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1. Description of the practice  

Continuous cover forestry (CCF; see the full description in Helliwell and Wilson, 2012) includes many 
silvicultural systems which all involve continuous and uninterrupted maintenance of forest cover and which 
avoid clearcutting. It implies forest management that works with the characteristics of the site and with tree 
species that are well adapted to the location. It respects the processes inherent to the site, rather than imposing 
artificial uniformity, and will normally involve a mixture of tree species and ages. Management is based on the 
selection and favouring of individual trees (of all sizes) rather than the creation of areas of uniform tree size and 
spacing, and record keeping is based on periodic recording of stem diameters on sample areas, rather than by 
age and area of stands. Stand structure will be permanently irregular, although the process of transformation to 
an uneven-aged condition might involve temporary even-aged elements, possibly including small-scale 
clearfells, and group or irregular shelterwoods (Helliwell and Wilson, 2012). CCF could minimize soil 
disturbance because a larger portion of tree roots are preserved following wood harvesting, and because no soil 
preparation – such as ploughing– is done. On the other hand, it involves a greater number of soil trampling 
events as interventions are more frequent. CCF also requires more frequent and more technical interventions 
of the forest managers. CCF may limit changes to the soil microclimate due to smaller openings comparatively 
to clear-cutting with potential influence on soil organic matter decomposition. However, positive as well as 
negative impact of large canopy openings have been observed on organic matter decay rates (Mayer et al., 2020). 
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2. Range of applicability 

Applicability is worldwide, wherever even-aged forestry is practiced. Typically, over the past two centuries, 
conventional forest management approaches have favored the plantation of even-aged, single-species stands. 
Interest in alternative management approaches that involve continuous and uninterrupted maintenance of forest 
cover have greatly increased in many regions, particularly in developed economies (Puettman et al., 2015). 

3. Impact on soil organic carbon stocks 

Although precise data on SOC changes are scarce, meta-analyses have revealed that clearcut harvesting results 
in reductions of < 10 percent of the soil C in the entire soil profile with greatest loss of the forest floor (Johnson, 
1992; Johnson and Curtis, 2001; Achat et al., 2015). In two meta-analyses of studies in temperate forests, 
forest harvesting reduced total soil C by an average of 6-8 percent: C storage declined by 22-30 percent in the 
forest floor, whereas the mineral horizons showed no significant overall change (Nave et al., 2010; Achat et al., 
2015). Evidence that CCF reduces soil C losses in comparison to clear cutting is scant.  Mayer et al. (2020) 
reported on the following studies: In Norway-spruce-dominated stands in Austria, single-tree-selection 
management resulted in 11 percent greater soil C stocks in the upper mineral soil compared to conventional 
even age-class management (Potzelsberger and Hasenauer, 2015). However, short-term losses were observed 
in shelterwood cuts in Chilean Patagonia (Klein et al., 2008). In an oak-hardwood forest in New England, 
Warren and Ashton (2014) reported a decrease in the soil C stocks in the mineral soil, but neutral effects in the 
litter layer following shelterwood harvest. Others have found little or no difference between effects of partial, 
selection, shelterwood, and clearcut harvesting on soil C stocks (Hoover, 2011; Christophel et al., 2015; 
Puhlick et al., 2016). When differences in SOC content were observed, they were higher under CCF but of low 
magnitude (Pötzelsberger and Hasenauer, 2015; Jonard et al., 2017). Similarly, two meta-analyses (Liao et al. 
2010, 2012) showed a systematic loss of SOC in planted even-aged forests compared to naturally regenerated 
forests, but this difference in SOC storage could be linked to the fact that the naturally regenerating forests in 
these studies are partly primary forests, with SOC stocks probably at high level. In summary, information is too 
fragmentary to attribute any soil C changes with the adoption of CCF in replacement of a traditional even-aged 
silviculture system (Powers et al., 2011). Local information on the effect of this practice on soil erosion, soil 
disturbance, as well as on impact on forest composition would be factors to consider due to their potential 
impact on soil C stocks. It is noteworthy that CCF systems involve light but more frequent interventions that 
could make changes in the soil C stocks at the whole rotation scale difficult to detect statistically. 
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4. Other benefits of the practice 

4.1 Minimization of threats to soil functions 

Table 3. Soil threats 

Soil threats  

Soil erosion 
On sites sensitive to erosion, maintaining a forest canopy as well as tree root 
systems could prevent erosion.  

Nutrient imbalance 

and cycles 
Especially if the adoption of this practice promotes mixed species stands. 

Soil acidification 

The absence of clearcut in CCF might slightly reduce the losses of cations induced by 
water leaching enhanced by clearcuts in sites prone to such losses (i.e. mainly soils 
with a high drainage regime but with a low buffering capacity of pH). 

Soil biodiversity loss 

In general, positive impact on biodiversity noting that some forest species need 
open canopy conditions or high disturbance levels. But the latter (i.e. ruderal species) 
are usually not a concern for biodiversity (Puetman et al. 2015). 

Soil compaction 

In general, the maintenance of the tree root systems might increase the resistance 
of soils to compaction. However, the current knowledge about this possible effect is 
scarce. 

Soil water 

management 
CCF enables better regulation of the water fluxes at the watershed scale. 

 
 
 

4.2 Increases in production (e.g. food/fuel/feed/timber) 

Some studies indicate equivalent or lower productivity (-20 percent) rates in CCF systems (reviewed by 
Lundmark et al., 2016). 

 

4.3 Mitigation of and adaptation to climate change 

There is no strong evidence that soil C stock differs between CCF and clear-cut systems. Local situations should 
be examined carefully. In a broader perspective, mitigation benefits from the outflow of forest products that 
substitute the use of materials generating greater GHG emissions in addition to those related to the changes in 
C stocks, both in forest ecosystems and in wood products need to be considered. Lundmark et al. (2016) 
indicated that for Norway spruce in Sweden, biomass growth and yield is more important than the choice of 
silvicultural system per se for generating long term climate mitigation benefits associated with CO2 emissions 
and C stock changes. In Canada, Paradis, Thiffault and Achim (2018) indicated that forest management systems 
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that produce trees of greater size should increase the proportion of long-lived wood products, suggesting that 
the quality of the timber produced also has implication on GHG mitigation.  

There is evidence that multi-species and multi-cohorts forest stands are more resilient to climate-change and to 
other threats, especially in the long-term (reviewed by Puettmann et al., 2015). However, unexpected mortality 
of residual trees may occur with CCF, especially when foresters have little experience with such practice 
(Puettmann et al., 2015).  

Due to climate change and associated effects, it is envisaged to reduce these rotation durations to mitigate the 
risks associated with storms, fires or pathogen attacks (Roux et al., 2017). This amounts to shifting from carbon 
sequestration in the ecosystem to carbon storage in products and increasing the share of substitution (Fortin et 
al., 2012). From an ecosystem perspective, shortening rotations can have an impact on soil fertility and SOC 
with a general decreasing trend (Achat et al., 2018). As the stand is renewed more often over the same period 
of time, biomass and nutrient exports are greater and the effects of soil preparation during forest soil 
regeneration on SOC are also amplified. Thus, the longer the duration of rotation, the more likely it is that SOC 
will increase, although the effect of very long rotations (i.e. several centuries) remains poorly known with 
variable results depending on the studies (Ji et al., 2017; Leuschner et al., 2014; Zhou et al., 2006). Thus, 
simultaneously, the risk of climate change-related hazards increases (and may contribute to the reduction of the 
SOC stock in trees) with the length of the rotation     , whereas the shorter the rotation, the greater the SOC 
losses related to forest management may be (Seely, Welham and Blanco, 2010). However, to date, there are no 
studies where forest stands are monitored longitudinally (not in chronosequence) over a longer timeframe and 
have experienced intensive silviculture (several short revolutions) on the one hand or extensive silviculture on 
the other (long rotation over the same time period). Only model-based studies can address the effect of the 
length of rotation on SOC (Johnson, Scatena and Pan, 2010; Wang et al., 2013; Seely, Welham and Kimmins, 
2002; Achat et al., 2018). Numerical simulations are generally concordant and suggest a decrease in SOC 
stocks with a shortening of rotations (e.g. -15 to -20 percent after 360 years; Johnson et al., 2010). 

 

4.4 Socio-economic benefits 

Continuous-cover forestry could generate more uniform cash flows (Puettmann et al. 2015); successful natural 
regeneration avoids the cost of plantation establishment. 

Improvement of landscape visual quality and enhanced recreational opportunities (Puettmann et al. 2015). 
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5. Potential drawbacks to the practice 

5.1 Decreases in production (e.g. food/fuel/feed/timber) 

Some studies indicate equivalent or lower productivity (-20 percent) rates in CCF systems (reviewed in 
Lundmark et al., 2016). 

 

6. Recommendations before implementation of the 

practice 

The greatest risk is the enhanced mortality of residual trees due to damages to roots and stems during operation 
or to greater exposure of residual trees to wind, drought or insects. It is advisable to start at small scale with a 
good knowledge of species autecology and with clear stand-density management goals.  

 

7. Potential barriers to adoption 

Table 4. Potential barriers to adoption 

Barrier YES/NO  

Biophysical Yes 
Implementation is not always easy depending on the current forest composition 
and structure, may need several steps. 

Economic Yes Yields are less certain in regions with no tradition of CCF. 

 

  



 

VOLUME 5: FORESTRY, WETLANDS AND URBAN SOILS – PRACTICES OVERVIEW 19 

Photo of the practice 

  

 

Photo 2. A mature stand of Douglas fir managed on CCF principles with a developing understorey of mixed conifers, including Douglas 
fir, western hemlock, western red cedar and grand fir | Coombs Wood, Cumbria, United Kingdom of Great Britain and Northern Ireland 
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