into SWRL rules. By converting the learned rules into SWRL
ormat, these studies conclude that ontologies yield better results when
ompared to the ML algorithms such as decision tree algorithm. This
inding appears contradictory, since both methods rely on the same
ules.

Our approach combines ontology with regression models. By aug-
enting the model’s input with additional characteristics and features
erived from the ontology, the learning process is enriched, potentially
ncovering new knowledge. Ontology reasoning is considered as a
ayer that contributes to improving prediction results. The next section

rovides a detailed description of this approach.



Intelligent Systems with Applications 23 (2024) 200411H. Ahaggach et al.
Fig. 1. Our methodology for car damage price prediction.
3. Proposed approach

This section details the methodology used to estimate car damage
repair costs (see Fig. 1). The estimation process consists of three main
phases: Information extraction for ontology population, SWRL rules
integration, and price prediction.

In the information extraction for ontology population phase, perti-
nent information is extracted from unstructured damage reports using
NER and RE techniques. This information is then populated into the
proposed ontology. In the second phase, the integration of SWRL rules
allows the ontology to perform reasoning that enhances and enriches
this information. Lastly, the results from the ontology are used to
predict the repair costs for each type of damage using regression model
algorithms. Further details regarding our approach will be presented in
the following section.

3.1. Information extraction for ontology population

Upon the arrival of each car, it undergoes a comprehensive quality
control inspection. Any observed damage is carefully documented in an
insurance report. However, these textual reports are unstructured and
written in the French language, with each agent describing the damages
in their own way.

The first step we completed in our previous work (Ahaggach,
Abrouk, & Lebon, 2024) was to model the domain by constructing an
ontology for car damage assessment. This ontology encompasses all the
vocabulary, hierarchy of components, and different types of damage.
We then extracted information using named entity recognition and
relation extraction to retrieve relevant information from car damage
reports and structured this information. Subsequently, we populated
this information into the ontology.

3.1.1. Information extraction
Information extraction refers to the process of automatically ex-

tracting relevant information from text documents. This is typically
accomplished through the application of natural language processing
(NLP) and ML techniques. The extracted information can vary in com-
plexity, ranging from simple facts such as names, dates, and locations to
more intricate details like events, relationships, and sentiments. In our
case, the goal is to extract entities and relations such as, car information
(brand, model, color, etc.) entities, damage characteristics (severity,
types, location, etc.), and the relations between these entities. For
5

example, consider the following sentence: ‘‘Toyota Yaris with a minor
dent on the back-left door and medium scratches on the bumper’’ .

The extracted information would be as follows:

– Toyota as the brand of the car.
– Yaris as the model of the car.
– Door and Bumper as components of the car.
– Dent Scratches and Broken as types of damages.
– Severe and Medium as the severity levels of these damages.
– Back-left as the location of the damage.

All of these concepts are defined in the proposed ontology OCD. Ad-
ditionally, we also extract relationships that exist between different
entities to capture semantic information. For instance, in the previous
sentence, the relation 𝒉𝒂𝒔𝑫𝒂𝒎𝒂𝒈𝒆 exists between the car part 𝐷𝑜𝑜𝑟 and
the damage type 𝐷𝑒𝑛𝑡 to indicate that the door has a dent, as opposed
to, for instance, the bumper, which is scratched.

Named entity recognition. NER stands as a pivotal task within the realm
of NLP, centering on the identification and categorization of entities
within textual data. The gamut of approaches for NER encompasses
rule-based methods, dictionary-based methods, machine learning, and
deep learning approaches. The overarching objective of NER revolves
around labeling specific entities. In the NER task, our endeavor entails
a comprehensive comparison of diverse machine learning algorithms,
including Conditional Random Fields (Lafferty, McCallum, & Pereira,
2001), Bidirectional Long Short-Term Memory networks (Huang, Xu,
& Yu, 2015), and FlauBERT4 (Le et al., 2020), and SpaCy.5 In our
case, SpaCy NER model has proven its mettle by offering advanced
capabilities for entity recognition.

Relation extraction. RE identify and extract the connections between
entities mentioned in textual data. The objective is to establish con-
nections between entities to capture the semantic information that
enhances the comprehension of reported damages. During this task,
we assess the performance of various machine learning models for the
recognition and classification of relations. The considered models en-
compass support vector machines, K-nearest neighbors, decision trees,

4 This model is available at: https://huggingface.co/flaubert/flaubert_base_
cased.

5 Spacy model: https://spacy.io/models/fr.

https://huggingface.co/flaubert/flaubert_base_cased
https://huggingface.co/flaubert/flaubert_base_cased
https://spacy.io/models/fr
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Fig. 2. Example of entities and relation extraction from a paragraph describing damage in a French language report.
and random forests. The primary aim is to identify the most effective
model for relation extraction. Our evaluation results demonstrate that
the random forests model outperforms the others, delivering superior
performance within this specific context. All the comparison results of
NER and RE are described in detail in our previous work (Ahaggach
et al., 2024). The Fig. 2 illustrating an example of entities and relation
extraction from a French report describing the car damages.

Enhancing extracted information. This step aims to improve the quality
of the extracted entities and relations by reducing redundancy, re-
solving conflicts, and minimizing false positives and false negatives. It
involves several subtasks, including:

(1) Deduplication: Identifying and merging duplicate or highly sim-
ilar entities and relations to eliminate redundancy in the ex-
tracted information.

(2) Conflict Resolution: Resolving conflicting that may arise when
multiple sources provide different information about the same
entity or relationship. This process ensures consistency in the
extracted data.

(3) False positive and false negative reduction: Addressing issues
where incorrect entities and relations were extracted (false posi-
tives) and where relevant relations were missed (false negatives)
during the extraction process. We use techniques such as thresh-
old adjustment to filter information with low probabilities of
belonging to entity or relation classes.

(4) Normalization: Standardizing extracted information to adhere to
a consistent format in ontology.
6

3.1.2. Ontology population
This section presents the ontology for car damage (OCD), including

its concepts, data properties, and object properties. Following that,
we delve into the ontology population process and then discuss the
evaluation process.

Ontology construction. The OCD ontology encompasses all aspects of
car damage, including vocabulary, component hierarchy, and various
types of damages. OCD has been developed based on the knowledge
of car insurance experts and their descriptive reports. OCD serves the
purpose of accommodating a wide spectrum of damage types and car
models, effectively capturing pertinent data from damage description
reports. Given the variability in the level of detail and information
provided within these reports, the OCD ontology boasts a versatile and
adaptable structure that facilitates seamless updates and modifications.
This inherent flexibility renders it an invaluable tool for information
extraction and analysis within the automotive sector, thus contribut-
ing significantly to the streamlining and optimization of the damage
assessment and repair processes within the industry.

Ontology concepts. In our OCD ontology, we have established three
fundamental concepts: 𝐷𝑎𝑚𝑎𝑔𝑒, 𝐶𝑎𝑟, and 𝐶𝑎𝑟𝑃𝑎𝑟𝑡𝑠. The concept of
‘‘𝐷𝑎𝑚𝑎𝑔𝑒’’ serves as a broad category encompassing any form of harm,
impairment, or loss inflicted upon a vehicle. Conversely, the ‘‘𝐶𝑎𝑟’’ con-
cept represents any vehicle that undergoes transportation, whether via
rail, truck, or ship. This encompasses new vehicles being transported
from manufacturers to dealerships and used cars making their way to
subsequent owners.
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Fig. 3. A snapshot of the main classes present in the OCD ontology with protégé.
Moreover, the ‘‘𝐷𝑎𝑚𝑎𝑔𝑒’’ concept can be more finely categorized
into three primary subclasses:

‘‘𝐵𝑜𝑑𝑦𝐷𝑎𝑚𝑎𝑔𝑒’’, ‘‘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙𝐷𝑎𝑚𝑎𝑔𝑒’’, and ‘‘𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝐷𝑎𝑚𝑎𝑔𝑒’’.

– 𝐵𝑜𝑑𝑦𝐷𝑎𝑚𝑎𝑔𝑒 : This refers to any harm or impairment that occurs
to the external components of a car. This includes scratches,
dents, cracks, and paint damage, among others. These types of
damage are typically repaired by a body shop specialist with
expertise in repairing and restoring car bodywork. Within the
subclass of 𝐵𝑜𝑑𝑦 𝑑𝑎𝑚𝑎𝑔𝑒, we can identify different types of dam-
age, such as superficial damage (minor scratches or dents that do
not affect the car’s structure), structural damage (major dents or
impacts that affect the car’s frame), and paint damage (discol-
oration, fading, or chipping of the car’s paint).

– 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝐷𝑎𝑚𝑎𝑔𝑒 : This refers to any harm or impairment that
occurs to the mechanical components of a car. This includes en-
gine malfunctions, transmission issues, and brake system failures,
among others. These types of damage are typically repaired by an
auto mechanic who specializes in repairing and restoring the car’s
mechanical systems. Within the subclass of mechanical damage,
we can identify different types of damage, such as electrical
damage (faulty wiring or malfunctioning sensors), transmission
damage (slipping gears or leaks), and engine damage (overheating
or broken components).

– 𝑀𝑖𝑠𝑠𝑖𝑛𝑔 𝐷𝑎𝑚𝑎𝑔𝑒 : This refers to any missing components or parts
of the car. This can include items such as mirrors, headlights, or
other exterior components, as well as interior components such
as seats or radios. In some cases, missing damage may also affect
the car’s mechanical systems if significant components such as
the battery or alternator are missing. Repairing missing damage
typically involves replacing the missing components or parts with
new ones, or in some cases, with used or refurbished ones.

Furthermore, some specific 𝐶𝑎𝑟𝑃𝑎𝑟𝑡𝑠 can be further broken down
into multiple constituent parts. For instance, a car wheel is a type
of 𝐶𝑎𝑟𝑃𝑎𝑟𝑡𝑠, and it consists of several components, including wheel
bearings, wheel rims, tires, and wheel fasteners. Fig. 3 provides a
snapshot of the classes present in the ontology.
7

Data properties. The OCD ontology includes a number of data proper-
ties that can be used to describe various attributes of cars and car parts.
Table 1 summarizes the data properties available in the OCD ontology.

Object properties. The OCD ontology includes several object proper-
ties that define the relationships between the classes. These object
properties include:

– ℎ𝑎𝑠𝐶𝑎𝑟𝑃𝑎𝑟𝑡: This object property relates the car to its constituent
parts. It has a domain of the class 𝐶𝑎𝑟 and a range of the class
𝐶𝑎𝑟𝑃𝑎𝑟𝑡𝑠. For example, a car has an engine, wheels, seats, and so
on. The inverse of this object property is 𝑖𝑠𝑃 𝑎𝑟𝑡𝑂𝑓 .

– ℎ𝑎𝑠𝐷𝑎𝑚𝑎𝑔𝑒: This object property is used to define the relationship
between a 𝐶𝑎𝑟𝑃𝑎𝑟𝑡𝑠 and 𝐷𝑎𝑚𝑎𝑔𝑒. The inverse of this object
property is 𝑖𝑛𝑃𝑎𝑟𝑡.

– ℎ𝑎𝑠𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡: This object property establishes a relationship be-
tween a 𝐶𝑎𝑟𝑃𝑎𝑟𝑡𝑠 and its component 𝐶𝑎𝑟𝑃𝑎𝑟𝑡𝑠. It denotes that a
specific car part is composed of or includes other individual parts.
This property is used to model hierarchical structures and compo-
sitions within the ontology, allowing for a detailed representation
of the relationships between various car components.

Ontology population process. In this step, we focus on inserting the
extracted information from unstructured French reports, along with
structured data containing prices presented in Table 2 in our OCD
ontology. To accomplish this task, we leverage the capabilities of
the 𝑂𝑤𝑙𝑟𝑒𝑎𝑑𝑦6 package, which is a powerful tool for working with
ontologies. 𝑂𝑤𝑙𝑟𝑒𝑎𝑑𝑦 provides a wide range of methods for efficiently
handling ontologies, including the insertion of instances into the ontol-
ogy. Our primary objective during this ontology population process is to
map the extracted entities and relationships to the relevant properties
and concepts within our ontology. This mapping ensures that the
information derived from the reports becomes integrated seamlessly
into the knowledge structure represented by the ontology.

6 https://owlready2.readthedocs.io

https://owlready2.readthedocs.io
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Table 1
Data properties for the OCD ontology.
Data Property Domain Type Description

CarBrand Car String The company that produced the car
CarModel Car String The model name of the car
CarYear Car Integer The year the car was manufactured
CarColor Car String The exterior color of the car
CarPrice Car Float The price of the car in a given currency
CarRegistration Car String The registration number of the car
FuelType Car String The type of fuel, such as gasoline, diesel, or electric
CarMileage Car Integer The total number of miles the car has traveled

PartName CarParts String The name of the car part
CarPartMaterial CarParts String The material(s) used to make the part
IsDamaged CarParts Boolean This property specifies whether the car part is damaged or not
Place CarParts String This property specifies the location of a damaged car part
PartPrice CarParts Float The price of the part in a given currency
DamageType Damage String The type of damage sustained by the car or car part
RepairCost Damage Float The estimated cost of repairing the damage
Severity Damage String The severity of the damage to the car part
RepairAction Damage string Recommended repair action for the damage
r
p
p
a
d
s
e

3

a
c
t

Let us illustrate this process with an example: suppose we extract
wo entities from the reports, one representing a 𝐶𝑎𝑟𝑃𝑎𝑟𝑡𝑠 and the other
𝑃 𝑙𝑎𝑐𝑒, and these entities are linked by the relationship 𝑃 𝑙𝑎𝑐𝑒𝑑𝐼𝑛. In

this scenario, the entity representing the 𝐶𝑎𝑟𝑃𝑎𝑟𝑡𝑠 will be instantiated
s a concept within the ontology, while the entity representing the
𝑙𝑎𝑐𝑒 will be populated as a data property of the concept 𝐶𝑎𝑟𝑃𝑎𝑟𝑡𝑠.

ntology evaluation. Ontology evaluation is the process of assessing
he quality of an ontology by measuring it against a set of established
riteria, including accuracy, completeness, conciseness, adaptability,
larity, computational ability, and consistency. This helps to ensure
hat the ontology is reliable and can effectively support its intended
pplications (Raad & Cruz, 2015).

There are four common techniques used for evaluating ontolo-
ies (Asim, Wasim, Khan, Mahmood, & Abbasi, 2018; Hazman, El-
eltagy, & Rafea, 2011). The first technique, golden standard-based
valuation, compares the learned ontology to a standard one, repre-
enting the ideal knowledge representation for a specific domain. The
econd one is application-based evaluation, which focuses on assessing
he ontology’s performance in a particular task-specific application. The
hird one, data-driven or corpus-based evaluation, measures the ontol-
gy’s coverage of a domain using domain-specific knowledge sources.
astly, the expert-based evaluation usually involves evaluating the
ntology through the experiences of users by defining indicators and
ssessing the ontology against each of them. In our case, we check the
onsistency of the ontology and ensuring that the reasoner does not
roduce any errors using the reasoners 𝐹𝑎𝑐𝑡 + + (Tsarkov & Horrocks,
006) and 𝐻𝑒𝑟𝑚𝑖𝑇 (Shearer, Motik, & Horrocks, 2008).

We collaborated with car insurance experts to gather feedback
nd suggestions for improving our ontology. After conducting a series
f interview sessions and analyzing sample data, we made several
evisions to the ontology, including adding new classes and properties
nd refining definitions of existing ones in order to improve its effec-
iveness in representing and analyzing data. Furthermore, we assess
he ontology’s effectiveness by employing SPARQL (Pérez, Arenas, &
utierrez, 2009). We also utilize it to extract data for training and
valuating our regression models designed to predict damage repair
rices for instances without pricing information.

.2. SWRL rules integration

This pivotal step effectively replaces the reliance on human experts,
s it enables the addition of pertinent information, such as determining
hether a damaged car part should be replaced or repaired based on a

et of specific criteria established by the expert. By employing the SWRL
ules, the ontology can identify components that can be reused, thereby
8

educing the necessity for new parts and consequently minimizing re-
air costs. SWRL rules also plays a crucial role in optimizing the repair
rice. For instance, this ontology incorporates a rule that stipulates if
damaged car door needs replacement and the car door handle is also
amaged, there is no need to calculate the repair cost for the handle
ince it will be replaced alongside the door. In the following some
xamples of SWRL rules used in the ontology translated in English:

.2.1. Rules decision
In this section, we have defined a set of rules to determine the

ppropriate repair action for damaged car parts based on various
riteria. These rules provide a clear guideline for decision-making in
he context of vehicle maintenance and repair.

– Rule 1: If the piece is damaged due to breakage, dent, or fracture,
and it is a vehicle wheel, then the piece must be replaced.
𝙲𝚊𝚛𝙿𝚊𝚛𝚝𝚜(?𝑝𝑎𝑟𝑡) ∧ 𝙿𝚊𝚛𝚝𝙽𝚊𝚖𝚎(?𝑝𝑎𝑟𝑡, "𝚆𝚑𝚎𝚎𝚕") ∧ 𝙸𝚜𝙳𝚊𝚖𝚊𝚐𝚎𝚍(?𝑝𝑎𝑟𝑡,
𝑇 𝑟𝑢𝑒)∧𝙳𝚊𝚖𝚊𝚐𝚎(?𝑑𝑎𝑚𝑎𝑔𝑒)∧𝚑𝚊𝚜𝙳𝚊𝚖𝚊𝚐𝚎(?𝑝𝑎𝑟𝑡, ?𝑑𝑎𝑚𝑎𝑔𝑒)∧(𝙳𝚊𝚖𝚊𝚐𝚎𝚃𝚢𝚙𝚎
(?𝑑𝑎𝑚𝑎𝑔𝑒, "𝐷𝑒𝑛𝑡")∨𝙳𝚊𝚖𝚊𝚐𝚎𝚃𝚢𝚙𝚎(?𝑑𝑎𝑚𝑎𝑔𝑒, "𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒")∨𝙳𝚊𝚖𝚊𝚐𝚎𝚃𝚢𝚙𝚎
(?𝑑𝑎𝑚𝑎𝑔𝑒, "𝐵𝑟𝑒𝑎𝑘𝑎𝑔𝑒")) ⇒ 𝚁𝚎𝚙𝚊𝚒𝚛𝙰𝚌𝚝𝚒𝚘𝚗(?𝑑𝑎𝑚𝑎𝑔𝑒, "𝑅𝑒𝑝𝑙𝑎𝑐𝑒")

– Rule 2: If the damage is related to car’s bodywork (not wheels)
and it is a dent with severity light, then perform the repair action
on the damage.
𝙲𝚊𝚛𝙿𝚊𝚛𝚝𝚜(?𝑝𝑎𝑟𝑡) ∧ ¬𝙿𝚊𝚛𝚝𝙽𝚊𝚖𝚎(?𝑝𝑎𝑟𝑡, "𝚆𝚑𝚎𝚎𝚕") ∧ 𝙸𝚜𝙳𝚊𝚖𝚊𝚐𝚎𝚍(?𝑝𝑎𝑟𝑡,
𝑇 𝑟𝑢𝑒)∧𝙳𝚊𝚖𝚊𝚐𝚎(?𝑑𝑎𝑚𝑎𝑔𝑒)∧𝚑𝚊𝚜𝙳𝚊𝚖𝚊𝚐𝚎(?𝑝𝑎𝑟𝑡, ?𝑑𝑎𝑚𝑎𝑔𝑒)∧𝙳𝚊𝚖𝚊𝚐𝚎𝚃𝚢𝚙𝚎
𝑛(?𝑑𝑎𝑚𝑎𝑔𝑒, "𝙳𝚎𝚗𝚝")∧𝚂𝚎𝚟𝚎𝚛𝚒𝚝𝚢(?𝑑𝑎𝑚𝑎𝑔𝑒, "𝙻𝚒𝚐𝚑𝚝") ⇒ 𝚁𝚎𝚙𝚊𝚒𝚛𝙰𝚌𝚝𝚒𝚘𝚗

(?𝑑𝑎𝑚𝑎𝑔𝑒, "𝚁𝚎𝚙𝚊𝚒𝚛")
– Rule 3: If a car part is damaged, including the wheel, and the

damage type is Broke regardless of the severity, the repair action
is Replace.
𝙲𝚊𝚛𝙿𝚊𝚛𝚝𝚜(?𝑝𝑎𝑟𝑡) ∧ 𝙸𝚜𝙳𝚊𝚖𝚊𝚐𝚎𝚍(?𝚙𝚊𝚛𝚝, 𝑇 𝑟𝑢𝑒) ∧ 𝙳𝚊𝚖𝚊𝚐𝚎(?𝑑𝑎𝑚𝑎𝑔𝑒) ∧
𝚑𝚊𝚜𝙳𝚊𝚖𝚊𝚐𝚎(?𝑝𝑎𝑟𝑡, ?𝑑𝑎𝑚𝑎𝑔𝑒) ∧ 𝙳𝚊𝚖𝚊𝚐𝚎𝚃𝚢𝚙𝚎(?𝑑𝑎𝑚𝑎𝑔𝑒, "𝙱𝚛𝚘𝚔𝚎") ⇒

𝚁𝚎𝚙𝚊𝚒𝚛𝙰𝚌𝚝𝚒𝚘𝚗(?𝑑𝑎𝑚𝑎𝑔𝑒, "𝚁𝚎𝚙𝚕𝚊𝚌𝚎")
– Rule 4: If a car part is damaged and the damage type is Fold

and severity is Light, then the repair action is Repair .
𝙲𝚊𝚛𝙿𝚊𝚛𝚝𝚜(?𝚙𝚊𝚛𝚝) ∧ 𝙸𝚜𝙳𝚊𝚖𝚊𝚐𝚎𝚍(?𝚙𝚊𝚛𝚝, 𝑇 𝑟𝑢𝑒) ∧ 𝙳𝚊𝚖𝚊𝚐𝚎(?𝑑𝑎𝑚𝑎𝑔𝑒) ∧
𝚑𝚊𝚜𝙳𝚊𝚖𝚊𝚐𝚎(?𝑝𝑎𝑟𝑡, ?𝑑𝑎𝑚𝑎𝑔𝑒)∧𝙳𝚊𝚖𝚊𝚐𝚎𝚃𝚢𝚙𝚎(?𝚙𝚊𝚛𝚝, "𝙵𝚘𝚕𝚍")∧𝚂𝚎𝚟𝚎𝚛𝚒𝚝𝚢
(?𝚍𝚊𝚖𝚊𝚐𝚎, "𝙻𝚒𝚐𝚑𝚝") ⇒ 𝚁𝚎𝚙𝚊𝚒𝚛𝙰𝚌𝚝𝚒𝚘𝚗(?𝑑𝑎𝑚𝑎𝑔𝑒, "𝚁𝚎𝚙𝚊𝚒𝚛")

– Rule 5: If a car part is damaged, and the damage type is Fold
and severity is Medium or Strong , then the repair action is
Replacement.
𝙲𝚊𝚛𝙿𝚊𝚛𝚝𝚜(?𝚙𝚊𝚛𝚝) ∧ 𝙸𝚜𝙳𝚊𝚖𝚊𝚐𝚎𝚍(?𝚙𝚊𝚛𝚝, 𝚃𝚛𝚞𝚎) ∧ 𝙳𝚊𝚖𝚊𝚐𝚎(?𝑑𝑎𝑚𝑎𝑔𝑒) ∧
𝚑𝚊𝚜𝙳𝚊𝚖𝚊𝚐𝚎(?𝑝𝑎𝑟𝑡, ?𝑑𝑎𝑚𝑎𝑔𝑒) ∧ 𝙳𝚊𝚖𝚊𝚐𝚎𝚃𝚢𝚙𝚎(?𝚍𝚊𝚖𝚊𝚐𝚎, "𝙵𝚘𝚕𝚍") ∧
(𝚂𝚎𝚟𝚎𝚛𝚒𝚝𝚢(?𝚍𝚊𝚖𝚊𝚐𝚎, "𝙼𝚎𝚍𝚒𝚞𝚖") ∨ 𝚂𝚎𝚟𝚎𝚛𝚒𝚝𝚢(?𝚍𝚊𝚖𝚊𝚐𝚎, "𝚂𝚝𝚛𝚘𝚗𝚐")) ⇒

𝚁𝚎𝚙𝚊𝚒𝚛𝙰𝚌𝚝𝚒𝚘𝚗(?𝑑𝑎𝑚𝑎𝑔𝑒, "𝚁𝚎𝚙𝚕𝚊𝚌𝚎𝚖𝚎𝚗𝚝")
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Table 2
Tabular data containing repair cases with price information.

Report Ref Car Brand Car Model Car Part ⋯ Place Damage Severity Replace/Repair Cost

vehicle_1171348_report Honda Civic door ⋯ Front-right Scratch Minor Repair 100 e

vehicle_1171443_report Toyota Camry Rear Bumper ⋯ Rear Dent Major Replace 500 e

vehicle_1171423_report Ford Mustang Hood ⋯ Front Crack Major Replace 1000 e

vehicle_1171348_report Honda Civic Bumper ⋯ Front Scratch Minor Repair 100 e

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
vehicle_1181441_report BMW 3 Series Windshield ⋯ Front Chip Minor Repair 75 e
– Rule 6: If a car part is damaged and the damage type is Scratch
for any severity type, then the repair action is Repair .
𝙲𝚊𝚛𝙿𝚊𝚛𝚝𝚜(?𝚙𝚊𝚛𝚝) ∧ 𝙸𝚜𝙳𝚊𝚖𝚊𝚐𝚎𝚍(?𝚙𝚊𝚛𝚝, 𝚃𝚛𝚞𝚎) ∧ 𝙳𝚊𝚖𝚊𝚐𝚎(?𝑑𝑎𝑚𝑎𝑔𝑒) ∧
𝚑𝚊𝚜𝙳𝚊𝚖𝚊𝚐𝚎(?𝑝𝑎𝑟𝑡, ?𝑑𝑎𝑚𝑎𝑔𝑒) ∧ 𝙳𝚊𝚖𝚊𝚐𝚎𝚃𝚢𝚙𝚎(?𝚍𝚊𝚖𝚊𝚐𝚎, "𝚂𝚌𝚛𝚊𝚝𝚌𝚑") ∧
𝚂𝚎𝚟𝚎𝚛𝚒𝚝𝚢(?𝚍𝚊𝚖𝚊𝚐𝚎, ?𝚜𝚎𝚟𝚎𝚛𝚒𝚝𝚢) ⇒ 𝚁𝚎𝚙𝚊𝚒𝚛𝙰𝚌𝚝𝚒𝚘𝚗(?𝚍𝚊𝚖𝚊𝚐𝚎,
"𝚁𝚎𝚙𝚊𝚒𝚛")

3.2.2. Rules for knowledge discovery
In this section, we focus on knowledge discovery rules related to

car damage and its potential impact on internal components. Here is
an example:

– Rule 7: If a car has a damaged door, then there is a high
probability that the internal components are also damaged if the
severity of damage is Strong .
𝙲𝚊𝚛𝙿𝚊𝚛𝚝𝚜(?𝚙𝚊𝚛𝚝) ∧ 𝙲𝚊𝚛𝙿𝚊𝚛𝚝𝚜(?𝚙𝚊𝚛𝚝𝟸) ∧ 𝙸𝚜𝙳𝚊𝚖𝚊𝚐𝚎𝚍(?𝚙𝚊𝚛𝚝, 𝚃𝚛𝚞𝚎) ∧
𝙳𝚊𝚖𝚊𝚐𝚎(?𝑑𝑎𝑚𝑎𝑔𝑒)∧𝚑𝚊𝚜𝙳𝚊𝚖𝚊𝚐𝚎(?𝑝𝑎𝑟𝑡, ?𝑑𝑎𝑚𝑎𝑔𝑒)∧𝙳𝚊𝚖𝚊𝚐𝚎𝚃𝚢𝚙𝚎(?𝚙𝚊𝚛𝚝,
"𝚂𝚌𝚛𝚊𝚝𝚌𝚑") ∧ 𝙿𝚊𝚛𝚝𝙽𝚊𝚖𝚎(?𝚙𝚊𝚛𝚝, "𝙳𝚘𝚘𝚛") ∧ 𝚂𝚎𝚟𝚎𝚛𝚒𝚝𝚢(?𝚍𝚊𝚖𝚊𝚐𝚎,
"𝚂𝚝𝚛𝚘𝚗𝚐") ∧ 𝚑𝚊𝚜𝙲𝚘𝚖𝚙𝚘𝚗𝚎𝚗𝚝(?𝚙𝚊𝚛𝚝, ?𝚙𝚊𝚛𝚝𝟸) ⇒ 𝙸𝚜𝙳𝚊𝚖𝚊𝚐𝚎𝚍(?𝚙𝚊𝚛𝚝𝟸,
𝚃𝚛𝚞𝚎)

3.2.3. Rules for price reduction
In this section, we present an example of a rule that addresses price

reduction considerations within the context of car part damage.

– Rule 8: If a car part is damaged, and the recommended repair
action is replacement, and this car part has a damaged compo-
nent, then the repair price of the component is zero, and the data
property IsDamaged of the component is set to False.
−𝙲𝚊𝚛𝙿𝚊𝚛𝚝𝚜(?𝚙𝚊𝚛𝚝) ∧ 𝙸𝚜𝙳𝚊𝚖𝚊𝚐𝚎𝚍(?𝚌𝚊𝚛𝙿𝚊𝚛𝚝, 𝚃𝚛𝚞𝚎) ∧ 𝙲𝚊𝚛𝙿𝚊𝚛𝚝𝚜

(?𝚌𝚘𝚖𝚙𝚘𝚗𝚎𝚗𝚝) ∧ 𝙸𝚜𝙳𝚊𝚖𝚊𝚐𝚎𝚍(?𝚌𝚘𝚖𝚙𝚘𝚗𝚎𝚗𝚝, 𝚃𝚛𝚞𝚎) ∧ 𝚑𝚊𝚜𝙲𝚘𝚖𝚙𝚘𝚗𝚎𝚗𝚝

(?𝚙𝚊𝚛𝚝, ?𝚌𝚘𝚖𝚙𝚘𝚗𝚎𝚗𝚝) ∧ 𝙳𝚊𝚖𝚊𝚐𝚎(?𝑑𝑎𝑚𝑎𝑔𝑒) ∧ 𝚑𝚊𝚜𝙳𝚊𝚖𝚊𝚐𝚎(?𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡,
?𝑑𝑎𝑚𝑎𝑔𝑒) ∧ 𝚁𝚎𝚙𝚊𝚒𝚛𝙰𝚌𝚝𝚒𝚘𝚗(?𝚙𝚊𝚛𝚝, "𝚁𝚎𝚙𝚕𝚊𝚌𝚎") ⇒ 𝙸𝚜𝙳𝚊𝚖𝚊𝚐𝚎𝚍

(?𝚌𝚘𝚖𝚙𝚘𝚗𝚎𝚗𝚝, 𝙵𝚊𝚕𝚜𝚎)
−𝙲𝚊𝚛𝙿𝚊𝚛𝚝𝚜(?𝚙𝚊𝚛𝚝) ∧ 𝙸𝚜𝙳𝚊𝚖𝚊𝚐𝚎𝚍(?𝚌𝚊𝚛𝙿𝚊𝚛𝚝, 𝚃𝚛𝚞𝚎) ∧ 𝙲𝚊𝚛𝙿𝚊𝚛𝚝𝚜

(?𝚌𝚘𝚖𝚙𝚘𝚗𝚎𝚗𝚝) ∧ 𝙸𝚜𝙳𝚊𝚖𝚊𝚐𝚎𝚍(?𝚌𝚘𝚖𝚙𝚘𝚗𝚎𝚗𝚝, 𝚃𝚛𝚞𝚎) ∧ 𝚑𝚊𝚜𝙲𝚘𝚖𝚙𝚘𝚗𝚎𝚗𝚝

(?𝚙𝚊𝚛𝚝, ?𝚌𝚘𝚖𝚙𝚘𝚗𝚎𝚗𝚝) ∧ 𝙳𝚊𝚖𝚊𝚐𝚎(?𝑑𝑎𝑚𝑎𝑔𝑒) ∧ 𝚑𝚊𝚜𝙳𝚊𝚖𝚊𝚐𝚎(?𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡,
?𝑑𝑎𝑚𝑎𝑔𝑒) ∧ 𝚁𝚎𝚙𝚊𝚒𝚛𝙰𝚌𝚝𝚒𝚘𝚗(?𝚙𝚊𝚛𝚝, "𝚁𝚎𝚙𝚕𝚊𝚌𝚎") ⇒ 𝚁𝚎𝚙𝚊𝚒𝚛𝙲𝚘𝚜𝚝

(?𝚍𝚊𝚖𝚊𝚐𝚎, 0.0)

In Fig. 4, we illustrate the functionality of SWRL rules, with a
particular focus on Rule 6, which add 𝑅𝑒𝑝𝑎𝑖𝑟𝐴𝑐𝑡𝑖𝑜𝑛 information. This
enriched data is subsequently employed in our regression models to
forecast the repair costs of the damage. The predicted repair price is
then seamlessly incorporated back into the ontology, ensuring that the
ontology remains dynamically updated with the pricing information.

3.3. Price prediction

This section presents the prediction process after applying ontology
reasoning, which allows us to perform preprocessing on unstructured
report data and tabular. We execute SPARQL requests to extract data
with prices ( Table 2) for training and evaluating our regression models.
Additionally, we extract data without prices to predict prices using the
best regression model. In the next sections, we elaborate each step in
9

this phase for estimating the price repair cost.
3.3.1. Dataset
We utilized a real dataset ( Table 2) contains approximately 300,000

rows. This dataset comprises diverse information, including details
about the car such as its brand and model, specifics about the damaged
part requiring repair or replacement, as well as information concerning
the severity and type of damage, along with the associated repair or
replacement costs.

3.3.2. Data preprocessing
Before using the dataset, it is essential to preprocess it to ensure its

quality and suitability for the task at hand. Data preprocessing involves
a series of steps to clean, transform, and prepare the dataset. In our
context, the following preprocessing steps are typically performed:

Handling missing data. This step is very important and sensitive because
it directly affects the results of the model. In our case, we noticed
missing data for several attributes. For instance, for attributes like
Severity, we replaced the missing values with 𝑀𝑖𝑛𝑜𝑟, assuming that
when severity information is missing, it can be considered as minor.

Data cleaning. Inspect the data for anomalies, outliers, and inconsisten-
cies. For example in the 𝐶𝑜𝑠𝑡 column, we have identified an anomaly
where the cost is represented with the Euro symbol (€). To ensure
consistency and facilitate numerical analysis, we should remove 𝑒 from
all entries in the 𝐶𝑜𝑠𝑡 column. This step involves stripping the currency
symbol and converting the column to a numerical format, making it
suitable for further analysis.

Data encoding. To convert categorical variables (such as ‘‘Car Brand’’,
and ‘‘Car Model’’) into numerical format, we use one-hot encoding and
label encoding, depending on the nature of the data and the regression
model to be applied.

Normalization and scaling. To ensure that both features are on a consis-
tent scale, we apply Min–Max scaling. This scaling technique transform
features into a standardized range, typically from 0 to 1, where 0
represents the minimum value in the original dataset, and 1 represents
the maximum value.

Features selection. Before we delve into the details of the regression
models, it is essential to carefully select the relevant features from our
dataset for building accurate price prediction models. Feature selection
is a crucial step that can significantly impact the performance of our
models. The selected features should be informative and non-redundant
to ensure the best possible prediction results.

The feature selection process involves identifying the most relevant
attributes from the dataset that have a meaningful influence on the
repair cost of car damage. We consider factors such as the car brand,
car model, car part, location of the damage, severity of the damage,
and whether repair or replacement is needed. To select the features,
we employ Recursive Feature Elimination (RFE), Fig. 5 describe the
process of RFE, this technique commonly used in machine learning, RFE
operates by initially training a model with all available features, assess-
ing their importance based on their contribution to model performance,
and iteratively eliminating the least important ones until the model no
longer improves. RFE is valuable for reducing dataset dimensionality,
enhancing model efficiency, improving interpretability, and potentially
boosting model generalization by concentrating on the most relevant
information. However, its efficacy can vary depending on the specific
dataset and modeling task, necessitating consideration of alternative

feature selection methods as well.
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Fig. 4. Ontology reasoning with SWRL rules.
Fig. 5. Overview of recursive feature elimination for feature selection.

3.3.3. Regression models
In this section, we explore various regression models used to esti-

mate the cost of car damage repair.
Let 𝑋 be the set of input features in the dataset and features

added by the ontology. 𝑌 is the target variable, the cost of repair or
replacement. The dataset 𝐷, where 𝐷 = (𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑛, 𝑦𝑛),
𝑥𝑖 ∈ 𝑋 and 𝑦𝑖 ∈ 𝑌 . Our goal is to learn a function 𝑓 ∶ 𝑋 → 𝑌 that maps
the input features to the cost of fixing the damage. To achieve this,
various regression models such as linear regression, decision trees, and
neural networks are used. Then, the most suitable model that yields the
optimal prediction performance is identified.
10
Linear regression. Multiple linear regression (Galton, 1886) is used. It
is an extension of linear regression that allows us to model the rela-
tionship between more than one independent variable and a dependent
variable. The multiple linear regression equation in our case is as
follows:

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯ + 𝛽𝑛𝑋𝑛 + 𝜖

Where 𝑌 is the dependent variable, the cost of repair or replacement
in euro. The coefficients 𝛽0 to 𝛽𝑛 represent the model parameters asso-
ciated with independent variables 𝑋1 to 𝑋𝑛, and 𝜖 represents the error
term. This model allows us to estimate the cost of car damage repair
based on the values of the independent variables. The optimization
process seeks to determine the optimal values for the coefficients 𝛽1
to 𝛽𝑛 through training with data, with the objective of minimizing the
sum of the squared differences between the actual and predicted prices.

Decision trees. A decision tree (Quinlan, 1986) is a tree-like model
that represents decisions and their possible consequences. Each internal
node of the tree represents a decision based on a feature, and each
leaf node represents the prediction. Mathematically, a decision tree
can also be represented as a function that maps input features (𝑋)
to the predicted repair cost (𝑌 ). Let us denote the decision tree as
𝑓 (𝑋) = 𝑌 . The decision tree algorithm learns to partition the feature
space into regions, making predictions based on the average or majority
label within each region. The algorithm determines the best feature
and threshold to split the data at each node to maximize predictive
accuracy.

Random forests. Random forests (Breiman, 2001) are ensemble learn-
ing models that combine multiple decision trees to make predictions.
Each decision tree in the random forest is built independently using
a different subset of the training data and a random subset of the
features. The final prediction is obtained by aggregating the predictions
of individual trees, either through averaging or voting.

Gradient boosting regressor. Gradient boosting regressor (Friedman,
2001) is a machine learning algorithm that combines multiple deci-
sion trees to create a strong predictive model. In each iteration, the
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algorithm builds a new tree that corrects the mistakes made by the
previous trees, with the objective of minimizing the overall prediction
error.

XGB regressor. XGB Regressor (Chen & Guestrin, 2016) is an imple-
entation of gradient boosting that utilizes the 𝑋𝐺𝐵𝑜𝑜𝑠𝑡 (eXtreme
radient Boosting) framework. It is known for its high performance
nd efficiency in handling large-scale datasets. The 𝑋𝐺𝐵 Regressor
orks similarly to the gradient boosting regressor by iteratively build-

ng decision trees and combining their predictions to make accurate
stimates of the repair cost. It incorporates advanced techniques such as
egularization and parallel processing to enhance model performance.

upport vector machines for regression (SVR). Support vector machines
Cortes & Vapnik, 1995) are supervised learning algorithms used for
oth classification and regression tasks. In regression, SVR works by
inding a hyperplane in a higher-dimensional feature space that best fits
he training data while controlling the margin of error. It can handle
on-linear relationships between features and target values by using
ppropriate kernel functions.

eural networks. This model is based on Multi-layer perceptron
Haykin, 1998). It uses an objective function, denoted as 𝑓 (𝑥; 𝜃), where

signifies the input feature vector, and 𝜃 are the parameters of the
eural network. This architecture enables a nonlinear transformation
f the input features, effectively mapping them to the estimated cost.
he neural network function can be represented as a composition
f multiple layers, where each layer consists of a set of neurons
hat compute a weighted sum of their inputs and apply a nonlinear
ctivation function to the result. The output of each layer is then used
s input to the next layer until the final layer produces the predicted
ost price.

Let 𝑥𝑖 be the 𝑖th input feature of 𝑥, and let 𝑦 be the true cost of
repair or replacement. The neural network model is defined as follows:

𝑦 = 𝑓 (𝑥; 𝜃) + 𝜖,

where 𝜖 is the noise in the data and can be modeled as Gaussian noise
with zero mean and variance 𝜎2.

To train the neural network model, a training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 =
𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑁 , 𝑦𝑁 ) is used, where 𝑁 is the number of training
xamples. Our goal is to find the optimal parameters 𝜃∗ that minimize
he difference between the predicted cost and the true cost price. This
an be achieved by minimizing the mean squared error between the
redicted cost and the true cost over the training dataset:

∗ = argmin
𝜃

1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑓 (𝑥𝑖; 𝜃))2.

Backpropagation algorithm is used to compute the gradient of the MSE
with respect to the parameters of the neural network, and then update
the parameters using stochastic gradient descent algorithm (Ruder,
2016).

4. Experimentation

This section details the experimental analysis and evaluation used
to assess the performance of various regression models for predicting
the cost of car damage repairs. We explore the impact of incorporating
an ontology on the prediction accuracy. The organization of this sec-
tion is as follows: Initially, we describe the data partitioning and the
computing environment used for model performance evaluation. We
then discuss the evaluation metrics, selection of hyperparameters, and
present the results. This includes a discussion of the findings and an
illustrative example, concluding with a presentation of the limitations
11

encountered. g
4.1. Experimental setup

Our goal is to assess the performance of different regression models
in predicting the cost of car damage repairs, both with and without the
incorporation of an ontology. To conduct our experiments, the dataset
(Table 2) of 300,000 rows, the dataset was partitioned into 70% for
the training set, 10% for the validation set and 20% for the testing
set, enabling us to train and evaluate the regression models. For model
training, we employed a Dell 𝑋𝑃𝑆159520 laptop, equipped with an 12𝑡ℎ

eneration Intel(R) Core™ 𝑖7−12700𝐻 processor with a 2.70 GHz clock
peed, and running Windows 11 𝑃𝑟𝑜 64 − 𝑏𝑖𝑡.

4.2. Evaluation metrics

Various metrics are used to evaluate the performance of regression
models. These metrics provide a quantitative measure that allows
us to compare different models and understand their strengths and
weaknesses. Commonly used evaluation metrics in regression tasks are
mean squared error, mean squared error, mean absolute error, and
coefficient of determination. These metrics provide insight into the
accuracy, precision, and variability of projected repair costs and ground
truth values. below the equation of each evaluation metric:

Mean Squared Error (MSE) = 1
𝑛

𝑛
∑

𝑖=1
(𝑌𝑖 − 𝑌𝑖)2

oot Mean Squared Error (RMSE) =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑌𝑖 − 𝑌𝑖)2

ean Absolute Error (MAE) = 1
𝑛

𝑛
∑

𝑖=1
|𝑌𝑖 − 𝑌𝑖|

oefficient of Determination (𝑅2) = 1 −
∑𝑛

𝑖=1(𝑌𝑖 − 𝑌𝑖)2
∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 )2

The MSE calculates the average of the squared differences between
he actual repair costs (𝑌𝑖) and the predicted repair costs (𝑌𝑖). It
uantifies how far off, on average, the predictions are from the true
alues.

For RMSE is the square root of MSE. It represents the average
agnitude of the errors in the same unit as the target variable.

The MAE calculates the average of the absolute differences be-
ween the actual and predicted repair costs. It measures the average
agnitude of errors, regardless of their direction.

For 𝑅2 coefficient quantifies the proportion of variance in actual
epair costs explained by predicted repair costs, where 𝑌𝑖 represents
he actual observed values of the dependent variable. 𝑌𝑖 represents the
redicted values of the dependent variable obtained from the regression
odel. 𝑌 represents the mean of the observed values of the depen-
ent variable. The higher values indicate better model performance in
apturing relationships between features and repair costs.

There are alternatives to these metrics, such as Mean Percentage Er-
or (MPE), Mean Absolute Percentage Error (MAPE), Median Absolute
eviation (MAD), and Adjusted R-squared. However, these alternatives
ere not selected as the primary metrics because the initial four metrics

ufficiently cover the necessary aspects of model evaluation for our
urposes. In addition, the alternatives present specific limitations: MPE
an result in misleading conclusions in the presence of zero actual
alues, and is less effective where the magnitude of absolute errors
s critical. MAPE is influenced by zero actual values and may dispro-
ortionately penalize underpredictions, possibly conflicting with our
tudy’s objectives. MAD provides a robust variability measure, but not
ully capture error magnitudes crucial for cost estimation. Adjusted R-
quared offers insights into the model’s explanatory power adjusted
or the number of predictors. However, the initially selected metrics
dequately assess model performance for our purposes.

In addition, we extend the evaluation by comparing the average
rediction time of the two methods, with and without ontology inte-

ration. This comparison aims to quantify the impact of ontology on
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Table 3
Optimal hyperparameters for regression models.

Model Parameter Definition Optimal Value

Linear regression fit_intercept Specifies if the constant intercept added to the decision function. True
normalize Specifies if the predictors X normalized before regression. True

Decision tree

criterion The function used to measure the quality of a split. MSE
max_depth The maximum depth of the tree. 10
min_samples_split The minimum number of samples required to split an internal node. 4
min_samples_leaf The minimum number of samples required to be at a leaf node. 2

Random forest

bootstrap Whether bootstrap samples are used when building trees. If False,
the whole dataset is used to build each tree.

False

max_depth The maximum depth of the tree. If None, then nodes are expanded
until all leaves are smaller than min_samples_split samples.

None

max_features The number of features to consider when looking for the best split. auto
min_samples_leaf The minimum number of samples required to be at a leaf node. 1
min_samples_split The minimum number of samples required to split an internal node. 2
n_estimators The number of trees in the forest. 100

SVR
C Regularization parameter. The strength of the regularization is

inversely proportional to C.
10

epsilon Epsilon defines a margin of tolerance where no penalty is given to
errors.

1

kernel Specifies the kernel type to be used in the algorithm. rbf

Gradient boosting

learning_rate Learning rate shrinks the contribution of each tree by learning_rate. 0.1
max_depth Maximum depth of the individual regression estimators. 3
min_samples_leaf The minimum number of samples required to be at a leaf node. 1
min_samples_split The minimum number of samples required to split an internal node. 2
n_estimators The number of boosting stages to be run. 100

MLP

hidden_layer_sizes The 𝑖th element represents the number of neurons in the 𝑖th hidden
layer.

100

activation Activation function for the hidden layer. relu
solver The solver for weight optimization. adam
alpha L2 penalty (regularization term) parameter. 0.001
learning_rate Learning rate schedule for weight updates. 0.01
batch_size Refers to the number of training examples utilized in one iteration

of model training.
32

XGB

n_estimators Number of gradient boosted trees. Equivalent to number of boosting
rounds.

100

max_depth Maximum tree depth for base learners. 6
learning_rate Boosting learning rate. 0.1
subsample Subsample ratio of the training instances. 0.8
colsample_bytree Subsample ratio of columns when constructing each tree. 0.8
e
g
c
a
e
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computational efficiency. By measuring the time taken for each model
to predict repair costs on a standardized test set. This aspect of the
evaluation is crucial for practical applications, where both accuracy and
speed are important factors in the deployment of models.

4.3. Hyperparameter selection

To ensure optimal performance of regression models, choosing ap-
propriate hyperparameters is necessary. Hyperparameters are configu-
ration settings set before a model is trained, rather than learned from
data. Experiments explore different combinations of hyperparameters
and evaluate model performance using the grid search technique. All
hyperparameters used are detailed in the Table 3.

4.4. Results

The Table 4 presents a comprehensive comparison of various regres-
sion models, evaluated both with and without the use of ontology. The
models are assessed based on four metrics: MSE, MAE, RMSE, and 𝑅2.
In the scenario without ontology, the MLPRegressor model exhibits the
best performance with an 𝑅2 score of 91%, indicating an acceptable fit
to the data. Conversely, the SVR model demonstrates the lowest perfor-
mance with an 𝑅2 score of 61%. This suggests that, without ontology,
MLPRegressor is a more reliable choice for this dataset because it better
captures the underlying patterns in the data. This is due to the presence
of numerous feature transformations within its layers, allowing it to
make more accurate predictions.

The integration of ontology into the regression models resulted in
significant enhancements in prediction accuracy for all models. The
12
RandomForestRegressor and DecisionTreeRegressor models emerged as
the top performers, providing the most precise cost estimates for car
damage repair following ontology integration.

The performance of the RandomForestRegressor model significantly
improved when ontology was integrated, achieving a low mean squared
error of 114 and a low mean absolute error of 2 this indicates that,
on average, the predicted repair costs deviate from the actual costs by
only 2 euros. It outperformed all other models, including those without
ontology. The high 𝑅2 value of 97% indicates that the predicted cost
estimates closely align with the actual values. The model’s ability to
capture complex relationships and patterns within the data makes it a
strong candidate for accurate cost estimation. Similarly, the Decision-
TreeRegressor model also exhibited outstanding performance with an
MSE of 138 and an 𝑅2 value of 96%. As a tree-based model, it is capable
of learning intricate non-linear relationships between the input features
and the target variable. The model’s flexibility and ability to capture
complex interactions within the data contribute to its predictive power.

Although the MLPRegressor and GradientBoostingRegressor models
xhibited relatively higher MSE values compared to RandomForestRe-
ressor and DecisionTreeRegressor models, they still provided reliable
ost estimates. The MLPRegressor model achieved an MSE of 206 and
n 𝑅2 value of 94%, indicating strong predictive capability. The Gradi-
ntBoostingRegressor model achieved an MSE of 368 and an 𝑅2 value of
9%. On the other hand, the SVR and LinearRegression models showed
elatively weaker performance in both scenarios, with higher MSE

values and lower 𝑅2 values. The SVR model achieved an MSE of 1214
and an 𝑅2 value of 64%, while the LinearRegression model had an MSE
of 918 and an 𝑅2 value of 73%. It is noteworthy that the inclusion
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Table 4
Regression model comparison with and without ontology incorporation.
Model Without Ontology With Ontology

MSE MAE RMSE R2 MSE MAE RMSE R2

LinearRegression 973.208 22.720 31.196 0.712 918.140 22.035 30.300 0.727
DecisionTreeRegressor 769.082 8.600 27.732 0.772 138.071 2.133 11.750 0.959
RandomForestRegressor 692.443 8.517 26.314 0.795 114.126 2.043 10.683 0.966
GradientBoostingRegressor 723.964 18.313 26.906 0.786 367.824 13.482 19.178 0.890
XGBRegressor 936.508 21.616 30.602 0.723 662.352 18.088 25.736 0.803
SVR 1330.991 21.927 36.482 0.607 1214.532 20.198 34.850 0.640
MLPRegressor 285.921 10.334 16.909 0.915 206.529 7.482 14.371 0.938
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ig. 6. Comparison of the average prediction time of regression models with and
ithout the integration of ontology.

f ontology significantly improved the performance of all regression
odels tested.

As illustrated in Fig. 6, the bar chart presents a comparative analysis
f average prediction times for regression models with and without
he incorporation of ontology. It indicates that for every model, the
nclusion of ontology increases the prediction time. This increase is
ikely due to the additional computational overhead introduced by on-
ology processing, which involves population, reasoning and handling
tructured knowledge that is not present when the models operate
ithout ontology.

Models like RandomForestRegressor and GradientBoostingRegressor
how a substantial increase in prediction time with and without on-
ology. This is because these models are ensemble methods involving
ultiple decision trees.

The XGBRegressor, SVR and MLPRegressor also show increased pre-
iction times with ontology, but the increase is less pronounced com-
ared to RandomForestRegressor and GradientBoostingRegressor. This is
xplained by the fact that these models, although complex, are better
ptimized for handling the structured input data, or the ontology
ntegration is done in a way that does not add as much computational
urden relative to the other models. LinearRegression shows the least
ncrease in prediction time with the incorporation of ontology. Since
his model is generally simpler in nature, the ontology’s structured data
o not add as much complexity to the prediction process as it does with
ore complex models.
13

t

.4.1. Results discussion
The remarkable improvement in prediction accuracy (Fig. 7) for all

odels with the integration of ontology attributed to several factors.
ntologies, by design, enhance the semantic richness of the data,
roviding more features and knowledge in the domain of car damage
epair cost estimation. This structured representation enables models
o better understand the relationships and attributes of entities within
he data, leading to more accurate predictions.

The superior performance of the RandomForestRegressor compared
o the DecisionTreeRegressor model is attributed to the fact that Ran-
omForest contains several decision trees that collaborate among them-
elves, making decisions based on the majority vote. RandomForest
mploys a bagging technique that aggregates multiple decision trees
o reduce variance without increasing bias. This characteristic makes
t less prone to overfitting the data compared to simpler models,
ontributing to its higher accuracy and lower error rates. Furthermore,
he model’s ability to handle non-linear relationships and interactions
etween variables is significantly enhanced by the integration of an
ntology. This allows it to leverage structured data to identify more
omplex patterns, further improving its performance.

Similarly, the DecisionTreeRegressor benefits from the ontology’s
tructured data, which aids in the decision-making process at each
ode of the tree. This allows the model to make more informed splits
hat closely represent the underlying data structure. The high 𝑅2 value
ndicates that the model is capable of capturing a significant portion of
he variance in the data, which is crucial for accurate predictions.

The relatively poorer performance of the MLPRegressor,
radientBoostingRegressor, SVR, and LinearRegression models are at-

ributed to different factors. The MLPRegressor, a type of neural net-
ork, and the GradientBoostingRegressor, which is an ensemble of de-

ision trees that uses boosting, are complex models that can capture
ntricate patterns in the data. However, their performance may be
indered by the need for extensive parameter tuning and the risk
f overfitting, especially in cases where the data is not sufficiently
arge or diverse. Despite these challenges, their predictive capabilities
emain strong, as indicated by their 𝑅2 values, showing that they
re still capable of capturing a significant amount of variance in the
arget variable. The SVR and LinearRegression models, being simpler
nd more linear in nature, struggle with the complex and non-linear
elationships that are present in the car damage cost estimation data.
heir lower performance metrics suggest that these models are less
apable of handling the complexity and diversity of the data, even with
he semantic enhancement provided by ontology. The high MSE values
nd lower 𝑅2 values reflect their limited ability to accurately predict
ar damage repair costs.

The integrating ontology into regression models significantly en-
ances their prediction accuracy by providing a richer semantic under-
tanding of the data. However, this integration also increases the pre-
iction time. Models like RandomForestRegressor and
ecisionTreeRegressor excel in this enriched data environment due to

heir ability to handle complexity and non-linearity, making them
articularly suited for tasks like car damage cost estimation. The
arying performance among the models underscores the importance of
electing the appropriate model based on the specific characteristics of
he data and the task at hand.
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Fig. 7. Comparison of regression models by 𝑅2 with percentage improvement.
Fig. 8. Illustrative process of our methodology’s use case for predicting car damage cost based on PDF reports.
4.5. Illustrative example

This section illustrates a practical application of our methodology
through examples and discuss scenarios where our method may not
perform optimally. As depicted in Fig. 8, the process for predicting the
repair or replacement cost for each type of damage begins with the
analysis of the textual report provided by the agent. Subsequently, the
report is processed to extract entities and their relationships, thereby
capturing the semantic information. Following this, a post-processing
step is undertaken to refine the extracted information. This refined
information is used to populate the ontology, which includes SWRL
rules. Reasoning is initiated to execute the rules outlined in Section 3.2,
thereby generating additional features. These features are then fed
into the best regression model to estimate the repair or replacement
costs for each type of damage. Fig. 9, illustrate comparison of actual
and predicted car damage costs for 20 cases using random forest in
conjunction with ontology cooperation. We detailed three specific cases
in 5 where the actual price differs from the predicted price. This table
presents the input text of the damage description, the information
extracted, the outcome of the ontology reasoning, the predicted, and
the actual price, along with the variance between the predicted and
actual costs.

Case #1 (Toyota Yaris): The methodology successfully identifies the
damage and calculates a total predicted price of 1124€, which is very
close to the actual repair cost of 1122€. This example illustrates the
accuracy of the model in scenarios with precise damage descriptions.

Case #12 (Ford Focus): The model predicts a total repair cost of 906€,
compared to the actual cost of 937€, resulting in a variance of 31€. The
slight discrepancy is due to the entity ‘‘deep’’ being missed by the NER
14
model. This oversight in assessing severity led the ontology to decide
on repair only, instead of replacement.

Case #14 (Volvo XC60): The model predicted a cost of 1104€, which
is higher than the actual cost of 1061€. This difference is attributed to
the ontology decision to replace parts which is correct; however, the
issue arises from the regression model, which assumes the price of new
parts. In reality, the replacement was made using second-hand parts,
leading to a lower actual cost.

4.6. Limitations

This study’s methodology, while innovative, encounters specific
limitations. A notable concern is the prediction time when integrat-
ing ontology with regression models. This incorporation potentially
increases computational complexity, leading to longer processing times
due to the additional steps in ontology reasoning. However, for insur-
ance companies, the trade-off for greater accuracy in cost prediction is
deemed more critical, underscoring the industry’s priority on precision
over speed.

Another critical aspect is the accuracy of predictions dependent on
named entity recognition and relation extraction techniques. Inaccura-
cies in these initial steps could potentially impact the model results. To
mitigate the impact of inaccuracies, an interface has been implemented
for experts to modify relationships and entities as needed. This solution
not only addresses concerns of inaccuracies but also contributes to the
model’s accuracy.

5. Conclusion

In addressing the challenges faced by insurance companies and
repair shops in estimating car damage repair costs accurately and
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Fig. 9. Comparison of actual and predicted car damage costs for 20 cases using Random Forest in conjunction with ontology cooperation.
efficiently, this article introduces an innovative methodology that in-
tegrates regression models with ontology reasoning to significantly
improve the accuracy of car damage repair cost predictions. Our exper-
imental evaluation, grounded in a variety of metrics, demonstrates that
the inclusion of ontology substantially enhances the predictive perfor-
mance across all examined models. Notably, the RandomForestRegresion
and DecisionTreeRegressor models, when augmented with our ontology,
emerged as the most accurate in estimating repair costs.

The ontology’s integration proved instrumental in enabling the
regression models to identify pertinent features and understand the
complex relationships and dependencies among various factors. This
structured approach to domain knowledge has facilitated a deeper
insight into the intricacies of car damage repair, resulting in a notable
increase in prediction accuracy.

The contributions of this work can be summarized as follows: (i)
OCD, an ontology for organizing the complex aspects of car dam-
age. This ontology was populated through the use of named entity
recognition and relation extraction techniques. (ii) Definition and in-
corporation of semantic web rules for reasoning and enriching the
features that will be used by regression models. (iii) A methodology
that combines ontology with regression models to refine the accu-
racy of predictions for car damage repair costs. (iv) The validity of
our approach was rigorously assessed through a comparative analysis
of various regression models, with and without the integration of
ontology, utilizing a real-world dataset.

Our research highlights the synergistic potential of combining re-
gression models with ontology reasoning to enhance the precision of
car damage repair cost predictions. This integration not only boosts
the accuracy of predictions but also deepens our understanding of
the car damage repair domain, laying a solid foundation for future
investigations aimed at expanding the boundaries of this field.

6. Future work

This article provides a solid foundation, illustrating the viability
of our proposed method, yet they also highlight significant oppor-
tunities for further refinement and expansion to enhance its utility
and effectiveness. Central to future research will be the advancement
and improvement of the ontology that underpins our methodology.
Prospective studies should focus on the creation of domain-specific,
detailed ontologies that cover an extensive array of variables related
to the assessment of automobile repair costs. This effort would greatly
benefit from collaboration with industry experts, comprehensive data
collection, and a commitment to continually update the ontology to
reflect new developments and knowledge in the field.
15
Moreover, the incorporation of additional data sources is antici-
pated to substantially improve the predictive accuracy of our model.
Integrating information such as historical repair records, regional pric-
ing differences, and current market trends can provide deeper insights
and enhance the precision of cost estimations. The exploration of
sophisticated data fusion techniques and augmentation strategies will
be crucial for effectively leveraging these additional data sources.

In addition, the scalability of our method and its practical applica-
tion in real-world contexts require in-depth investigation. Conducting
studies with larger datasets to examine the model’s computational effi-
ciency and resource demands will be essential. These studies are crucial
for assessing the feasibility of our approach for real-world applications.
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Table 5
Detailed analysis of car damage assessment for 3 examples where actual and estimated repair costs differ.
Case # Translated Damage Descrip-

tion
Information Extracted Ontology Reasoning Predicted Price Real Price Diff.

1

Toyota Yaris with
heavily scratched left rear door
and
left front and left rear fender

Toyota Yaris heavily
scratched left rear door
left front fender left rear
fender.

[Toyota, Yaris, door, left
rear, heavy,. . . , scratch,
replacement] [Toyota Yaris
fender, left front heavy,
. . . , scratch, replacement]
[Toyota Yaris fender, left
rear heavy, . . . , scratch,
replacement]

442e +

340e+

342e

= 1124e

1122e 2e

12

Ford Focus, damage found: -
Left door: deep scratches and
a small dent - Rear bumper:
minor cracks - Left rear tail
light: cracked - Front wind-
shield: small crack

Ford Focus Left door
scratches small dent Rear
bumper minor cracks Left
rear tail light cracked Front
windshield small crack

[Ford, Focus, Left, door,
small, . . . , dent, reparation]
[Ford, Focus, Rear, bumper,
minor, . . . , cracks, repara-
tion]
[Ford, Focus, Left rear tail,
light, . . . , cracked, replace-
ment]
[Ford, Focus, Front, wind-
shield, small, crack, replace-
ment]

350e +

150e +

206e +

200e

= 906e

937e 31e

14

Volvo XC60, damage found: -
Front and rear bumpers: broken
and perforated
-Right exterior mirror: broken
-Right front and right rear door:
deep scratches
-Right front and right rear
fender: deep scratches
-Broken right front fog lights

Volvo XC60 Front rear
bumpers broken perforated
Right exterior mirror broken
Right front right rear door:
deep scratches Right front
right rear fender: deep
scratches broken right front
fog lights

[volvo, XC60, front, bumper,
. . . , broken, replacement]
[volvo, XC60, rear, bumper,
. . . , broken, replacement]
[volvo, XC60, right exterior,
mirror, . . . , broken,
replacement]
[volvo, xc60, right front,
door, deep, scratches,
replacement]
[volvo, xc60, right rear,
door, deep, scratch,
replacement]
[Volvo, XC60, right front,
fender, deep , . . . , scratch,
replacement]
[Volvo, XC60, right rear
fender,deep scratches,
replacement]
[Volvo, XC60, right front,
fog lights, . . . ,Broken,
replacement]

161.3e+

161.30e+

102.20e+

190.40e+

192.80e+

100.20e+

97.40e+

98.40e

= 1104e

1061e 43e
B

Appendix. Online resources

The supplementary online material supports the comprehension and
reproduction of this study. It includes: an OWL file representing the
ontology (OCD), and a file containing SPARQL queries, accessible at the

itHub repository (https://github.com/OntologyCarDamage/OCD) and
n the industry portal site (http://industryportal.enit.fr/ontologies/
CD). The demo of the application is available online.9
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