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Transfer seeds, hay, or soil blocks? The importance
of the completeness of biological inputs to address
dispersal and establishment limitations during

the restoration of plant assemblages in

floodplain grasslands

Myriam Garrouj' @, Didier Alard' ©, Jennifer Dudit!, Marie-Lise Benot'-?

This study investigated different techniques of grassland restoration to overcome dispersal or establishment limitation, which are key
processes influencing early-successional plant community assembly. A fully randomized in situ experiment was set up in a former
arable land in a floodplain along the Garonne river (south-western France) to test for the effect of (1) the type and completeness
of the biological input (any biological material—seed, hay, and soil—transferred to the site under restoration), (2) soil disturbance
by deep tillage, and (3) their interaction on plant community dynamics for 5 years. All inputs influenced the plant community struc-
ture and composition. The effects depended on the type of the input but not necessarily in link with its completeness. High density and
diversity seed mixture led to high levels of richness and relative abundance of target species like soil blocks, the input considered as
the most complete. During the first year, hay transfer mostly influenced community assembly through negative litter effects. Delayed
germination of several species contributed to buffer these early effects. This study supports the importance of dispersal limitation
during early succession in degraded grassland ecosystems whereas soil disturbance had only subtle effects on the seed bank and
standing plant community, indicating that competition and establishment limitation were of secondary importance in our study sys-
tem. Our results suggest that even low-frequency immigration events (e.g. when a few seeds are transferred within hay) can be of
great importance providing that a sufficiently long time period is considered for grassland restoration.
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restoration trajectories still remains more crucial than ever, in

Implications for Practice . PR
P order to answer the growing demand for biodiversity conserva-

® Several types of biological inputs varying in composition tion and restoration (UNEP 2021). In particular, ecological res-
and completeness are efficient to increase the richness and toration studies rooting within key concepts of community
relative abundance of target species during the first years ecology should help to identify the drivers of restoration trajec-
of floodplain grassland restoration. tories, thereby providing practical and applicable tools for man-
® Sowing high diversity and density seed mixture enables agers (Perring et al. 2015; Wainwright et al. 2018). Evidence for
to reach high levels of target species richness and abun- plant community assembly in early succession has highlighted
dance, while limiting heterogeneity among plots. the central role of dispersal limitation (Myers & Harms 2009;

e Litter can negatively affect plant species establishment
with consequences on species composition even 5 years

Author contributions: MG, DA, MLB conceived and designed the research; MG, DA,

after hay transfer. Though, this input allows the immigra- JD, MLB performed the experiment; MG, MLB analyzed the data; MG, DA, MLB
tion of various species and delayed germination after litter wrote the first version of the manuscript; all authors contributed to the edition of the
K X L. A manuscript.
degradation, which both limit negative first-year effects.
° Deep soil [ﬂ]age on]y Shghﬂy affects the seed bank and 'Univ. Bordeaux, INRAE, BIOGECO, Pessac F-33615, France

5 5 5 5 2Address correspondence to M.-L. Benot, email marie-lise.benot@u-bordeaux. fr
mainly controls woody species, with minor consequences

on vegetation restoration.
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has been a central subject of ecology for long. Though, in the purposes.

current context of global change and ecosystem degradation doi: 10.1111/rec. 14092

Introduction

Disentangling the processes that underlie vegetation dynamics
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Dispersal and establishment limitations

Marteinsdottir 2014) that influences colonization, and of
establishment limitation, which reflects species’ ability to estab-
lish under given environmental conditions (Nathan &
Muller-Landau 2000; Turley et al. 2017). After damage,
degraded ecosystems can be highly resilient (Standish
et al. 2014; Perring et al. 2015), and the reestablishment of spe-
cies through spontaneous succession (often referred to as “passive
restoration”’) may take a long time because of the loss of these spe-
cies from current vegetation and from soil seed bank (Donath
etal. 2007). Dispersal limitation is one of the major obstacles to res-
toration (Turley et al. 2017; Halassy et al. 2019), especially in frag-
mented landscapes (Butaye et al. 2002). Additionally, species order
of arrival can be an important driver of community assembly
(Fukami 2015), especially under high nutrient level (Kardol
et al. 2013). Such priority effects can profoundly affect restoration
trajectories as competitive exclusion by already established vegeta-
tion may hamper seed germination and seedling emergence.

Several restoration methods applied in post-cultural lands
seek to compensate for seed limitation and decrease competition
from early-established, often undesired species (Kiehl 2010;
Torok et al. 2011). To counteract the lack of target species, bio-
logical inputs are usually needed, and seed and plant material
transfer is one possible method to re-introduce target communi-
ties (Bischoff 2002; Torok et al. 2011; Slodowicz et al. 2023).
Composition drives the community assembly (Fukami et al.
2005) but restoration success is highly dependent on the sowing
rates applied on the restored site (Applestein et al. 2018). Low-
diversity seed mixtures are constituted of a few species, which
represent dominant matrix species of the target community
(sensu Boutin & Keddy 1993), whereas high diversity seed mix-
tures are generally composed of more than 10 species, contain-
ing rarer or interstitial species (Torok et al. 2011). Hay transfer
from source ecosystems is known as one of the most efficient
methods tested in floodplain restoration (e.g. Torok
et al. 2011; Sengl et al. 2017) as it enables the transfer of seeds
and fruits for a large set of species constituting the community
(Albert et al. 2019). Finally, topsoil transfer enables to translo-
cate not only seeds from the seed bank, standing vegetation
and vegetative buds, but also potentially soil macro-fauna and
microorganisms to the restored site, that is, species of impor-
tance in plant—soil interactions (Torok et al. 2011; Bulot
et al. 2014; Gerrits et al. 2023).

In addition to biological inputs, controlling the established
vegetation of the site to be restored by, e.g. mowing, plowing
and/or harrowing, to open competition-free windows, has also
largely been suggested to improve the efficiency of ecological res-
toration operations on plant community trajectory (Czerwinski
et al. 2018). This step is expected to favor the installation of the
input brought in the restored site (Czerwinski et al. 2018). Topsoil
removal is often proposed for a rapid and efficient reduction of
nutrient availability (Jaunatre et al. 2014), but it is also expected
to eliminate standing vegetation and topsoil seed bank, thereby
reducing competition and preventing priority effects (Durbecq
etal. 2021). As this method can be difficult to apply in all restora-
tion schemes, tillage can be an alternative (Glen et al. 2017). Ata
larger scale, deep tillage of the soil can remove the cultural soil
profile without extracting it. It can also be preferred to topsoil

removal as the removal of soil layers, by lowering land altitude,
could induce modifications of hydrological functioning especially
in floodplain grasslands. Like topsoil removal, deep tillage also
supposes a destruction of the vegetation of nontarget species
and their seed bank (Jaunatre et al. 2014). However, tillage and
its effects on soil conditions for plant community establishment
during a floodplain grassland restoration still remains quite unex-
plored (Czerwinski et al. 2018).

Here, we explore how the completeness of the biological
input (i.e. seeds, hay, or soil blocks [SBs]) interacts with soil dis-
turbance to drive a post-cultural early succession. The complete-
ness of the biological input refers, for the biological material
transferred to the restored site, to the quality of being whole
(complete) and without any missing essential component as con-
cerns, for our case study, the plant community of the reference
ecosystem. In our experiment, the kinds of transferred plant
material range from seeds mixtures sown in low or higher den-
sity and diversity, to hay composed of both plant vegetative
parts (stems and leaves) and reproductive parts (fruits and
seeds), and finally to SBs containing both aboveground
and belowground organs of living plants, and potentially associ-
ated microorganisms. We assume that these kinds of biological
inputs represent a gradient from a small fraction of the target
plant community (seed mixtures) to the entire target plant com-
munity (soils blocks) at least at fine scale. The objective of this
study was to investigate the effects of (1) the type and complete-
ness of input brought at the beginning of the restoration process,
(2) soil disturbance through deep tillage, and (3) their combina-
tion, on plant community dynamics during the first stages of a
floodplain grassland restoration after several decades of crop-
ping. A 5-year in situ experimental design was set up to test
the following hypotheses: (H1) by overcoming dispersal limita-
tion, increasing the completeness of the input constrains and fas-
tens the vegetation dynamics toward the target plant community,
(H2) deep soil tillage controls nontarget species already present
in standing vegetation and soil seed bank, thereby weakening
their potential competitive effect and establishment limitation.

Methods

Study Site

The study site (WGS84 44.901644°N, 0.556966°W) is located
in the Ecological Reserve of the Barails, at the North of
Bordeaux City (France), between the Garonne River and the
National Nature Reserve of Bruges wetlands (NNRB). The site
is usually submitted to winter flooding originating from rising
groundwater. The experimental area (approximately 0.5 ha) pre-
sents a topographic elevation gradient of 40 cm from the South
to the North (Fig. S1A).

In 1989, the floodplain grassland that formerly occupied the
site was converted into maize and sunflower crops until 2014,
when Bordeaux City services reclaimed the area in a compensa-
tory measure program after the construction of new urban infra-
structures. The city aims at the recovery of a floodplain function
to host specific biodiversity (such as European mink [Mustela
lutreola]) and the restoration of the floodplain grassland. Since
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Dispersal and establishment limitations

the cessation of cropping, the plant community has mainly been
dominated by Erigeron spp., Ranunculus sardous, and Hel-
minthotheca echioides (Bordeaux Métropole unpublished data).

Reference Site

Due to the absence of historical data on the site, we selected two
wet donor grasslands in the NNRB (approximately 3.5 km at the
West of the experiment) as a reference for restoration. This
reserve, which was created in 1983, is constituted by a habitat
mosaics (hedgerows, floodplains, ponds) covering 280 ha. Most
of the reserve surface is composed of well-preserved floodplain
grasslands that are principally managed by grazing and mowing,
and submitted to similar hydrological conditions as the study site.

Plant communities were characterized in donor grasslands by
the means of vegetation records carried out in 2013, 2014, and
2015 (NNRB unpublished data), and the vegetation classification
and mapping produced by the National Botanical Conservatory
of south-western France (CBNSA) in 2015 (SEPANSO 2019).
Both grasslands were meso-hygrophilous, one belonging to the
EUNIS class E2.211—Atlantic Arrhenatherum grasslands
(WGS84 44.895993°N, 0.599038°W) and the other to E3.41—
Atlantic and sub-Atlantic humid meadows (44.899721°N,
0.593842°W). Grasslands belonging to two habitat types were
selected to take the variability of the floodplain grassland reference
states into account.

Experimental Design

Vegetation was cut and exported in late August 2017. A fully
randomized experiment was set up in September 2017, located
at the northwest of the study site (Fig. S1). We tested two soil
disturbance treatments, consisting either in soil tillage at 40 cm
depth (T) or a control without tillage (NT), and five types of
plant material transfer (thereafter “inputs”), including a control
(C) without any input. Each combination of the soil treatments
and the inputs was replicated on ten 4 m x 4 m plots
(n = 100). Plots were separated from each other from at least
2 m. Paths of 7 m-wide were also included in the experimental
design to enable machine passage (Fig. S1B).

Deep soil tillage was carried out with a backhoe in September
2017 (Fig. S2). The machines did not drive on the experimental
plots to avoid soil compaction. Both low and high density and
diversity inputs (LDD and HDD, respectively) corresponded
to seed mixtures (respectively 5 vs. 13 sown species at a density
of 3.4 vs. 4.8 g/m) composed on the basis on the presence and
frequencies of the species in the donor grasslands (P. Grisser,
NNRB unpublished data, personal communication) (Table 1).
LDD input corresponded to a seed mixture of grassland plant
species commonly used by local farmers for the sowing of tem-
porary grasslands or grassland rehabilitation. It contained two
legumes (20% of the number of seeds in the mixture), and three
grasses (80% of the mixture; Table 1).This input also constituted
the basis for the three other ones. HDD input consisted of the
LDD seed mixture completed with seeds of other plant species
encountered at varying frequencies in the donor grasslands.
HDD input was thus composed of eight grasses, two legumes,

and three forbs (respectively 81.5, 10, and 8.5% of the mixture;
Table 1). Due to the large amount of seeds required, seeds of all
species but Centaurea decipiens and Oenanthe pimpinelloides,
which were collected in situ in grasslands located about
16.5 km upstream along the Garonne river (Cadaujac, France,
WGS84 44.760035°N, 0.522852°W), originated from organic-
labellised crops produced by the Agro Bio Pinault society (Brit-
tany, France). Both LDD and HDD inputs were manually sown
in October 2017. The hay input consisted in the sowing of the
LDD mixture completed by hay transfer. Hay was harvested in
July 2017 in the reference grasslands, air-dried in situ for a few
days, and transferred as bales to the experimental site, where it
was stored until being manually spread in October 2017. A height
of circa 30 cm of hay was spread over the 16 m? plots, representing
a volume of circa 4.8 m® on each plot. The SB input consisted of
the sowing of the LDD mixture completed by the transfer of SBs
(20cm x 20 cm x 20 cm)  with  their standing vegetation
extracted from the donor grasslands. Four SBs were transferred into
each of the 20 SB experimental plots (751 piocks = 80). They were
positioned in each corner of the plots, 1 m apart the plot side in
November 2017 (Fig. S3).

The experimental design (experimental plots and paths) was
mowed ever year in July with hay removal.

Seed Bank Survey

In early October 2017, that is, after soil tillage but before any
input, eight soil cores (6 cm diameter, 15 cm depth) were ran-
domly collected within one quarter of the experimental plots
(nor = 25: nyt = 13, ny = 12) to check the effect of soil tillage
on seed bank composition and abundance. For each soil treat-
ment, experimental plots were selected at random. Soil cores
were immediately placed into a plastic bag hermetically
sealed and transported to the lab. Twenty-five culture trays
(30 cm x 44 cm x 6 cm) were then filled with approximately
2 L of autoclave-sterilized river sand and the content of the soil
cores collected into an experimental plot was manually mixed
and spread into each tray. Experimental trays were installed in
climatic chambers (SNIJDERS LABS MICRO CLIMA-SER-
IESTM), regularly moistened and moved within and between
climatic chambers (Supplement S1).

Seedling growth was surveyed for 13 months (from October
2017 to November 2018), until no further germination was
observed. Seedlings were regularly determined to the genus or spe-
cies level, counted, and removed. Taxon (genus or species) abun-
dance corresponded to the total number of seedlings belonging to
that taxon, counted over the whole course of the survey. Total abun-
dance was calculated as the sum of each taxon abundance.

Vegetation Monitoring

In June 2018, 2019, and 2022, vegetation was monitored within
each experimental plot, by the means of a pin-point method
(Stampfli 1991; Garrouj et al. 2019). Vegetation records consisted
of a4 m? square quadrat located at the center of each experimental
plot, 1 m apart from the plot side, to prevent side effects (Fig. S3).
The pin-points were spaced from each other by 25 cm, resulting in
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Dispersal and establishment limitations

Table 1. Composition of the low and high density and diversity seed mixtures (respectively, LDD and HDD).

Proportion of seeds

in the seed Number of Mass (g) of Mass (g) Mass (g) of seeds
mixture (%) seeds/m’ 1000 seeds of seeds/m’ per plot (16 m?)
Composition of LDD seed mixture
Schedonorus arundinaceus Grass 30% 600 2.77 1.6620 26.5920
Dactylis glomerata Grass 25% 500 0.86 0.4300 6.8800
Lotus corniculatus Legume 15% 300 1.35 0.4050 6.4800
Lolium perenne Grass 25% 500 1.68 0.8400 13.4400
Trifolium repens Legume 5% 100 0.74 0.0740 1.1840
Total 100% 2000 — 34110 54.5760
Species added to LDD for HDD seed mixture
Holcus lanatus Grass 30% 300 0.27 0.0810 1.2960
Arrhenatherum elatius Grass 30% 300 1.67 0.5010 8.0160
Anthoxantum odoratum Grass 10% 100 0.59 0.0590 0.9440
Elytrigia repens Grass 10% 100 5.25 0.5250 8.4000
Centaurea decipiens Forb 8% 80 1.40 0.1120 1.7920
Oenanthe pimpinelloides Forb 8% 80 1.44 0.1152 1.8432
Leucanthemum vulgare Forb 1% 10 0.53 0.0053 0.0848
Alopecurus pratensis Grass 3% 30 1.03 0.0309 0.4944
Total 100% 1000 — 1.4294 22.8704
Final composition of HDD seed mixture
S. arundinaceus Grass 15% 600 2.77 1.6620 26.5920
D. glomerata Grass 12.5% 500 0.86 0.4300 6.8800
L. corniculatus Legume 7.5% 300 1.35 0.4050 6.4800
L. perenne Grass 12.5% 500 1.68 0.8400 13.4400
T. repens Legume 2.5% 100 0.74 0.0740 1.1840
H. lanatus Grass 15% 300 0.27 0.0810 1.2960
A. elatius Grass 15% 300 1.67 0.5010 8.0160
A. odoratum Grass 5% 100 0.59 0.0590 0.9440
E. repens Grass 5% 100 5.25 0.5250 8.4000
C. decipiens Forb 4% 80 1.40 0.1120 1.7920
O. pimpinelloides Forb 4% 80 1.44 0.1152 1.8432
L. vulgare Forb 0.5% 10 0.53 0.0053 0.0848
A. pratensis Grass 1.5% 30 1.03 0.0309 0.4944
Total 100% 3000 — 4.8394 77.4464

64 points within the record. At each point, a coefficient of one was
attributed to every species contacted by a metal rod inserted verti-
cally at that point, and a coefficient of 0.5 was attributed to any spe-
cies present inside the record but not contacted at any point. Raw
species abundance per record thus ranged between 0 and 64. Con-
tacts with bare soil were also recorded.

Data Analyses

Both for seed bank and standing vegetation data, taxonomic
nomenclature was homogenized; when several observations
were determined only at the genus level and may be confused
with species of the same genus, all observations belonging to
that genus have been grouped at that level (e.g. Alopecurus
spp., Veronica spp.). However, when determinations made at
the genus level could not be confounded with other species of
that genus, we kept them distinguished (e.g. Carex hirta, Carex
sp., the latter being with no doubt different from C. hirta). All
woody species except Rubus sp. were grouped under a single
denomination (tree species). Undetermined and questionable
observations that cannot be grouped with other observations
were removed from the dataset for further analyses.

Standing vegetation data were split into three datasets corre-
sponding to each surveyed year. For each vegetation record,
the proportion of bare soil was calculated as the number of
pin-points where bare soil was observed divided by the total
number of contacts (plants species and bare soil) for this record.
Bare soil was then removed from the dataset for further analyses
on vegetation only. Three groups of species were identified.
Target species corresponding to all the species encountered in
the donor grasslands and species constituting the LDD and
HDD seed mixtures constituted the “target species group” (Tar-
get species). The species encountered in the non-tilled control
(NT.C) plots in 2018, excluding species already defined as
Target species, constituted the “degraded species group” (Deg
species). Remaining species that were included in neither of
these groups constituted the “other species group” (Other spe-
cies). Due to the localized aspect of vegetation records used to
select donor grasslands, some species potentially present might
have been missed. Thus, a few species that could be considered
as typical of reference floodplain grasslands were classified as
Other and not Target species (Althaea officinalis, Hypericum
perforatum, Medicago spp., Plantago lanceolata, and Trifolium
pratense), but they were only found at low frequency
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Dispersal and establishment limitations

(respectively one, three, seven, three, and seven occurrences
over 300 vegetation records). The relative abundance of each
species group within each vegetation record was calculated as
the sum of raw species abundances of every species belonging
to that group divided by the sum of raw species abundances of
all species encountered in that record, with bare soil excluded
from the calculation. Species richness of each species group
and total species richness were also calculated per plot (alpha
species richness). To assess potential heterogeneity among plots
of a given treatment, overall species richness of each species
group (gamma species richness) was calculated for each treat-
ment (interaction of the input and soil disturbance treatments,
n = 10 replicates) and for each input (n = 20 replicates).

We tested the effect of soil treatment on total abundance and
taxonomic richness of the seed bank using generalized linear
models (GLM) with Poisson error distribution and log link.
Nonmetric multidimensional scaling (NMDS) ordination was
applied on taxon abundances, and differences in seed bank tax-
onomic composition between non-tilled and tilled plots were
tested using permutational multivariate analysis of variance
(PERMANOVA) with 199 permutations. Indicator taxa of each
soil treatment were searched for using the IndVal method
(Dufréne & Legendre 1997).

To test for potential treatment effects on the heterogeneity of
species composition of standing vegetation among plots, we cal-
culated the distance of each replicate plot to its group centroid
(one group being one experimental treatment, i.e. the combination
of input and soil disturbance treatment) for each year, by the
means of principal coordinate analysis (Anderson et al. 2006).
The greater the average distance to the treatment centroid, the
higher the heterogeneity of species composition among plots of
that treatment (beta-diversity). Even if some variance heterogene-
ity was detected, one NMDS was carried out for each surveyed
year, and the effect of the input, the soil treatment and their inter-
action was tested using PERMANOVA (rn = 199 permutations).
We visualized plot dispersion by plotting confidence ellipses
(Supplement S2) for a better interpretation of differences between
experimental treatments, especially when heterogeneity of vari-
ances was previously detected. Multivariate analyses were carried
out on Bray—Curtis dissimilarity matrices calculated on raw abun-
dance data. Two reduced dimensions were kept in all NMDS.

For each surveyed year, the effect of the input, the soil treat-
ment and their interaction, was tested using GLM with Poisson
error distribution and log link for total and per group species rich-
ness, and linear models (LM) with normal error distribution and
identity link for bare soil proportion, the proportion of each spe-
cies group within the vegetation and the distance of the plots to
their group centroid. Residuals were visually inspected and, when
necessary, data were transformed prior to analyses to meet resid-
ual normality requirements. When outliers were detected, models
without outliers were also tested in order to identify their effect on
the results. Pairwise contrasts among least-square means were
used to test for difference between multiple factor levels.

All statistical analyses were performed in R software version
4.1.5 (R Core Team 2022). R packages car (Fox & Weisberg 2019)
and emmeans (Lenth 2022) were used for LM and pairwise con-
trasts analyses, vegan (Oksanen et al. 2020) was used for

multivariate analyses, and labdsv (Roberts 2019) was used for the
identification of indicator species. Graphical representations were
drawn using ggplot2 (Wickham 2016).

Results

Soil tillage significantly decreased seed bank total abundance
(NT 130.1 +50.5, T 104.6 +45.0, y*=508, p value
<0.001), but had no effect on seed bank taxonomic richness,
which was on average 8.9 £ 2.3 per plot. A significant effect
of soil treatments on seed bank taxonomic composition was
detected despite a small amount of explained variance
(Fig. S4), and no indicator taxon (IndVal) detected.

In 2018, the proportion of bare soil varied between
28.1 £ 7.1 and 91.3 £ 8.3%: it was the highest for hay trans-
ferred plots, especially when combined with deep tillage (Hay.
T), but not different among other inputs (Tables S1 & S2). The
proportion of bare soil decreased during the experiment, to a
total average of 3.5 &= 3.3% in 2022 (Tables S1 & S2).

In 2018, with the exception of the hay input, the more com-
plete the input, the higher total species richness (Fig. 1), mostly
due to the input effect on the species richness of the Target spe-
cies group (Table S3; Fig. 1). Deg species richness was lower in
plots submitted to the combination of hay transfer and soil tillage
(Hay.T) than for all other treatments (Table S3; Fig. 1). The number
of Other species was low, but was significantly increased by soil
tillage. It was also significantly different between hay and SB
inputs, and intermediate for all other inputs (Table S3; Fig. 1).
These species represented such a small proportion of the vegetation
that it was not possible to test for any treatment effect. In 2018, the
vegetation remained mostly dominated by Deg species (between
524 + 31.9 and 97.3 £ 2.1% of the vegetation cover). This pro-
portion was rather variable for the Hay.T plots (important standard
error; see also Table S1), but was globally much higher for C than
for any other input (Fig. 2A).

In 2019 and 2022, species richness only depended on the
input, increasing with its completeness (Table S3; Figs 3 &
S5). By the end of the experiment, however, only SB input led
to a significantly higher species richness than in C (Table S3;
Fig. 3). These patterns were only linked with the effects of the
inputs on the Target species group (Fig. 3). The relative abun-
dance of Target species was significantly higher in LDD,
HDD, and SB than in hay and C inputs, both in 2019 and 2022
(Table S1; Figs. 2B & S6). In 2022, the relative abundance of
Other species only depended on the input, being the highest in
hay and the lowest in HDD plots (Table S1; Fig. 2B).

From 2018 onward, SB was the input reaching the highest
gamma species richness of both Target and Other species
(Table S6). Inter-plot heterogeneity (reflected by the mean dis-
tance to centroids) of the hay input was significantly higher than
all other inputs in 2018 (Fig. S7). In 2019, deep soil tillage sig-
nificantly decreased inter-plot heterogeneity for all inputs
(Fig. S7). This effect was no longer detected in 2022. At that
date, inter-plot heterogeneity was significantly lower for the
HDD than for the hay input, and tended to be lower than all other
inputs (C, LDD, and SB, but p value <0.1 only; Fig. S7).
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significant differences between soil disturbance treatments or inputs; lower-case letters indicate significant differences between the interaction the soil disturbance

treatments and inputs.

Species composition was significantly affected both by the
type of input and the soil treatment, but not by their interaction
(Figs. 4 & S8). In 2018, C and hay inputs were discriminated
mostly along the first NMDS axis, while LDD, HDD, and SB
plots projected mostly on the negative side of the second NMDS
axis (Fig. 4). For that year, one species belonging to the Deg spe-
cies group was significantly indicator of the C input and one
species belonging to the Target species group was indicator of
the hay input, but this species was already present in the seed bank
before the onset of the experiment (Tables S4 & S5). One Deg,
one Other, and four Target species (all belonging to the LDD seed
mixture) were indicators of the LDD input. Three Target species
belonging the HDD seed mixture were indicators of the HDD
input. Mostly Target species were indicators of the SB input.
One Other species, Rubus sp. and other woody species were indi-
cators of NT plots (Tables S4 & S5). Mostly Target and Other
species, half of which were detected in the seed bank (Tables S4
& S5), were indicators of the tilled plots.

In 2022, the first NMDS axis represented a gradient of inputs
with, from its negative to its positive sides: C, hay, LDD-HDD,

and SB plots (Fig. 4), a pattern which was already visible in
2019, but with a clearer discrimination between C and hay plots
on one side, and LDD, HDD, and SB plots on the other (Fig. S8),
One Target species, (Lathyrus nissolia), which was totally
absent from the experimental plots in 2018, was found in three
plots in 2019 (one Hay.NT and two Hay.T plots) and occurred
in 37 (7 C, 5 LDD, 5 HDD, 11 hay, and 9 SB plots) over the
100 experimental plots in 2022. Three Target, one Other, and
one Deg species were indicator of NT plots in 2022
(Table SS5). At that date, C plots were characterized by one
Deg and two Other species, while several Target and Other spe-
cies were indicators of the other inputs (Table S5).

Discussion

Dispersal Limitation and Effects of the Input Completeness

Biological inputs increased either Target species relative abun-
dance, Target species richness or both, and resulted in a different
species composition from the control plots. However, our first
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hypothesis was only partially supported, as the effect of the
inputs on species composition and on the Target species group,
was not clearly linked with their expected completeness.

Seed sowing enabled a rapid and significant installation of
Target species together with a decrease of the relative
abundance of initial nontarget (Deg) species (Kiehl 2010; Torok
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being significantly indicator of at least one treatment (Table S5) are shown.

et al. 2012; Sengl et al. 2017). Species composition of the vege-
tation matrix and proportions of species groups were similar
between LDD and HDD inputs. However, only HDD input
reached levels of total and Target species richness similar to
the highest ones, which were recorded for the SB input. It also
resulted in the lowest level of inter-plot heterogeneity, present-
ing the advantage to control species composition of the sown
mixture, which constrains grassland restoration trajectory
toward the reference. However, this also increases the risk to
rapidly saturate the plant community and reach stable states
where chance events of colonization are less likely. Moreover,
although phenotypic plasticity may support plant ability to
establish under contrasting environmental conditions (e.g. soil
pH; Rupprecht et al. 2021), studies claim for the need to clearly
delineate the region of plant material collection, based on
knowledge about abiotic, mostly climatic and geological, vari-
ables but also on habitat connectivity and consistency in
the genetic pool (Baasch et al. 2016; Kaulful & Reisch 2021;
Rupprecht et al. 2021). Using commercial seed mixtures of

unknown origin for grassland restoration is problematic as their
establishment may be hampered by local conditions to which
those seeds are not adapted. Moreover, introducing plant material
of unknown origin may be detrimental to local populations
through outbreeding depression linked with genetic introgression
(Frankham et al. 2011). Thus, seed sowing as a tool for grassland
restoration would greatly be improved by using locally collected
or cultivated plant material (Bucharova et al. 2019).

Soil blocks were expected to contain viable seeds, vegetative
buds (Bulot et al. 2014; Jaunatre et al. 2014; Fowler et al. 2015),
and associated microorganisms (Jaunatre et al. 2014; Emsens
et al. 2022; Gerrits et al. 2023). As such, they were considered
as the most complete input, which was expected to improve both
plant immigration and establishment and to constraint most rap-
idly the vegetation dynamics toward the reference. Although
among the most efficient for the restoration of the plant commu-
nity, this input did not significantly differ from the HDD seed
mixture at least regarding the effect on species richness and pro-
portion of Target species. These results suggest either that plant
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species establishment was not or little affected by the soil biotic
and abiotic properties of our degraded site, or that SBs were not
sufficient to restore these properties and improve plant establish-
ment. Emsens et al. (2022) demonstrated that soil inoculation
differentially affected soil microbes, and these effects were
limited and dependent on the environmental properties, such
as soil nutrient content. In our study, even if microorganisms
were transferred within SBs, their establishment and dis-
persal may have further been limited by differences in soil
abiotic properties between the donor grassland and the exper-
imental plots. Moreover, SBs were restrained in space as they
only represented 1% of the experimental plot area. Thus, even
if the transfer of SBs can be a source of Target species and
microorganisms, large dispersion in the restored site may be
a rather long process.

However, SB had particular effect on species composition as
it was the only input that allowed the immigration of some grass-
land species such as Carex hirta, Festuca rubra, or Hordeum
secalinum. Soil block transfer enables the immigration of
species relying mostly on vegetative growth and producing
a small amount of seeds. Contrary to the sowing of seed mix-
tures, for which species richness and abundances are strongly
controlled, SBs offer the opportunity of immigration of a
larger, although less controlled, pool of species including
species reproducing mainly through clonal growth. However,
as it is highly destructive for the donor site, this technique is
only applicable to small areas. Our results rather advocate
for a moderate and thoughtful use of the transfer of SBs as
its benefits appeared to be too limited to outweigh its costs,
at least at short term.

Delayed Effects of Hay Transfer

Eight months after the inputs, hay transfer increased neither total
nor Target species richness. As evidenced by bare soil cover,
hay transfer clearly hampered seed germination and seedling
establishment. The vegetation litter introduced by hay transfer
is known to potentially have contrasting effects. On the one
hand, as a physical barrier to light penetration, it can inhibit seed
germination or cause young seedling death (Donath et al. 2007;
Albert et al. 2019; Hansen et al. 2022). While this can be favor-
able to the restoration process by lowering the ruderal species
cover (Albert et al. 2019), it can also be detrimental to the instal-
lation of target species contained in sown seed mixtures or hay
itself (Valké et al. 2022). On the other hand, this litter layer
can improve local abiotic conditions and protect seeds and
young seedlings from extreme events such as frosts or droughts
(Durbecq et al. 2022), or from predation (Reed et al. 2006). In
our experiment, the litter layer created by hay transfer had a
much greater effect on seed germination and seedling establish-
ment than pre-restoration standing vegetation and remaining
seed bank.

Consistent with studies showing a delayed establishment of
target species, in particular specialists (Wagner et al. 2021;
Valké et al. 2022), the negative effect of the hay input was rather
transient. Our results provide evidence for the transfer of a Tar-
get species, Lathyrus nissolia, within the hay. This species was

not detected the first year, probably because seed germination
was delayed (Donath et al. 2007), but, 3 years later, it had dis-
persed throughout the whole experimental design. Hay transfer
offers the opportunity for the immigration of species from donor
sites, which, even if they are introduced at low density, can fur-
ther disperse widely into the restored site (Torok et al. 2011).

Yet, even 5 years after the input, the legacy of hay transfer
remained visible as the largest proportion of Other species
(e.g. Galega officinalis, classified as exotic invasive in the study
region [Caillon & Lavoué 2016], and Vulpia spp.), or a high fre-
quency of occurrence of Rubus sp. Hay transfer success depends
on the quality of transferred material, especially its content in
viable seeds and plant phenology (Bischoff et al. 2018). In our
experiment, although originating from species-rich grasslands,
the hay did not contain a lot of fruits and seeds (M. Garrouj
and M.-L. Benot 2007, University of Bordeaux, personal obser-
vations). The efficiency of hay transfer is hardly predictable and
can be improved by increasing the number of transfers (Kiehl
et al. 2006; Scotton et al. 2011).

Establishment Limitation: More Subtle Effects of the Soil
Disturbance Treatment

The effects of the soil treatment were less pronounced than
expected, either alone or combined with the input. Contrary to
our expectations, deep soil tillage had almost no effect on Deg
species, but mostly influenced bare soil relative cover and spe-
cies composition. It disfavored Rubus sp. and tree species, prob-
ably through the removal of almost all plant parts, including the
rooting system, thereby preventing regrowth and resprouting.
The weak effects of deep tillage on Target species recorded in
our experiment are contradictory with previous studies
(Schnoor et al. 2015; Bischoff et al. 2018; Freitag et al. 2021).
Deep soil tillage was tested as an alternative to topsoil removal,
which is usually applied on a relatively small scale due to its
high cost (Hedberg et al. 2014; Klimkowska et al. 2015). But
our results show that this technique is rather limited in control-
ling the seed bank. As suggested by the large proportion of bare
soil recorded in 2018, space availability was probably not a lim-
iting factor for early seedling installation.

Contrary to dispersal limitation, establishment limitation
linked with competition from plant species already present in
standing vegetation or occurring in the seed bank did not emerge
as a major process influencing grassland community restoration
in our study site. As deep tillage can have negative effects on
soils (e.g. erosion, biological processes, and soil organisms;
Johnston et al. 2018), its relevancy for former arable land resto-
ration seems rather questionable.
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Figure S1. Map of the experimental site representing variations in elevation (A) and
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method for vegetation monitoring, and the location of the four soil blocks (SB input).
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and showing the result of PERMANOVA testing for soil disturbance effect.
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Other (C) and Target (D) species groups in 2019.
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Figure S6. Mean + SE relative abundance of each species group within the vegetation
in 2019.

Figure S7. Mean + SE distance of each plot to the centroid of its treatment (inter-
action between the biological inputs and soil treatments), for the three surveyed
years.

Figure S$8. Nonmetric multidimensional scaling ordinations of standing vegetation
taxonomic composition in 2019.

Table S1. Results of linear model ANOV As testing for the effect of biological input
treatment, soil disturbance treatment and their interaction on the relative abundance
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Table S2. Mean + SD proportion of bare soil.

Coordinating Editor: Stephen Davis

Table S3. Results of generalized linear model ANOVAs (Poisson error distribution)
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