On the perimeter estimation of pixelated excursion sets of two‐dimensional anisotropic random fields - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Access content directly
Journal Articles Scandinavian Journal of Statistics Year : 2023

On the perimeter estimation of pixelated excursion sets of two‐dimensional anisotropic random fields

Abstract

We are interested in creating statistical methods to provide informative summaries of random fields through the geometry of their excursion sets. To this end, we introduce an estimator for the length of the perimeter of excursion sets of random fields on observed over regular square tilings. The proposed estimator acts on the empirically accessible binary digital images of the excursion regions and computes the length of a piecewise linear approximation of the excursion boundary. The estimator is shown to be consistent as the pixel size decreases, without the need of any normalization constant, and with neither assumption of Gaussianity nor isotropy imposed on the underlying random field. In this general framework, even when the domain grows to cover , the estimation error is shown to be of smaller order than the side length of the domain. For affine, strongly mixing random fields, this translates to a multivariate Central Limit Theorem for our estimator when multiple levels are considered simultaneously. Finally, we conduct several numerical studies to investigate statistical properties of the proposed estimator in the finite‐sample data setting.
Fichier principal
Vignette du fichier
Scandinavian J Statistics - 2023 - Cotsakis -.pdf (3.35 Mo) Télécharger le fichier
Origin Publisher files allowed on an open archive
Licence

Dates and versions

hal-04643146 , version 1 (10-07-2024)

Licence

Identifiers

Cite

Ryan Cotsakis, Elena Di Bernardino, Thomas Opitz. On the perimeter estimation of pixelated excursion sets of two‐dimensional anisotropic random fields. Scandinavian Journal of Statistics, 2023, 51 (1), pp.268-301. ⟨10.1111/sjos.12682⟩. ⟨hal-04643146⟩
0 View
0 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More