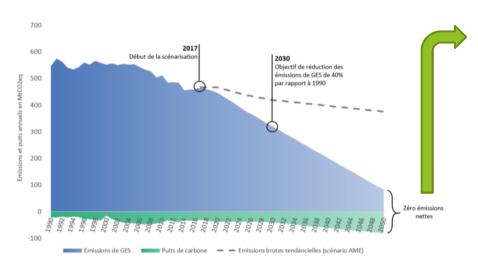
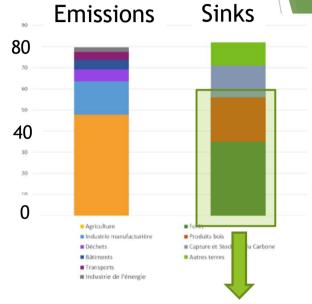


Identify strategies that optimize the carbon sink in forests: "the impossible equation?"

L. Augusto¹, L. Saint-André²

- 1. INRAE, UMR ISPA, Bordeaux, France
- 2. INRAE, BEF, UR1138, Champenoux, France




INRAE

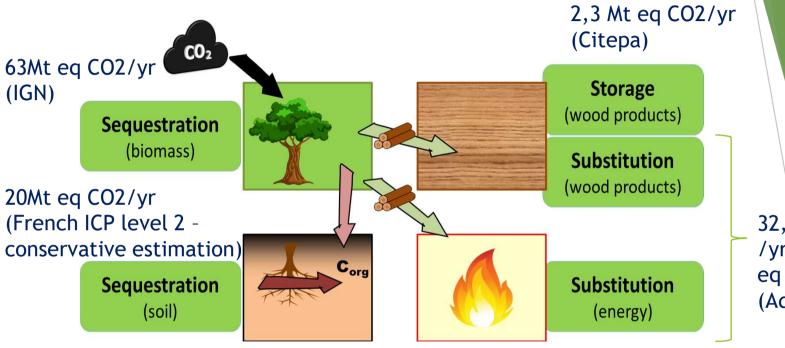
Context

 National low-carbon strategy to reach C neutrality by 2050

 2050: Carbon budget of 80 Mt eq CO2

Two leverages:

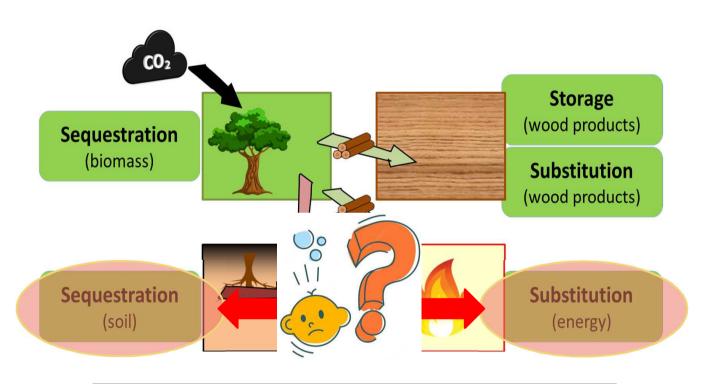
- Decrease emissions
- Preserve and increase C sinks in the biosphere (biomass and soils)


 Sequestration of 55 Mt eqCO2 expected from the forest vegetation and soils, wood products (incl. Substitution)

Forests play a major role in climate change mitigation through their carbon (C) cycle.

32,3 Mt /yr eq CO2 (Ademe)

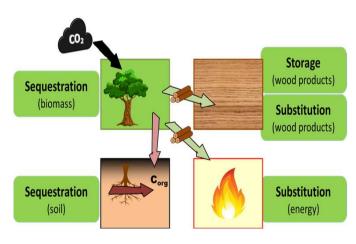
The 3S (Sequestration, Storage, Substitution): the main levers to mitigate the increase of atmospheric CO2


But, It is difficult to optimise all levers (3S) at the same time: the so-called "3S dilemma"

"3S dilemma": example between soil C sequestration and substitution for energy purposes

OPEN Forest soil carbon is threatened by intensive biomass harvesting

David L. Achat¹, Mathieu Fortin^{2,3}, Guy Landmann⁴, Bruno Ringeval¹ & Laurent Augusto¹


How can we identify strategies that optimise the climate change mitigation role of forests?

- Coupling models of an extremely different nature
- Some processes are still difficult to simulate in the long term
- The range of climate scenarios is vast
- Difficulty in taking into account catastrophic events or threshold effects in simulations

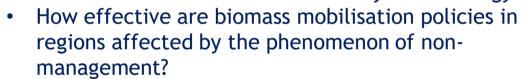
Biophysical part

- Climate, process-based, phenomenological, resource and biogeochemical models
- How to simulate stochastic events?
- Some processes are not yet sufficiently known to be reliably simulated

Socio-Economical part

- Socio-economic and sectoral models
- How can we predict the actual modalities of energy and ecological transitions
- How can we simulate the effects of substitution and long-term storage?

To enable simulations, it is essential to make assumptions on which to build these simulations,



With the same tools, different assumptions will deliver different answers

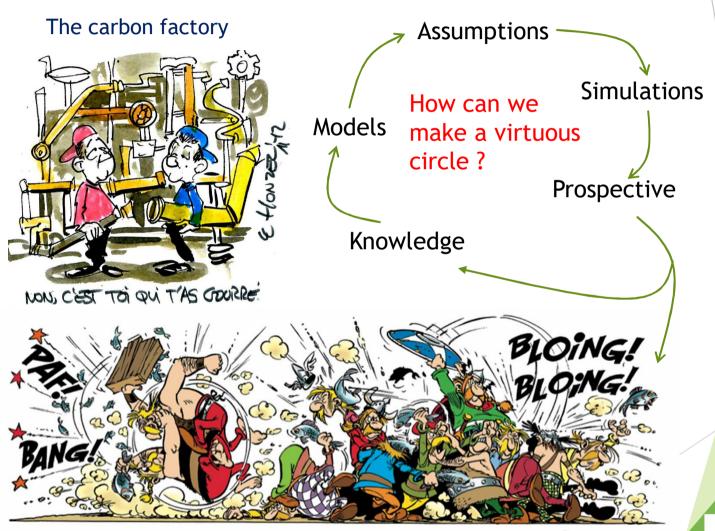
- Probability of extreme events?
- Drought resistance of species?
- Stimulatory effect of CO2 on growth?
- Long-term dynamics of soil organic carbon?
- Effects of forestry on soil organic carbon?
- Life span of wood products?
- Which fossil fuels are substituted by wood energy?

What is the evolution of the demand for wood products?

Sequestration (biomasse)

Sequestration (sol)

Stockage


Substitution (energie, wood product)

Available simulations are then projections, built on working assumptions (some of which are debatable): two studies may give two different answers.

The state of the debate on carbon in forests: Scientists, experts, professionals, citizens, ..., everyone has an idea, but it is rarely the same one!

Should we recommend nothing on the grounds that we cannot model everything with certainty?

Séquestration (sol)

AboveGround Biomass

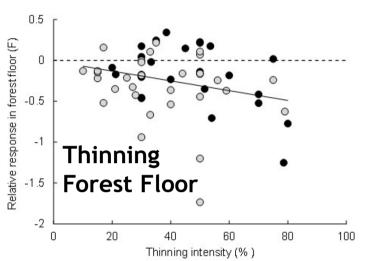
Wood residues

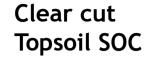
Litter

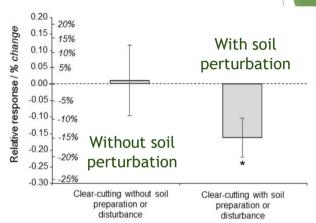
Soil Organic Carbon (SOC) (fires, storms, diseases, droughts, forest managements)

Vulnerability Potential for a long term sequestration

The example of soil carbon sequestration, what we know, what we do not know exactly and what could we do?

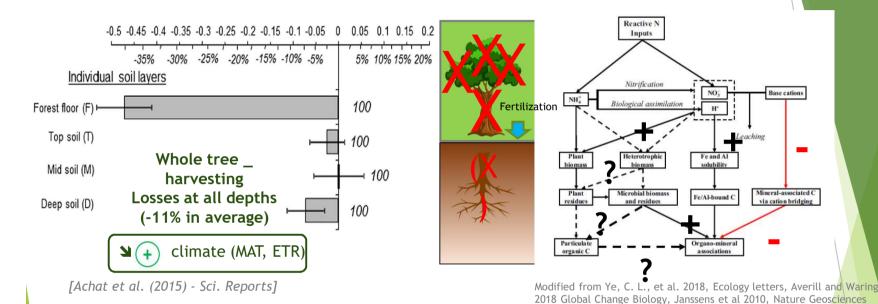





Impact of forest management Thinnings and clearcuts: large consensus

in the literature

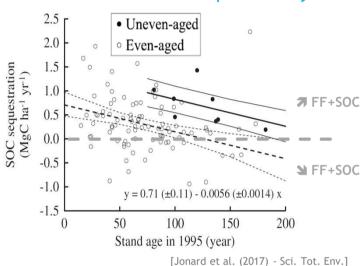
Take home message 1: Thinnings have no impact on the forest floor, provided that the intensity of the cut is low or moderate; Thinning does not quantitatively impact the SOC pool

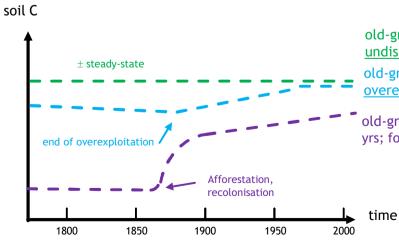

Take home message 2: Clearcuts that leaves harvesting residues on the soil generally do not affect C sequestration, as long as they do not disturb the soil. The risk of C loss increases with the initial size of the C pool.

Impact of forest management Whole - tree harvesting: large consensus in the literature, Fertilization with N: few papers

Take home message 3:
Whole tree harvesting
negatively affects the SOC,
the impact increases under
warm climates

Take home message 4:
The impact of N
fertilization on SOC is
unclear (dose effect with
a bell curve)





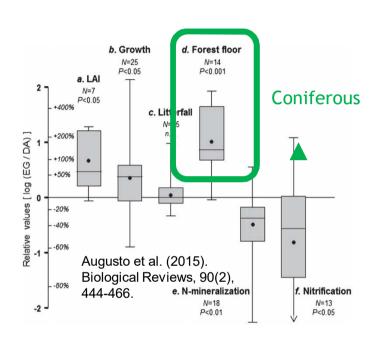
Impact of forest management Rotation length - few papers, unclear effect

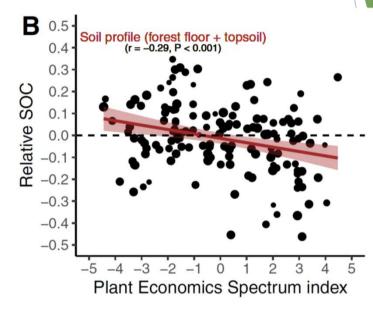
RENECOFOR: **→** SOC up to ~100 years

Take home message 5: Extending rotations -and thus tending towards old-growth forests- can improve SOC sequestration over the long term (up to 50-100 years?). But strong interaction with the past history of the forests.

old-growth forest in <u>ancient</u> (>> 200 yrs), undisturbed, forests

old-growth forest in <u>ancient</u>, but <u>formally</u> <u>overexploited</u>, forests (RENECOFOR case?)

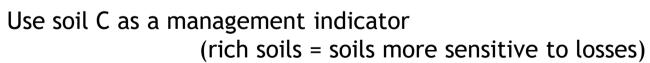

old-growth forest in <u>recent</u> forests (< 200 yrs; formally croplands)

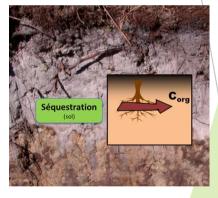


Impact of forest management Species Effect - Literature relatively abundant, clear effect

Augusto and Boca (2022). Nature Com.

Take home message 6: Identity is generally a more important factor than diversity. Functional diversity in relation with the climate and soil conditions better explain the observed trends than specific diversity.


Question: "How to optimise the contribution of forests to mitigation: maximise sequestration in the ecosystem or maximise storage in materials and fossil C substitution? The 3-S dilemma


Conclusions Forest soil carbon:

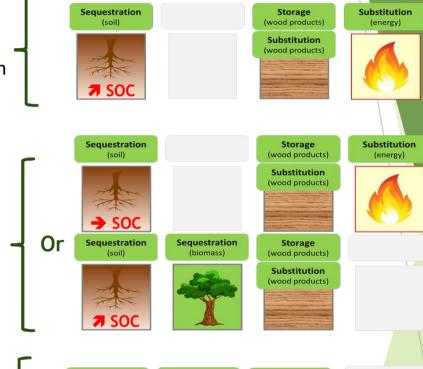
Soil = a relatively non-vulnerable compartment of the ecosystem but not insensitive to disturbance

Take into account:

- climate
- soil type
- Past land-uses
- regional forest-wood economy

Forest management can modulate the balance between Sequestration and Storage/Substitution in Wood (3S Dilema)

Afforestation of cultivated or degraded soils (poor SOC stocks)


- Fast growing tree species
- Rotation length >50 years to maintain the inherited soil fertility
- Adaptation on the short term to climate changes

Forests with medium SOC stocks

- No whole-tree harvesting
- Increase SOC stocks with nitrogen fixing species
- Reduce soil perturbations
- Adaptation on the mid-term

Forests with high SOC stocks

- Continous cover
- No soil perturbation during harvesting
- Adaptation on the long term

Sequestration

Storage

(wood products)

Substitution (wood products

Sequestration

Need for adaptive forestry, regionalized - co-construction of the roadmaps (work with all forest actors)

Future of the Forest

not under a bell jar (full conservation, no action), nor an overexploitation.....

Thanks for listening!

