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Abstract
We are interested in creating statistical methods to pro-
vide informative summaries of random fields through
the geometry of their excursion sets. To this end, we
introduce an estimator for the length of the perimeter
of excursion sets of random fields on R2 observed over
regular square tilings. The proposed estimator acts on
the empirically accessible binary digital images of the
excursion regions and computes the length of a piece-
wise linear approximation of the excursion boundary.
The estimator is shown to be consistent as the pixel size
decreases, without the need of any normalization con-
stant, and with neither assumption of Gaussianity nor
isotropy imposed on the underlying random field. In
this general framework, even when the domain grows to
cover R2, the estimation error is shown to be of smaller
order than the side length of the domain. For affine,
strongly mixing random fields, this translates to a mul-
tivariate Central Limit Theorem for our estimator when
multiple levels are considered simultaneously. Finally,
we conduct several numerical studies to investigate
statistical properties of the proposed estimator in the
finite-sample data setting.
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1 INTRODUCTION

Random fields play a central role in the study of several real-world phenomena. In many appli-
cations, the excursion set of a random field (i.e., the subset of the observation domain on which
the random field exceeds a certain threshold) is observed—or partially observed—and its geome-
try can be used to make meaningful inferences about the underlying field. Such techniques have
been used in disciplines such as astrophysics (Ade et al., 2016; Gott et al., 1990), brain imaging
(Worsley et al., 1992), and environmental sciences (Angulo & Madrid, 2010; Frölicher et al., 2018;
Lhotka & Kyselỳ, 2015). In certain cases, for example in landscape ecology, land-use analysis, and
statistical modeling, understanding the geometry of excursions is of primary importance (Bolin
& Lindgren, 2015; McGarigal, 1995; Nagendra et al., 2004).

Lipschitz-Killing curvatures (abbreviated LKCs; also known as intrinsic volumes) form a rich,
well-known class of geometric summaries of stratified manifolds. Hadwiger’s characterization
theorem states that LKCs form a basis for all rigid motion invariant valuations of convex bodies,
which makes them central in the study of the geometry of random sets (Schneider & Weil, 2008).
From a theoretical point of view, probabilistic and statistical properties of the LKCs of excursion
sets have been widely studied in the last decades (Adler & Taylor, 2007). For Gaussian random
fields, the Euler-Poincaré characteristic (a well-studied, topological LKC) is studied in Estrade
and León (2016) and Di Bernardino et al. (2017); the excursion volume (another LKC, better
known as the sojourn time for one-dimensional processes) is studied in Bulinski et al. (2012)
and Pham (2013). The reader is also referred to Müller (2017) and Kratz and Vadlamani (2018)
for a joint analysis of LKCs and to Meschenmoser and Shashkin (2013) and Shashkin (2013) for
functional central limit theorems.

LKCs have recently been used to create several statistical procedures including paramet-
ric inference (Biermé et al., 2019; Di Bernardino & Duval, 2022) and tests of Gaussianity (Di
Bernardino et al., 2017), isotropy (Berzin, 2021; Cabaña, 1987; Fournier, 2018), and symmetry
of marginal distributions the underlying fields (Abaach et al., 2021). Di Bernardino et al. (2020)
quantify perturbation via the LKCs and provides a quantitative non-Gaussian limit theorem of the
perturbed excursion area behavior. To further emphasize their importance, LKCs of excursions
have deep links to extreme value theory; these insights are summarized in Adler and Taylor (2007)
and Azais and Wschebor (2007). LKCs can thus provide meaningful and parsimonious summaries
of the spatial properties of the studied random fields.

In this manuscript, we focus on the two-dimensional setting—specifically, random fields
defined on R2 endowed with the standard Euclidean metric. In this case, there are exactly three
LKCs that can be leveraged to describe excursion sets of random fields in R2: the excursion vol-
ume (i.e., the area), half the value of the perimeter of the excursion set, and the Euler–Poincaré
characteristic (which is equal to the number of connected components minus the number of holes
of the excursion set).

Analyzed jointly with information on the area and Euler characteristic of an excursion set, the
perimeter provides valuable information about the fragmentation of the excursion set. Examples
can be found in medical imaging where certain diseases can change fragmentation patterns in bio-
logical tissues (Jurdi et al., 2021; Yao et al., 2016), or in ecology where suitable habitats of species
are often characterized by exceedances of variables describing favorable conditions, and where
edge effects near the boundary the excursion sets play an important role (Debinski & Holt, 2000;
Taubert et al., 2018). In spatial risk analysis, the perimeter can give information about the length
of the interface between a high-risk zone (associated with exceedances of the threshold level) and
moderate-to-low risk zones.
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270 COTSAKIS et al.

Most of the results presented in the previous literature are based on the empirically inaccessi-
ble knowledge of the continuous random field X on a compact domain T ⊂ R2. In practice, spatial
data are often observed only at sampling locations on a discrete grid {si,j ∶ i, j ∈ N0} ∩ T, and in
such cases, the values of the random field at intermediate points between the sampling locations
are not empirically accessible. This regular lattice setting is popular, for example, in the areas
of remote sensing, computer vision, biomedical imaging, surface meteorology. The datum at the
sampling location si,j could conceivably be a floating point number representing the value of the
random field at si,j, however, it may be the case that this level of precision is not available. One can
also consider the more general case where the accessible information at the sampling location si,j
is a boolean value corresponding to whether the random field evaluated at si,j falls within a prede-
termined interval—normally [u,∞) for fixed u ∈ R. In this general case, one obtains a pixelated
representation of the excursion set of X at the fixed level u.

From these sparse-information, binary digital images of excursion sets, we aim in the present
work to infer the second Lipschitz–Killing curvature, that is, the perimeter of the excursion set,
for a fixed level u. The perimeter is a particularly difficult quantity to estimate, since, in a digi-
tal image, the boundary of an object is comprised of vertical and horizontal pixel edges, which
obviously does not correspond to the object’s true boundary. There exists a number of algorithms
for computing the perimeter of objects in hard segmented (i.e., binary) digital images, many
of which are summarized in Coeurjolly and Klette (2004) with further developments made in
de Vieilleville et al. (2007). It seems, however, intractable to evaluate the performance of these
algorithms on excursion sets of two-dimensional random fields. Biermé and Desolneux (2021)
studies how the integrated perimeter of excursion sets over a set of levels changes when consid-
ering discretized versions of the underlying stationary, isotropic random fields (i.e., those with
translation- and rotation-invariant distributions). This gives rise to a perimeter estimator for a
single level, complete with its own probabilistic analysis for isotropic random fields (Biermé &
Desolneux, 2021). The estimator is further analyzed and given explicit covariance formulas in
Abaach et al. (2021) for the case of complete spatial independence. Although this particular
perimeter estimator is quite natural to study, it suffers from certain defects; namely, an intrinsic
inadequacy for anisotropic random fields.

We introduce a class of estimators for the perimeter of objects in binary digital images, one
of which being particularly suitable for estimating the perimeter of excursion sets of anisotropic
random fields on R2. The elements of the class are uniquely associated to the choice of norm that
is used to measure a piecewise linear approximation of the excursion’s boundary. The estimator
derived from the work of Biermé and Desolneux (2021) arises as the element of the proposed class
associated to the 1-norm. The novel estimator associated to the 2-norm (the primary focus of this
paper) possesses the desirable property of multigrid convergence (i.e., strong consistency as the
pixel size tends to zero; see Theorem 1), which we extend to convergence in mean (see Proposi-
tion 1). These general results hold under weak assumptions about the smoothness of the random
field that do not include Gaussianity, nor isotropy. As the domain grows to cover R2, sufficient
conditions are given such that the error in the estimation is of smaller order than the fluctuations
of the perimeter—making the limiting distributions of the perimeter and the estimator identical.
In particular, by further supposing that the underlying random field is affine and strongly mix-
ing (notions described in Section 3.2.2), the estimator associated to the 2-norm is asymptotically
normal with the same asymptotic variance as perimeter itself (see Theorem 2).

The organization of the paper is as follows. Section 2 specifies key notions including: excursion
sets, the hypotheses on the underlying random fields, the regular grid on which the excursion sets
are observed, and the novel class of considered perimeter estimators. In Section 3, the statistical

 14679469, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12682 by C

ochrane France, W
iley O

nline L
ibrary on [10/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



COTSAKIS et al. 271

properties of the perimeter estimate based on the 2-norm are discussed for a fixed domain
(Section 3.1) and for a sequence of growing domains (Section 3.2). Section 4 provides extensive
numerical results to support and illustrate the theory developed in Section 3. Proofs and auxiliary
notions are postponed to Section 5. We conclude with a discussion section. Some supplementary
elements are provided in the Appendix.

2 DEFINITIONS AND NOTATION

Let us begin by introducing some notation. Calligraphic font is used to denote sets of isolated
points in R2. For a set S ⊂ R2, its boundary is denoted 𝜕(S); its cardinality #(S); and its Lebesgue
measure 𝜈(S). We use1 to denote the one-dimensional Hausdorff measure, and Ck to denote the
space of real-valued functions on R2 with k continuous derivatives. Between the nomenclatures
sample paths and trajectories, we choose to use the former when describing the realizations of a
random field.

The following assumption ensures that the random objects that we consider are well defined.

Assumption 1. The real-valued random field X = {X(s) ∶ s ∈ R2} defined on a
probability space (Ω, ,P) has C2 sample paths.

Definition 1. Denote the excursion set of X at the level u ∈ R by EX (u) ∶= {s ∈ R2 ∶
X(s) ≥ u}. For compact T ⊂ R2, we denote the restriction of EX (u) and 𝜕(EX (u)) to T
by

EX (T,u) ∶= T ∩ EX (u) and E𝜕

X (T,u) ∶= T ∩ 𝜕(EX (u)),

respectively. Finally, the quantity of interest in this paper:

PT
X (u) ∶= 

1(E𝜕

X (T,u)
)
.

In Figure 1a, a C2 sample path of a Gaussian random field X is depicted in a square domain
T with the contours E𝜕

X (T,u) drawn on the domain for various levels u. In Figure 1b,c, EX (u) is
represented by the dark regions, for two different levels u.

In what follows, let

T ∶= [−t, t]2 ⊂ R
2
, (1)

for fixed t > 0. Before proceeding, it is helpful to specify additional assumptions on the considered
random fields.

Assumption 2. Let X1 and X2 denote the partial derivatives of X in the two principle
Cartesian directions in R2, and let X11 and X22 denote the corresponding second-order
partials. For any u ∈ R, the following three conditions hold almost surely:

1. X has no critical points in T at the level u.
2. The restriction of X to each face of the square boundary 𝜕(T) has no local extrema

at the level u.
3. For k ∈ {1, 2}, there are no s ∈ T such that X(s) − u = Xk(s) = Xkk(s) = 0.
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272 COTSAKIS et al.

(a) (b) (c)

F I G U R E 1 Panel (a): a C2 realization of a stationary, centered, Gaussian random field X with covariance
function rX (h) = exp(−||h||2

2) is depicted in the square-shaped observation window T = [−2.5, 2.5]2 (generated
using the R package RandomFields Schlather et al., 2017). Underneath the sample path, the curves E𝜕

X (T,u) are
drawn for different values of u. Panel (b) (resp. panel (c)): the dark region EX (T,u) is shown for u = 0 (resp. u = 0.5).

Together, Assumptions 1 and 2 ensure that the random field X is almost surely suitably regular
at the level u in T as defined in Adler and Taylor (2007, definition 6.2.1). The third condition
of Assumption 2 is made to be slightly stronger than item (C) in definition 6.2.1 of Adler and
Taylor (2007) so that the suitably regular condition holds even after a permutation of the two
principal Cartesian directions. This is useful when considering the set


T
X (u) ∶=

⋃

k=1,2

{
s ∈ E𝜕

X (T,u) ∶ Xk(s) = 0
}

(2)

Indeed, under Assumptions 1 and 2, it follows directly from Adler and Taylor (2007, lemma 6.2.3)
that

#
(


T
X (u)

)
< ∞, a.s. (3)

Recall that the reach of a set S ⊂ Rd is given by

reach(S) ∶= sup{𝛿 ≥ 0 ∶ ∀y ∈ S𝛿 ∃!x ∈ S nearest to y}, (4)

where S𝛿 =
{

y ∈ Rd ∶ ∃ x ∈ S s.t. ||x − y||2 ≤ 𝛿

}
is the dilation of the set S by a radius 𝛿 ≥ 0 (see,

e.g., definition 11 in Thäle 2008). Equations (3) and (4) will be useful later (see, e.g., Remark 4).
Recall that a curve 𝛾 ⊂ R2 is connected if it cannot be expressed as the union of two disjoint

nonempty closed sets in R2. For sets B ⊆ A ⊆ R2, B is maximally connected in A if B is connected
and there does not exist a connected C ⊆ A such that B ⊂ C.

Definition 2. Let ΓT
X (u) be the set of maximally connected subsets of E𝜕

X (T,u).

Assumption 3. The random variables PT
X (u) and #

(
ΓT

X (u)
)

are in L1(Ω), the space of
integrable random variables, for all u ∈ R.

We emphasize that none of the assumptions stated thus far restrict to stationary or isotropic
random fields. Although stationarity is assumed in Theorem 2 and Corollary 2, these results and
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COTSAKIS et al. 273

all other results are applicable to anisotropic random fields—a crucial point that we investigate
numerically in Section 4.2.

In what follows, we study a novel estimator of the random quantity PT
X (u) for arbitrary but

fixed u ∈ R, based only on the random field ZX (⋅;u) = {ZX (s;u) ∶ s ∈ R2} defined by

ZX (s;u) ∶= 1{s∈EX (u)} = 1{X(s)≥u}, s ∈ R
2
.

Note that ZX (s;u) has dependent Bernoulli margins with parameter P(X(s) ≥ u). We will assume
that ZX (⋅;u) is empirically accessible only at sampling locations on a regular grid, one that is
defined in Section 2.1.

2.1 Sampling locations on a regular grid

Definition 3. Fix 𝜖 > 0, and define a square grid of points in R2 as


(T,𝜖) ∶=

{
si,j ∶ i, j ∈ N0

}
∩ T, with si,j ∶= (−t + i𝜖,−t + j𝜖) ∈ R

2
, (5)

and with T and t as in Equation (1). Let M be the number of rows (which is
consequentially identical to the number of columns) of (T,𝜖). Define the index set

I(T,𝜖) ∶= {0,…,M − 1} ⊂ N0,

and the random matrix 𝜁
(T,𝜖)
X (u) with binary elements

𝜁
(T,𝜖)
X ,i,j (u) ∶= ZX (si,j;u) = 1{X(si,j)≥u}, (6)

for i, j ∈ I(T,𝜖). For m ∈ N+, let us define

I(T,𝜖,m) ∶=
{

i ∈ I(T,𝜖) ∶ i ≡ 0 (mod m)
}
.

Notice that (T,𝜖) = {si,j ∶ i, j ∈ I(T,𝜖)}. We provide an illustration of (T,𝜖) in Figure 2, where
the elements with indices in I(T,𝜖,m), with m = 2, are highlighted in red. We highlight that our
proposed estimator for PT

X (u) will be based only on the sparse observations 𝜁 (T,𝜖)X ,i,j (u) for i, j ∈ I(T,𝜖)
(see Section 2.2).

Remark 1. The data matrix 𝜁 (T,𝜖)X (u) in (6) can be represented as a binary digital image
as depicted in Figure 3b. In this framework, M corresponds to the pixel density or grid
size of the image (an integer number of pixels per distance of 2t, the side length of T),
and 𝜖 corresponds to the pixel width. The quantities are related by |M𝜖 − 2t| ≤ 𝜖.

2.2 Definition of the estimators

Here, we introduce a class of estimators of PT
X (u) that use only the information contained in

𝜁
(T,𝜖)
X (u), defined in (6). Loosely speaking, 𝜁 (T,𝜖)X (u) is separated into submatrices, and in each
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274 COTSAKIS et al.

F I G U R E 2 An illustration of the quantities defined in Definition 3. The positions of the elements of (T,𝜖)

in R2 are shown as circles, and the subset {si,j ∶ i, j ∈ I(T,𝜖,m)} with m = 2 is highlighted in red. Here, M = 6, and
the side length of T is

√
𝜈(T) = (M − 1)𝜖 = 5𝜖.

(a) (b)

F I G U R E 3 Panel (a): EX (T, 0.5), as shown in Figure 1 panel (c), superposed with the elements of the grid

(T,𝜖) shown as black circles. Here, 𝜖 ≈ 0.32. Panel (b): the binary matrix 𝜁

(T,𝜖)
X (0.5), defined in (6), represented as

a binary digital image (dark pixels corresponding to 1, and white to 0).

submatrix the length of the line segment that approximately separates the 1s from the 0s is
computed. In this way, the estimator obtained depends on the choice of norm used.

Definition 4. With || ⋅ ||p denoting the p-norm, for p ∈ N+, define

P̂(p)X (𝜖,m;T,u) ∶= 𝜖

∑

a∈I(T,𝜖,m)

∑

b∈I(T,𝜖,m)
||
(

NX ,h(a, b;u),NX ,v(a, b;u)
)
||p, (7)

where

NX ,h(a, b;u) ∶=
(a+m−1)∧(M−1)∑

i=a

(b+m−1)∧(M−2)∑

j=b

||𝜁
(T,𝜖)
X ,i,j (u) − 𝜁

(T,𝜖)
X ,i,j+1(u)||, a, b ∈ I(T,𝜖,m),
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COTSAKIS et al. 275

(a) (b) (c)

F I G U R E 4 Panel (a): the curve E𝜕

X (T,u) is shown in relation to the points in (T,𝜖) in (5). Points in the dark
regions are assigned a value of 1 in the matrix 𝜁

(T,𝜖)
X (u), and points in white are assigned a value of 0. The points

outlined in red have indices in I(T,𝜖,m) with m = 2. In effect, P̂(1)X (𝜖;T,u) is calculated by counting the pixel edges
shown in green (see panel (b)), whereas P̂(2)X (𝜖, 2;T,u) is calculated by summing the lengths of the blue piecewise
linear curves (see panel (c)).

and

NX ,v(a, b;u) ∶=
(a+m−1)∧(M−2)∑

i=a

(b+m−1)∧(M−1)∑

j=b

||𝜁
(T,𝜖)
X ,i,j (u) − 𝜁

(T,𝜖)
X ,i+1,j(u)||, a, b ∈ I(T,𝜖,m).

Continuing from the framework discussed in Remark 1, NX ,v (resp. NX ,h) counts the num-
ber of pixels in a subrectangle—of size at most m ×m pixels—of T that differ in shade from the
neighboring pixel to the right (resp. above). In other words, NX ,v (resp. NX ,h) provides a count of
significant vertical (resp. horizontal) pixel edges in the subrectangle.

By considering the estimator in (7) with norm p = 1, one recovers the estimator that is exten-
sively studied in Biermé and Desolneux (2021) and Abaach et al. (2021). It counts the number of
pixel edges that separate pixels of different color, and rescales the count by 𝜖. Thus, P̂(1)X (𝜖,m;T,u)
will not depend on m, so we write P̂(1)X (𝜖;T,u) in place of P̂(1)X (𝜖,m;T,u).

Figure 4 illustrates the behavior of the estimator in Equation (7) constructed with two different
norms; the norms associated to p = 1 and p = 2. In addition, Table 1 provides the correspond-
ing terms in Equation (7) for this example, for each a, b ∈ I(T,𝜖,2) = {0, 2, 4}, for both p = 1
(second-last column) and p = 2 (last column).

The estimator in (7) with norm p = 2 approximates the length of E𝜕

X (T,u) by the total length of
a set of line segments that approximate the curve (see Figure 4c). The number of possible orienta-
tions of each line segment grows with m; so does the length of each line segment, which, loosely
speaking, is on the order of m𝜖. Therefore, it is not surprising that P̂(2)X (𝜖,m;T,u) depends on m,
and our statistical analysis in Section 3 therefore takes place in the regime where m is large and
m𝜖 is small. In Section 4.4, we provide an adaptive method to select the hyperparameter m when
𝜖 is given as a feature of the data.

3 MAIN RESULTS

The focus of this section is to prove convergence results for the estimator P̂(2)X (𝜖,m;T,u). The sta-
tistical analysis is separated into two regimes. In Section 3.1, we consider the domain T to be
fixed and decrease the pixel width while sending m to infinity. Section 3.2 studies the behaviour
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276 COTSAKIS et al.

T A B L E 1 P̂(p)X (𝜖,m;T,u) in (7) computed for the discretized excursion set in Figure 4.

a ∈ I(T,𝝐,m) b ∈ I(T,𝝐,m) NX ,h(a,b;u) NX ,v(a,b;u) p = 1 p = 2

(column) (row)
0 0 2 0 2 2

0 2 1 0 1 1

0 4 1 2 3
√

5

2 0 2 1 3
√

5

2 2 0 2 2 2

2 4 0 0 0 0

4 0 0 0 0 0

4 2 1 0 1 1

4 4 1 1 2
√

2

P̂(p)X (𝜖,m;T,u) ∶ 14𝝐 11.89𝝐

Notes: The last two columns correspond to the terms
(

NX ,v(a, b; u)p + NX ,h(a, b; u)p
)1∕p for p = 1 and p = 2. Summing each term

yields P̂(p)X (𝜖,m;T,u), as shown in bold in the final row.

of the estimator on a sequence of growing domains. In particular, in Section 3.2.1, we study the
asymptotic relationships between 𝜖, m, and the Lebesgue measure of the sequence of domains,
and provide sufficient conditions for good convergence properties. We conclude with a mul-
tivariate Central Limit Theorem in the case where multiple levels (u1,…,uk) are considered
simultaneously under the assumption that the underlying random field X is affine and strongly
mixing (see Section 3.2.2 for the theorem and the notions of affinity and strongly mixing).

3.1 On a fixed domain with decreasing pixel width

Here, we are interested in the behavior of the estimator P̂(2)X (𝜖,m;T,u) in the case where the
domain T = [−t, t]2 is fixed, and the spacing between the locations of the observations in the
matrix 𝜁

(T,𝜖)
X (u) tends to 0. We proceed to show that the resulting perimeter estimate converges

almost surely to PT
X (u) and give the rate of convergence.

Theorem 1. Let (mn)n≥1 be a nondecreasing sequence in N+ tending to ∞ as n → ∞.
Let (𝜖n)n≥1 be a sequence in R+ such that mn𝜖

2∕3
n converges to a constant C ∈ R+ and

that the vertices of T are contained in (T,𝜖n) for all n ∈ N+. Then, under Assumptions 1
and 2, for fixed u ∈ R, it holds that

gn
|||P̂
(2)
X (𝜖n,mn;T,u) − PT

X (u)
|||

a.s.
−−−→ 0, n → ∞,

where (gn)n≥1 is any non-decreasing sequence such that gn = o(mn).

The proof of Theorem 1 is postponed to Section 5.

Remark 2. Theorem 1 is a statement about the multigrid convergence (see, for
instance, definition 2 of Coeurjolly & Klette, 2004) of P̂(2)X (𝜖n,mn;T,u) to PT

X (u) as n →
∞ for almost all sample paths of the random field X . The speed of this convergence is
O(1∕mn).
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COTSAKIS et al. 277

Theorem 1 requires that the vertices of T are in (T,𝜖n) for all n ∈ N+, for example as depicted in
Figure 2. This prevents the possibility of there being long segments of E𝜕

X (T,u) that remain close
to the border of T so as to not pass between elements of (T,𝜖n). In addition, it is supposed that the
sequence (mn)n≥1 is asymptotically equivalent to (𝜖−2∕3

n )n≥1, which gives the fastest possible rate
of convergence of P̂(2)X (𝜖n,mn;T,u) to PT

X (u). By relaxing this condition, we obtain the following
corollary.

Corollary 1. Under the conditions of Theorem 1, if the requirement that mn𝜖
2∕3
n → C

is relaxed to mn𝜖n → 0, it holds that

P̂(2)X (𝜖n,mn;T,u)
a.s.
−−−→PT

X (u), n →∞.

The proof is postponed to Section 5. The following proposition shows that convergence in
L1(Ω) holds under slightly stronger assumptions. The proof can also be found in Section 5.

Proposition 1. Let (mn)n≥1 be a nondecreasing sequence in N+ tending to∞ as n → ∞.
Let (𝜖n)n≥1 be a sequence in R+ such that mn𝜖n → 0 as n → ∞, and that the vertices of
T are contained in (T,𝜖n) for all n ∈ N+. Then under Assumptions 1, 2, and 3,

|||P̂
(2)
X (𝜖n,mn;T,u) − PT

X (u)
|||

L1

−−→ 0, n → ∞,

for any fixed u ∈ R.

Remark 3. It is shown in proposition 5 of Biermé and Desolneux (2021) that for a
random field X satisfying Assumption 1, if, in addition, X is stationary, Gaussian,
isotropic, and the supremum of the first- and second-order partial derivatives of X in
the domain T are in L1(Ω), then

E
[
P̂(1)X (𝜖;T,u)

]
→

4
𝜋

E
[
PT

X (u)
]
, (8)

as 𝜖 → 0. Proposition 1 is a stronger result under weaker assumptions on X . With
neither Gaussianity, stationarity, nor isotropy imposed on X , it holds that

E
[
P̂(2)X (𝜖,m;T,u)

]
→ E

[
PT

X (u)
]
,

as 𝜖 → 0 and m → ∞ under the constraint m𝜖 → 0. Thus, the estimator P̂(2)X (𝜖,m;T,u)
does not suffer from the asymptotic bias factor of 4∕𝜋.

3.2 On a growing domain with decreasing pixel width

In this section, the performance of P̂(2)X (𝜖n,mn;Tn,u) is investigated for sequences (𝜖n)n≥1, (mn)n≥1,
and (Tn)n≥1 satisfying 𝜖n → 0, mn → ∞, and Tn ↗ R2 as n →∞. To manage the added complexity
of the sequence of growing domains, first define

Tn ∶= {ns ∶ s ∈ T},

such that Tn is a dilation of the fixed domain T = [−t, t]2. The side length of the square domain
Tn is then 2tn. The challenge then becomes determining sufficient asymptotic relations for the
sequences (𝜖n)n≥1 and (mn)n≥1 to ensure desirable statistical properties of our estimator.
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278 COTSAKIS et al.

F I G U R E 5 Illustration of the notions of reach and resolution in Definition 5. The reach of EX (T,u) is
greater than the radius, rgreen, of the small green circles with solid border. The reach of T ⧵ EX (u) is also greater
than rgreen. Moreover, the minimum distance between points in T

X (u), highlighted in purple, exceeds 2rgreen.
Therefore, EX (u) is resolved by rgreen in T (see Definition 5). Conversely, it is clear that EX (u) is not resolved in T
by the radius of the larger orange circles with dashed border.

3.2.1 Asymptotics for the pixel width

We relate the domain size with an appropriate pixel width by defining resolution in the context of
excursion sets of random fields, inspired by the notion of optical resolution.

Definition 5. Define the random variable

ΛT
X (u) ∶= min

{
reach (EX (T,u)), reach (T ⧵ EX (u)), reach

(


T
X (u)

)}
.

For 𝜆 ∈ R+, we say that “EX (u) is resolved by 𝜆 in T” whenever the random event
{𝜆 < ΛT

X (u)} occurs.

This makes ΛT
X (u) a random geometrical description of EX (u) in the domain T: ΛT

X (u) is the
supremum of the set of 𝜆 ∈ R+ such that one can roll a ball of radius 𝜆 along both sides of the
curve E𝜕

X (T,u), and that the distances between points inT
X (u) are all at least 2𝜆. Figure 5 clarifies

some of the notions introduced in Definition 5. This definition allows us to relate the domain
size with the pixel width, since the estimation error can be bounded in the case where EX (u) is
resolved by mn𝜖n in Tn (see the proof of Theorem 1).

Remark 4. Under Assumptions 1 and 2, the random sets EX (T,u) and T ⧵ EX (u) have
positive reach almost surely, since EX (u) and E−X (u)have a twice differentiable bound-
ary everywhere in T, almost surely, for all u ∈ R. The intersection of these sets with
the compact rectangle T guarantees that the reach of each intersection is positive
(Biermé et al., 2019, p. 541). The minimum distance between points in T

X (u) is pos-
itive by Equation (3) and the compactness of T. Therefore, ΛT

X (u) in Definition 5 is
almost surely positive for all u ∈ R. Equivalently, for any u ∈ R,

P

(
lim inf

𝜆→0

{
𝜆 < ΛT

X (u)
})

= 1,

that is, with probability 1, there exists a sufficiently small positive 𝜆 that resolves EX (u)
in T.
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COTSAKIS et al. 279

With the notion of resolution established, we state an important convergence result for the
sequence of growing domains (Tn)n≥1 under general regularity assumptions.

Proposition 2. Let X be a random field satisfying Assumptions 1, 2, and 3. Let (mn)n≥1
be a nondecreasing sequence in N+ such that mn∕n → ∞. Let (𝜖n)n≥1 be a nonincreasing
sequence in R+ satisfying 𝜖n = O

(
m−3∕2

n

)
. Moreover, suppose that 2t is an integer mul-

tiple of 𝜖n for all n ∈ N+, and P

(
mn𝜖n < ΛTn

X (u)
)
→ 1 as n → ∞. Then for any u ∈ R,

P̂(2)X (𝜖n,mn;Tn,u) − PTn
X (u)√

𝜈(Tn)

P

−−→ 0,

as n → ∞.

The proof of Proposition 2 is postponed to Section 5.

Remark 5. One example of a sequence (𝜖n)n≥1 satisfying the constraints in Proposi-
tion 2 is constructed by letting 𝜖n be the largest element in the sequence (2t∕k)k≥1

such that 𝜖n ≤ m−3∕2
n and P

(
ΛTn

X (u) ≤ mn𝜖n

)
≤ 1∕n, where ΛTn

X (u) is defined in

Definition 5. Such a sequence (𝜖n)n≥1 exists since P(ΛTn
X (u) ≤ 0) = 0 for all n ∈ N+ as

discussed in Remark 4. The idea is to have the sequence 𝜆n ∶= mn𝜖n tend to 0 faster
than the quantiles ofΛTn

X (u), which is difficult to verify analytically. However, in prac-
tice, for a given realization of EX (u), one can estimate ΛT

X (u) by first estimating the
reach of the sets EX (T,u) and T ⧵ EX (u) (Aamari et al., 2019; Cotsakis, 2023) and the
vector coordinates of the points in T

X (u), defined in (2).

Proposition 2 establishes that for a large class of random fields, as the domain grows and the
grid spacing decreases, the error in the perimeter estimation is negligible compared to the side
length of the domain. Such a comparison is made possible by the conditions on the sequences
(mn)n≥1 and (𝜖n)n≥1, since the indexing variable n is proportional to the side length of Tn.

3.2.2 Asymptotic normality of the perimeter estimator

In this section, we prove a multivariate Central Limit Theorem for our estimator as stated in
Theorem 2 below, based on the results from Iribarren (1989). The interested reader is also referred
to Cabaña (1987).

First, we recall two important notions regarding the random fields for which the theorem
applies. Recall that a random field X = {X(s) ∶ s ∈ R2} is said to be affine if it is equal in distribu-
tion to {Y (As) ∶ s ∈ R2}, where Y is stationary, isotropic, and A is a positive-definite 2 × 2 matrix.
Consequentially, the resulting X is stationary but may be anisotropic. Note that it is common in
the geostatistics literature to use the nomenclature geometric anisotropy when referring to affine
random fields (Chiles & Delfiner, 2009).

In the case of X affine, a useful expression for E[PT
X (u)], when it exists, is provided in

Cabaña (1987, section 1.1); that is,

E
[
PT

X (u)
]
=

ellipse(λ1, λ2)
2𝜋

E
[
PT

Y (u)
]
, (9)
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280 COTSAKIS et al.

with 𝜆1 and 𝜆1 denoting the eigenvalues of A, and ellipse(a, b) denoting the perimeter of an ellipse
with semi-minor and semi-major axes a and b.

Recall that X is said to be strongly mixing, or uniformly mixing, if there exists a function
𝜓(𝜌) ∶ R+ → R+ tending to 0 as 𝜌→ ∞, such that for any two measurable sets S1, S2 ⊂ R2 that
satisfy inf{||s1 − s2||2 ∶ s1 ∈ S1, s2 ∈ S2} =∶ 𝜌 > 0, and for any events A1 and A2 in the the sigma
fields generated by {X(s) ∶ s ∈ S1} and {X(s) ∶ s ∈ S2}, respectively, it holds that |P(A1 ∩ A2) −
P(A1)P(A2)| < 𝜓(𝜌).

Under the assumption that the underlying random field is affine and strongly mixing, we
prove the multivariate central limit theorem for our estimator. The proof of Theorem 2 is
postponed to Section 5.

Theorem 2. Let X be a stationary, affine, strongly mixing random field satisfying
Assumptions 1–3. With ∇X denoting the gradient of X , suppose that the joint density
function of (X ,∇X) is bounded. Let k ∈ N+ and fix the vector u ∶= (u1,…,uk) ∈ Rk

such that ui ≠ uj for 1 ≤ i < j ≤ k. Let the sequences (mn)n≥1 and (𝜖n)n≥1 satisfy the
constraints in Proposition 2 for all uj, with j = 1,…, k. Let

P̂(2)X (𝜖n,mn;Tn,u) ∶=
(

P̂(2)X (𝜖n,mn;Tn,u1),…, P̂(2)X (𝜖n,mn;Tn,uk)
)
,

and

PTn
X (u) ∶=

(
PTn

X (u1),…,PTn
X (uk)

)
.

Then there exists a finite, nondegenerate (i.e., full-rank) covariance matrix Σ(u) such
that

P̂(2)X (𝜖n,mn;Tn,u) − E
[
PTn

X (u)
]

√
𝜈(Tn)

d
−−→k(0,Σ(u)), n → ∞, (10)

with E[PTn
X (uj)] as in (9) for all uj, j = 1,…, k. The elements of Σ(u) are of the form

Σij(u) =
∫

R2
Hs(ui,uj) ds, (11)

where

Hs(ui,uj) = gs(ui,uj)E
[
||∇X(0)||2||∇X(s)||2

||| X(0) = ui,X(s) = uj

]

− f (ui)f (uj)E
[
||∇X(0)||2 | X(0) = ui]E[||∇X(s)||2 | X(s) = uj

]
,

with f denoting the marginal density function of X , and gs, the joint density function of
(X(0),X(s)).

As seen in the proof of Theorem 2, the rescaled limiting Gaussian distribution of our perimeter
estimator—in our pixelated framework—coincides with that of PTn

X (u), the true perimeter in the
continuous framework.
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COTSAKIS et al. 281

Corollary 2, stated below, provides a succinct set of conditions on X that imply the result of
Theorem 2. In particular, the additional assumption of Gaussianity of the underlying random
fields is introduced.

Corollary 2. Suppose that there exists a positive-definite matrix A such that the
random field X is equal in distribution to {Y (As) ∶ s ∈ R2}, for some C2, station-
ary, isotropic, centered, Gaussian random field Y with covariance function r(h),
h ∈ R2. Define

Ψ(s) = max {|r(s)|, |r1(s)|, |r2(s)|, |r11(s)|, |r22(s)|, |r12(s)|},

for s ∈ R2, where ri ∶= 𝜕r∕𝜕si and rij ∶= 𝜕
2r∕(𝜕si𝜕sj) for i, j ∈ {1, 2}. Suppose further

that Ψ(s)→ 0 as ||s||2 → ∞, ∫
R2 |Ψ(s)| ds < ∞, and ∫

R2 r(s) ds > 0. Then the result of
Theorem 2 holds.

The proof can be found in Section 5. We remark that a vast literature exists on the asymptotic
distribution of level functionals of Gaussian random fields (Beliaev et al., 2020; Di Bernardino
et al., 2017; Di Bernardino & Duval, 2022; Meschenmoser & Shashkin, 2013; Shashkin, 2013;
Wschebor, 1985), in which case, the asymptotic variance–covariance matrix in (11) can be writ-
ten by projecting the Gaussian functionals of interest onto the Itô–Wiener chaos (the interested
reader is referred, for instance, to Kratz & León, 2001; Estrade & León, 2016; Müller, 2017; Kratz
& Vadlamani, 2018; Berzin, 2021).

4 SIMULATION STUDIES

In this section, we illustrate finite sample performances of our estimator P̂(2)X (𝜖,m;T,u) on sim-
ulated data. More precisely, we wish to showcase the results of Proposition 1 and Theorem 2.
Furthermore, we aim to compare the estimators constructed from the norms p = 1 and p = 2
in (7). Our simulation studies are implemented both for anisotropic (see Section 4.2) and isotropic
(see Section 4.3) random fields. In addition, we provide an adaptive method for choosing the
hyperparameter m for the estimator P̂(2)X (𝜖,m;T,u) (see Section 4.4). The random fields used in
each simulation are elements of the class in Example 1 below.

Example 1. Let Y be a stationary, isotropic, centered, Gaussian random field with a
Matérn covariance function

r(h) ∶= 21−𝜈

Γ(𝜈)

(√
2𝜈||h||2

)
𝜈

K𝜈(
√

2𝜈||h||2), h ∈ R
2
,

where K𝜈 is the modified Bessel function of the second kind and 𝜈 = 2.5. To clarify,
the range parameter in the covariance function is fixed as 1.

Let {X(s; 𝜎1, 𝜎2, 𝜃) ∶ s ∈ R2} be a random field equal in distribution to {Y (As) ∶
s ∈ R2}, where

A ∶=

[
𝜎1 0
0 𝜎2

][
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃

]

, (12)
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282 COTSAKIS et al.

𝜎1, 𝜎2 ∈ R+, 𝜎1 ≥ 𝜎2, and 𝜃 ∈ [0, 𝜋). In this way, X(⋅; 𝜎1, 𝜎2, 𝜃) is affine with affin-
ity parameters k = (1 − 𝜎

2
2∕𝜎

2
1)

1∕2 and 𝜃 (Cabaña, 1987). Notice that X(⋅; 𝜎1, 𝜎2, 𝜃) is
also Gaussian with covariance function given by rX (h) = r(Ah). Although A is not
necessarily positive-definite, there exists a unique positive-definite matrix B with
eigenvalues 𝜎1 and 𝜎2 such that ||Ah||2 = ||Bh||2 for all h ∈ R2. Note also that 𝜎1 = 𝜎2
if and only if X is isotropic, in which case, X does not depend on 𝜃.

Throughout Section 4, X(⋅; 𝜎1, 𝜎2, 𝜃) and Y denote the random fields in Example 1. The for-
mer is sometimes abbreviated as X , and the dependence on 𝜎1, 𝜎2, and 𝜃 should be understood
implicitly. The results in this section can be reproduced using the code made available at https:/
/github.com/RyanCotsakis/excursion-sets.

4.1 A proxy for the true perimeter

In what follows, the R package RandomFields is used to generate realizations of random fields
on regular grids. However, when simulating the random field X(⋅; 𝜎1, 𝜎2, 𝜃) in this way, it is
impossible to infer the exact value of PT

X (u) for any level u ∈ R due to the discretization of the
domain T. To overcome this issue, a proxy is used for the true perimeter. In appendix B of
Biermé and Desolneux (2021), the authors introduce an estimator that they show to be multi-
grid convergent for PT

X (u), for any u ∈ R. Moreover, the estimator takes as its arguments the
values of X , a random field with C2 sample paths, evaluated on a regular grid, that is, X(si,j) for
i, j ∈ I(T,𝜖)—precisely the output of the simulation from the RandomFields package. For a pixel
width of 𝜖, denote this estimator by P̃X (𝜖;T,u). Notice that P̃X (𝜖;T,u) requires more information
than P̂(2)X (𝜖,m;T,u). While P̃X has access to the value of X evaluated on the regular square tiling

(T,𝜖), defined in (5), P̂(2)X only has access to the binary black-and-white matrix 𝜁

(T,𝜖)
X (u), defined

in (6).
Convergence of P̃X (𝜖n;T,u) to PT

X (u) in L1(Ω) follows from the same arguments that we use in
the proof of our Proposition 1. Therefore, for any sequence (hn)n≥1,

||hn − P̃X (𝜖n;T,u)||
L1

−−→ 0⟺ hn
L1

−−→PT
X (u), (13)

as n →∞.

4.2 The anisotropic case

None of the assumptions established thus far prohibit anisotropy. In fact, all of the results devel-
oped in Section 3 are applicable to all of the random fields parameterized as in Example 1.
In Sections 4.2.1, 4.2.2, and 4.2.3, we consider such random fields that are anisotropic (i.e.,
parametrized by 𝜎1 ≠ 𝜎2). To avoid confusion, we consistently choose (𝜎1, 𝜎2) = (2, 0.5).

4.2.1 Mean perimeter estimate as a function of the angle 𝜃

The random fields X in Example 1 parametrized by (𝜎1, 𝜎2) = (2, 0.5) and several 𝜃 ∈ [0, 𝜋∕2]
are simulated in the domain T = [−2.5, 2.5]2, discretized into 256 × 256 pixels. With 𝜖 denoting
the resulting pixel width, the performances of the estimators (𝜋∕4)P̂(1)X (𝜖;T,u) and P̂(2)X (𝜖,m;T,u)
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(a) (b) (c)

–

F I G U R E 6 Illustration of the effect of anisotropy on the perimeter length estimation. The anisotropic
random field X(⋅; 2, 0.5, 𝜃) is described in Example 1. Here, T = [−2.5, 2.5]2 and 𝜖 = 5∕255. Panels (a, b): a
realization of EX (T, 0.5) shown as the dark region for the corresponding value of 𝜃. The matrix A, defined in (12),
maps the drawn ellipse to a circle. Panel (c): for several 𝜃 ∈ [0, 𝜋∕2], 200 independent realizations of X are
simulated, and the mean values of (𝜋∕4)P̂(1)X (𝜖;T, 0.5) − P̃X (𝜖;T, 0.5) (green squares) and
P̂(2)X (𝜖, 11;T, 0.5) − P̃X (𝜖;T, 0.5) (blue circles) are plotted. (a) 𝜃 = 𝜋∕8; (b) 𝜃 = 𝜋∕4.

with m = 11 are compared at the level u = 0.5. For each of the several values of 𝜃 chosen in
[0, 𝜋∕2], 200 independent replications of X(⋅; 2, 0.5, 𝜃) are simulated in the domain T and the
mean error in the estimates of PT

X (0.5) is plotted for each of the two estimators: the sample means
of (𝜋∕4)P̂(1)X (𝜖;T, 0.5) − P̃X (𝜖;T, 0.5) (shown in green) and P̂(2)X (𝜖, 11;T, 0.5) (shown in blue), and
P̃X (𝜖;T, 0.5) − P̃X (𝜖;T, 0.5) (shown in black) in Figure 6c. Notice that E

[
(𝜋∕4)P̂(1)X (𝜖;T, 0.5)

]

depends on 𝜃, since E
[
PT

X (0.5)
]
= 19.4 for all 𝜃. The latter expectation is computed via equation (9)

and the Gaussian Kinematic Formula in Adler and Taylor (2007, theorem 15.9.5). The sample
average of P̂(2)X (𝜖, 11;T, 0.5) − P̃X (𝜖;T, 0.5) shown in Figure 6 is nearly 0 for all 𝜃, thus supporting
our claim that that our estimator adapts to anisotropic random fields.

4.2.2 Convergence in mean in the anisotropic case

Let ⌊⋅⌋ denote the floor function. For n ∈ N+, fix the domain T = [−2.5, 2.5]2 and let

Mn = ⌊10n3∕2⌋, mn = n, and 𝜖n = 5∕(Mn − 1), (14)

so that the constraints in Theorem 1 and Proposition 1 are satisfied. Let X(⋅; 2, 0.5, 0) be the
random field in Example 1 associated to (𝜎1, 𝜎2, 𝜃) = (2, 0.5, 0). As noted in Remark 1, the quantity
Mn should be interpreted as the pixel density of the discretized domain T, and 𝜖n should be
understood as the corresponding pixel width. Figure 9 provides two illustrations of EX (u), with
u = 0.5, in the domain T; one containing M2 ×M2 pixels, and another containing of M3 ×M3
pixels. In this study, E[PT

X (0.5)] = 21.3 (computed via Equation 9 and the Gaussian Kinematic
Formula in Adler & Taylor 2007, theorem 15.9.5).

To illustrate the convergence of P̂(2)X (𝜖n,mn;T, 0.5) to PT
X (0.5) in L1(Ω), the left-hand side of

Equation (13) is shown numerically with hn = P̂(2)X (𝜖n,mn;T, 0.5). Figure 7 shows how the mean
absolute error (MAE) of the approximation of P̃X (𝜖n;T, 0.5) (the proxy for PT

X (0.5); see Section 4.1)
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(a) (b) (c)

n

F I G U R E 7 The case of decreasing pixel width with the domain T = [−2.5, 2.5]2 fixed. Here, u = 0.5; Mn,
mn, and 𝜖n are given in (14); and X in Example 1, parametrized by (𝜎1, 𝜎2, 𝜃) = (2, 0.5, 0), is anisotropic. Panel (a):
the excursion set (shown as the dark region) is generated using M2 ×M2 pixels, and the dashed red lines have a
spacing of 2𝜖2, where 𝜖2 is the pixel width. Panel (b): the size of the image (measured in pixels) is M3 ×M3, and
the dashed red lines have a spacing of 3𝜖3, where 𝜖3 is the pixel width. Panel (c): the approximation of
P̃X (𝜖n;T, 0.5) by (𝜋∕4)P̂(1)X (𝜖n;T, 0.5) (green squares) and by P̂(2)X (𝜖n,mn;T, 0.5) (blue circles) is shown for different
values of n. For each n, the MAE of the approximations are calculated from 500 independent replications of the
process X . (a) n = 2; (b) n = 3.

by the estimator P̂(2)X (𝜖n,mn;T, 0.5) (shown in blue) approaches 0 as n → ∞. There is no conver-
gence result for the estimator (𝜋∕4)P̂(1)X (𝜖n;T, 0.5) (shown in green) since it is not well-suited for
anisotropic random fields.

4.2.3 Asymptotic normality in the anisotropic case

To illustrate the Central Limit Theorem for multiple levels (see Theorem 2), we compute
P̂(2)X (𝜖,m;T,u) in a large domain T = [−15, 15]2 divided into 1024 × 1024 pixels, with m = 7,
u = (0, 0.5, 1), and X as in Example 1 with (𝜎1, 𝜎2) = (2, 0.5) and 𝜃 = 𝜋∕4. Figure 8 shows how the
distribution of the random vector P̂(2)X (𝜖,m;T,u) is close to a 3-variate normal distribution with
mean E[PT

X (u)] = (793,700, 481) (computed via equation (9)).
For each component ui of u, we test the null hypothesis that P̂(2)X (𝜖,m;T,ui) fol-

lows a Gaussian distribution using the Shapiro–Wilk test. The resulting p-values from
the tests are .39, .49, and .31, respectively. Thus, the hypothesis of Gaussianity cannot
be rejected at a significant level for any margin of P̂(2)X (𝜖,m;T,u). Using the R pack-
age mvnormtest (Jarek, 2012), we test the null hypothesis that P̂(2)X (𝜖,m;T,u) follows
a multivariate normal distribution with a multivariate Shapiro–Wilk test. The test statis-
tic corresponds to a p-value of .14, hence, multivariate normality cannot be rejected at a
significant level.

4.3 The isotropic case

In what follows, Y denotes the isotropic random field in Example 1. This isotropic case allows for
a fair comparison between the estimators (𝜋∕4)P̂(1)Y (𝜖;T,u) and P̂(2)Y (𝜖,m;T,u).
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COTSAKIS et al. 285

(a) (b)

F I G U R E 8 An illustration of the asymptotic normality of our estimator for the anisotropic random field
X(⋅; 2, 0.5, 𝜋∕4) in Example 1. We simulated 200 independent replications of the vector P̂(2)X (𝜖,m;T,u) with
u = (0, 0.5, 1), T = [−15, 15]2, m = 7, 𝜖 = 30∕1023. Panel (a): the margins of P̂(2)X (𝜖,m;T,u) −E[PT

X (u)], rescaled
using the sample variances, plotted on a normal qq-plot. Panel (b): the squared Mahalanobis distance of
P̂(2)X (𝜖,m;T,u) to E[PT

X (u)], calculated via the sample covariance matrix of P̂(2)X (𝜖,m;T,u), plotted against the
quantiles of a 𝜒

2(3) random variable with 3 degrees of freedom.

(a) (b) (c)

n

F I G U R E 9 The case of decreasing pixel width and fixed domain T = [−2.5, 2.5]2, where u = 0.5; Mn, mn,
and 𝜖n are given in (14); and Y is the isotropic random field in Example 1. See the caption of Figure 7 for a more
detailed description of each panel. (a) n = 2; (b) n = 3.

4.3.1 Convergence in mean in the isotropic case

The experiment in Section 4.2.2 is repeated for the isotropic random field Y . Figure 9 sum-
marizes the new results. The MAE of the approximation of P̃Y (𝜖n;T, 0.5) by P̂(1)Y (𝜖n;T, 0.5)
(shown in green) tends to a positive value, so by (13), (𝜋∕4)P̂(1)Y (𝜖n;T, 0.5) does not converge to
PT

Y (0.5) in L1(Ω), even though E

[
(𝜋∕4)P̂(1)Y (𝜖n;T, 0.5)

]
→ E

[
PT

Y (0.5)
]

as n →∞ (see Equation 8).
The interested reader is referred to theorem 3 in Biermé and Desolneux (2021). For reference,
E[PT

Y (0.5)] = 15.6 (computed via the Gaussian Kinematic Formula in Adler & Taylor, 2007,
theorem 15.9.5).
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286 COTSAKIS et al.

(a) (b)

F I G U R E 10 An illustration of the asymptotic normality of our estimator when considering the isotropic
random field Y in Example 1. We simulated 200 independent replications of the vector P̂(2)Y (𝜖,m;T,u) with
u = (0, 0.5, 1), T = [−15, 15]2, m = 7, 𝜖 = 30∕1023. See the caption of Figure 8 for a description of each panel.

4.3.2 Asymptotic normality in the isotropic case

We repeat the experiment in Section 4.2.3, which tests the asymptotic normality of our estimator,
but now with Y as the underlying random field. The p-values corresponding to the Gaussianity
tests for the levels u = 0, 0.5, and 1 are .80, .68, and .43, respectively. For the multivariate nor-
mality test, the resulting p-value is .37. The same diagnostic plots in Section 4.2.3 are provided in
Figure 10 for this isotropic case.

4.4 Hyperparameter selection

In practice, sampling locations often have a fixed spacing, and it is not possible to further
decrease the grid spacing in the discretization. In these cases, the pixel width 𝜖 is a feature
of the data. So, to use P̂(2)X (𝜖,m;T,u) (for an arbitrary model X), the hyperparameter m must
be chosen appropriately. As a rule-of-thumb, empirical studies suggest that it is reasonable
to choose

m = mT
X ∶=

⌊
C𝜖−2∕3⌋

, (15)

with

C ∶= 1
3

(
𝜈(T)

Ncc + Nholes

)1∕3

,

where Ncc (resp. Nholes) corresponds to the number of connected components (resp. holes) of
EX (T,u). For a sequence (𝜖n)n≥1 tending to 0, the corresponding sequence (mn)n≥1 determined
by (15) satisfies the asymptotic relationship required by Theorem 1.

In practice, the quantities Ncc and Nholes can be estimated by considering the sites in (T,𝜖) to
be either 4-connected or 8-connected, and colouring each site based on its corresponding value
in 𝜁

(T,𝜖)
X (u).
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COTSAKIS et al. 287

Figures 11 and 12 showcase the performance of P̂(2)Y (𝜖,mT
Y ;T, 0), with mT

Y as in (15), for two
different levels of discretization of the isotropic random field Y in Example 1.

4.5 Behavior of the perimeter estimator as a function of the level u

Differently from our previous numerical studies, we illustrate the behaviour of P̂(2)Y (𝜖,mT
Y ;T,u) as

a function of the level u in Figure 13, where Y is the isotropic random field in Example 1. The
same is done for an anisotropic field X in Figure 14.

5 PROOFS

This section provides detailed justifications for the theoretical results stated thus far. The follow-
ing definition is used throughout this section.

Definition 6. For s ∈ R2, define the set B(l)s ∶= [0, l )2 + s, where ⃛ + ε in this context
denotes the Minkowski sum. Let 𝜖 > 0 and m ∈ N+. Define


T
X (𝜖,m;u) ∶=

{
si,j ∈ (T,𝜖) ∶ i, j ∈ I(T,𝜖,m), B(m𝜖)

si,j
∩ E𝜕

X (T,u) ≠ ∅
}
.

The following lemma allows us to bound #
(


T
X (𝜖,m;u)

)
, which amounts to an upper bound on

the number of nonzero terms in the sum given by Equation (7). See Figure A1 for an illustration
that complements Lemma 1.

Lemma 1. Let X be a random field satisfying Assumption 1. For any 𝜖 > 0 and m ∈
N+,

#
(


T
X (𝜖,m;u)

)
≤ 4

(
PT

X (u)
m𝜖

+ #
(
ΓT

X (u)
)
)

, a.s.

Proof. The squares of side length m𝜖 in the set ∶= {B(m𝜖)
si,j

∶ i, j ∈ I(T,𝜖,m)} are disjoint
and cover T. For each 𝛾 ∈ ΓT

X (u), it is possible to find connected subsets of 𝛾 , namely
𝛽𝛾,1, …, 𝛽𝛾,M

𝛾
, that satisfy

𝛾=
M

𝛾⋃

i=1
𝛽𝛾,i,

where

M𝛾 ∶=
⌊


1(𝛾)
m𝜖

⌋
+ 1,

and for all i ∈ {1,…,M𝛾},


1(𝛽𝛾,i) ≤ m𝜖.

Each 𝛽𝛾,i can intersect at most 4 elements of . Since

E𝜕

X (T,u) =
⋃

𝛾∈ΓT
X (u)

M
𝛾⋃

i=1
𝛽𝛾,i,
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(a) (b)

F I G U R E 13 Illustration of perimeter estimation for several levels u. The stationary, isotropic, Gaussian
random field Y in Example 1 is considered on T = [−2.5, 2.5]2 with a discretization of 𝜖 = 5∕511. Panel (a): the
sample mean of 500 independent replications of P̂(2)Y (𝜖,mT

Y ;T,u) plotted in red for several values of u, shown
against E[PT

Y (u)] in black (computed via the Gaussian Kinematic Formula in Adler & Taylor, 2007, theorem
15.9.5). Panel (b): the mean absolute error of the approximation of P̃Y (𝜖;T,u) by P̂(2)Y (𝜖,mT

Y ;T,u) (red circles) and
(𝜋∕4)P̂(1)Y (𝜖, ;T,u) (green squares).

it follows that

#
(


T
X (𝜖,m;u)

)
= #

(
{b ∈  ∶ b ∩ E𝜕

X (T,u) ≠ ∅}
)

≤ 4
∑

𝛾∈ΓT
X (u)

M𝛾 ≤ 4

(
PT

X (u)
m𝜖

+ #
(
ΓT

X (u)
)
)

, a.s.

▪

Proof of Theorem 1. Let 𝜔 ∈ Ω be such that ΛT
X(𝜔)(u), defined in Definition 5,

is positive (note that almost any 𝜔 ∈ Ω will suffice, as discussed in Remark 4).
There exists n0 ∈ N+ such that EX(𝜔)(u) is resolved by mn𝜖n in T for all n ≥ n0
(see Definition 5). Fix si,j ∈ T

X(𝜔)(𝜖n,mn;u) and n ≥ n0. Let 𝛾 ∶= B(mn𝜖n)
si,j

∩ E𝜕

X(𝜔)(T,u).
It follows from our construction that T

X(𝜔)(u) ∩ 𝛾 contains at most one element,
since the spacing between points in T

X(𝜔)(u) is larger than the diameter of B(mn𝜖n)
si,j

.
It also follows from our construction that 𝛾 is either connected, or the union
of two maximally connected subsets. To see this, note that the planar curva-
ture of 𝛾 does not exceed 1∕(mn0𝜖n0) since mn0𝜖n0 is smaller than the reach of
both EX(𝜔)(T,u) and T ⧵ EX(𝜔)(u). Therefore, the curve is bounded by the pla-
nar arcs of radius mn0𝜖n0 as shown in Figure 15 (Dubins, 1961). We aim to
bound the absolute difference between the length of 𝛾 and its contribution to
P̂(2)X(𝜔)(𝜖n,mn;T,u). To this end, the two cases shown in Figure 15 are considered
separately.

Case 1: The curve 𝛾 is connected (see the left panel of Figure 15). The closure of 𝛾 can be
parametrized by a continuous injective vector function x ∶ [0, 1] → R2. For 𝛼 ∈ [0, 1],
define

TVk(𝛼; si,j) ∶=
∫

𝛼

0
|x′k(s)| ds, k ∈ {1, 2}, (16)
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292 COTSAKIS et al.

F I G U R E 15 (Case 1) The curve 𝛾 shown in black is bounded by the planar arcs of radius mn0
𝜖n0

shown in
blue. (Case 2) Here, 𝛾 shown in black is not connected, and the only point in T

X(𝜔)(u) ∩ B(mn𝜖n)
si+1,j

is highlighted in
purple.

so that TVk(1; si,j) corresponds to the total variation of 𝛾 in the kth principle Cartesian
direction of R2. As a consequence of the coarea formula (Adler & Taylor, 2007,
equation 7.4.15), the quantity 𝜖nNX(𝜔),h(i, j;u) (see Definition 4) is a Riemann sum that
approximates the definite integral TV1(1; si,j). The total error can therefore be bounded
above by

||𝜖nNX(𝜔),h(i, j;u) − TV1(1; si,j)|| ≤ 4𝜖n, (17)

as suggested by Figure A2, found in the Appendix. Analogously,

||𝜖nNX(𝜔),v(i, j;u) − TV2(1; si,j)|| ≤ 4𝜖n.

Let

l̂n(si,j) ∶= 𝜖n||
(

NX(𝜔),v(i, j;u),NX(𝜔),h(i, j;u)
)
||2, (18)

and we achieve the following bound by the triangle inequality

|||l̂n(si,j) − ||
(
TV1(1; si,j),TV2(1; si,j)

)
||2

||| ≤ 4
√

2𝜖n. (19)

It is clear that

||x(1) − x(0)||2 ≤ ||
(
TV1(1; si,j),TV2(1; si,j)

)
||2, (20)

since the computation of the left-hand side of Equation (20) involves the same integral
as in (16) but without the absolute values. In addition, let

l(𝛼; si,j) ∶=
∫

𝛼

0
||x′(s)||2 ds,
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COTSAKIS et al. 293

denote the length of x(s) for s ∈ [0, 𝛼]. It follows from the definition of the derivative
and the reverse triangle inequality that for all 𝛼 ∈ (0, 1),

||||
𝜕

𝜕𝛼

||
(
TV1(𝛼; si,j),TV2(𝛼; si,j)

)
||2

||||
≤ ||

(
x′1(𝛼), x′2(𝛼)

)
||2 =

𝜕

𝜕𝛼

l(𝛼; si,j).

Therefore,
||
(
TV1(1; si,j),TV2(1; si,j)

)
||2 ≤ l(1; si,j). (21)

Since the curvature of 𝛾 is bounded above by the inverse of ΛT
X(𝜔)(u), we apply a well

known result from Schwartz (Dubins, 1961) that guarantees that

l(1; si,j) ≤ a(si,j), (22)

where a(si,j) is the length of the smallest planar arc with radius mn0𝜖n0 that has
endpoints x(0) and x(1). The Taylor expansion of the sine function shows the
existence of K ∈ R+ independent of si,j and n such that

||a(si,j) − ||x(1) − x(0)||2|| ≤ K||x(1) − x(0)||3
2 ≤ K(

√
2mn𝜖n)3. (23)

Assembling the bounds demonstrated in Equations (20), (21), and (22), we get

||x(1) − x(0)||2 ≤ ||
(
TV1(1; si,j),TV2(1; si,j)

)
||2 ≤ l(1; si,j) ≤ a(si,j),

which in combination with (23) implies

|||l(1; si,j) − ||
(
TV1(1; si,j),TV2(1; si,j)

)
||2

||| ≤ K(
√

2mn𝜖n)3. (24)

Now, combining Equations (24) and (19) by the triangle inequality yields

|||l̂n(si,j) − l(1; si,j)
||| ≤ K(

√
2mn𝜖n)3 + 4

√
2𝜖n. (25)

Case 2: The curve 𝛾 has two connected components (see the right panel of Figure 15). Similarly
to Case 1, we parametrize the closure of each maximally connected subset of 𝛾 with
continuous injective vector functions x ∶ [0, 1]→ R2 and y ∶ [0, 1] → R2. For
𝛼 ∈ [0, 1], define

TVk(𝛼; si,j) ∶=
∫

𝛼

0

(
|x′k(s)| + |y′k(s)|

)
ds, k ∈ {1, 2}.

With l̂n(si,j) defined as in (18), Equation (19) holds. Now, consider the curve
�̃� ∶= (B(mn𝜖n)

si,j
∪ B(mn𝜖n)

si+1,j
) ∩ E𝜕

X(𝜔)(T,u), which is 𝛾 in union with the middle section in the
adjacent box B(mn𝜖n)

si+1,j
(where we have assumed, without loss of generality, that the

“middle section” is in the box to the right). It is clear that �̃� is connected, so its closure
can be parametrized by the continuous injective vector function z ∶ [0, 1] → R2.
Define

T̃Vk(𝛼; si,j) ∶=
∫

𝛼

0
|z′k(s)| ds, k ∈ {1, 2},
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294 COTSAKIS et al.

and

l̃(𝛼; si,j) ∶=
∫

𝛼

0
||z′(s)||2 ds.

By the same arguments that led to Equation (24), it holds that

0 ≤ l̃(1; si,j) − ||
(

T̃V1(1; si,j), T̃V2(1; si,j)
)
||2 ≤ K(

√
2mn𝜖n)3, (26)

where K ∈ R+ is independent of si,j and n. Let

l(1; si,j) ∶=
∫

1

0

(
||x′(s)||2 + ||y′(s)||2

)
ds,

be the total length of 𝛾 . Then l̃(1; si,j) = l(1; si,j) + l(1; si+1,j), and

‖‖‖‖

(
T̃V1(1; si,j), T̃V2(1; si,j)

)‖‖‖‖2
≤ ||

(
TV1(1; si,j),TV2(1; si,j)

)
||2

+ ||
(
TV1(1; si+1,j),TV2(1; si+1,j)

)
||2,

by the triangle inequality. Therefore, (26) can be written as
(

l(1; si,j) − ||
(
TV1(1; si,j),TV2(1; si,j)

)
||2

)
+

(
l(1; si+1,j) − ||

(
TV1(1; si+1,j),TV2(1; si+1,j)

)
||2

)
≤ K(

√
2mn𝜖n)3. (27)

By the arguments in Case 1 that led to Equation (21), it follows that

l(1; si+1,j) ≥ ||
(
TV1(1; si+1,j),TV2(1; si+1,j)

)
||2,

and by the same arguments,

l(1; si,j) ≥ ||
(
TV1(1; si,j),TV2(1; si,j)

)
||2.

Therefore, both (24) and (25) follow from Equation (27).
Following from Equation (25), we have

|||P̂
(2)
X(𝜔)(𝜖n,mn;T,u) − PT

X(𝜔)(u)
||| =

|||||||

∑

si,j∈T
X(𝜔)(𝜖n,mn;u)

(
l̂n(si,j) − l(1; si,j)

)|||||||
≤

∑

si,j∈T
X(𝜔)(𝜖n,mn;u)

|||l̂n(si,j) − l(1; si,j)
|||

≤ #
(


T
X(𝜔)(𝜖n,mn;u)

)
2
√

2
(

Km3
n𝜖

3
n + 2𝜖n

)
.

By Lemma 1,
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COTSAKIS et al. 295

gn
|||P̂
(2)
X(𝜔)(𝜖n,mn;T,u) − PT

X(𝜔)(u)
|||

≤ 8
√

2gn

(
PT

X(𝜔)(u)

mn𝜖n
+ #

(
ΓT

X(𝜔)(u)
))(

Km3
n𝜖

3
n + 2𝜖n

)

= 8
√

2
gn

mn

(
PT

X(𝜔)(u) +mn𝜖n#
(
ΓT

X(𝜔)(u)
))(

Km3
n𝜖

2
n + 2

)
, (28)

which tends to 0 as n →∞. This convergence holds for almost every 𝜔 ∈ Ω, since
ΛT

X (u) is almost surely positive. ▪

Proof of Corollary 1. The last expression in Equation (28) tends to 0 under the relaxed
constraint on (𝜖n)n≥1 if gn ≡ 1 for all n ∈ N+. ▪

Proof of Proposition 1. If a sequence is uniformly integrable, convergence in L1(Ω) is
equivalent to convergence in probability. Therefore, by Corollary 1, it suffices to show
that

(
P̂(2)X (𝜖n,mn;T,u)

)

n≥1
is bounded above by an element of L1(Ω) uniformly in n.

Note that for each n ≥ 1,

P̂(2)X (𝜖n,mn;T,u) ≤ P̂(1)X (𝜖n;T,u), a.s.

since the 2-norm is inferior to the 1-norm. Now, consider the quantity

Gn ∶= #
(
{s ∈ (T,𝜖n) ∶ B(𝜖n)

s ∩ E𝜕

X (T,u) ≠ ∅}
)
,

which represents the number of pixels of side length 𝜖n that the curve E𝜕

X (T,u)
intersects. Almost surely, P̂(1)X (𝜖n;T,u) is at most 4𝜖n (the perimeter of one pixel) times
Gn. By the same arguments used to prove Lemma 1, we have for all n ≥ 1,

Gn ≤ 4

(
PT

X (u)
𝜖n

+ #
(
ΓT

X (u)
)
)

, a.s.

and

P̂(2)X (𝜖n,mn;T,u) ≤ P̂(1)X (𝜖n;T,u) ≤ 4𝜖nGn ≤ 16
(

PT
X (u) + sup

n
(𝜖n)#

(
ΓT

X (u)
))

, a.s.

which is in L1(Ω) by Assumption 3. ▪

Proof of Proposition 2. Let

Wn ∶=
P̂(2)X (𝜖n,mn;Tn,u) − PTn

X (u)√
𝜈(Tn)

.

Given that EX (u) is resolved by mn𝜖n in Tn for fixed n ∈ N+, Equation (28) holds with
gn = 1∕

√
𝜈(Tn), implying

|Wn| ≤
8

mn

√
2

𝜈(Tn)

(
PTn

X (u) +mn𝜖n#
(
ΓTn

X (u)
))(

Km3
n𝜖

2
n + 2

)

=
8
√

2𝜈(Tn)
mn

⎛
⎜
⎜
⎜
⎝

PTn
X (u)
𝜈(Tn)

+mn𝜖n

#
(
ΓTn

X (u)
)

𝜈(Tn)

⎞
⎟
⎟
⎟
⎠

(
Km3

n𝜖
2
n + 2

)
, (29)
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296 COTSAKIS et al.

where K ∈ R+ is independent of n. Note that for any n ∈ N+,

Tn=
n2⋃

i=1
T(i)n ,

for a family of sets (T(i)n )i=1,…,n2 , each of which being congruent to T1. Then

E

[
PTn

X (u)
𝜈(Tn)

]

= E

⎡
⎢
⎢
⎣

∑n2

i=1PT(i)n
X (u)

n2𝜈(T1)

⎤
⎥
⎥
⎦
= E

[
PT1

X (u)
𝜈(T1)

]

< ∞,

and

E

⎡
⎢
⎢
⎢
⎣

#
(
ΓTn

X (u)
)

𝜈(Tn)

⎤
⎥
⎥
⎥
⎦

≤ E

⎡
⎢
⎢
⎢
⎣

∑n2

i=1#
(
ΓT(i)n

X (u)
)

n2𝜈(T1)

⎤
⎥
⎥
⎥
⎦

= E

⎡
⎢
⎢
⎢
⎣

#
(
ΓT1

X (u)
)

𝜈(T1)

⎤
⎥
⎥
⎥
⎦

<∞,

by Assumption 3. This implies that both

lim sup
n→∞

PTn
X (u)
𝜈(Tn)

and lim sup
n→∞

#
(
ΓTn

X (u)
)

𝜈(Tn)
,

are finite almost surely. Therefore, the final expression in (29) tends to 0 almost surely,
since

√
𝜈(Tn)∕mn → 0 by assumption. Now, denote the random event An ∶= {mn𝜖n <

ΛTn
X (u)}, and let AC

n denote its complement. Since P(An) → 1 as n →∞ by assumption,
it holds that for any 𝜂 > 0,

P(|Wn| > 𝜂) ≤ P(|Wn| > 𝜂 | An)P(An) + P(AC
n )→ 0,

as n → ∞. ▪

Proof of Theorem 2. The Central Limit Theorem in Iribarren (1989) for PTn
X (u) at the

fixed level u ∈ R is implied by the constraints on X . The result is proven for a sin-
gle level u, but as noted in the discussion of Kratz and Vadlamani (2018) and in
Shashkin (2013), the Cramér–Wald device can be used to extend the arguments to the
multivariate setting.

The Central Limit Theorem for the perimeter is then written as follows. For any
u ∈ Rk satisfying the given constraints, it holds that

PTn
X (u) − E

[
PTn

X (u)
]

√
𝜈(Tn)

d
−−→k (0,Σ(u)), n → ∞. (30)

Equation (10) is obtained by combining Equation (30), Proposition 2, and Slutsky’s
theorem.

By writing PT
X (u) = lim𝜖→0 1∕(2𝜖) ∫T 1{|X(s)−u|<𝜖}||∇X(s)||2 ds, (see, for instance,

proposition 6.13 in Azais & Wschebor, 2007), it is easily checked that for u1,u2 ∈ R,
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COTSAKIS et al. 297

E[PT
X (u1)] = 𝜈(T)f (u1)E

[
||∇X(s)||2

||| X(s) = u1

]
,

and

E[PT
X (u1)PT

X (u2)] =
∫T ∫T

gs2−s1(u1,u2)

× E

[
||∇X(s1)||2||∇X(s2)||2

||| X(s1) = u1,X(s2) = u2

]
ds1ds2,

where f denotes the marginal density function of X , and gs, the joint density function
of (X(0),X(s)). Hence the result in (11). ▪

Proof of Corollary 2. Under the given constraints, it is clear that Assumption 1 is satis-
fied. Also following from the hypotheses, the gradient of X and the Hessian matrix of
X are independent with Gaussian entries, and thus the conditions of theorem 11.3.3
of Adler and Taylor (2007) are satisfied. Therefore, X is almost surely suitably regu-
lar Adler and Taylor (2007, definition 6.2.1) over bounded rectangles, which implies
the conditions of Assumption 2. The expectations E

[
PTn

X (u)
]

and E

[
#
(
ΓTn

X (u)
)]

are
shown to be finite in Adler and Taylor (2007, theorem 13.2.1) and Beliaev et al. (2020),
respectively, implying the conditions of Assumption 3. Therefore, Proposition 2 holds,
which in combination with the Central Limit Theorem in Berzin (2021, theorem 4.7)
yields the result. ▪

6 DISCUSSION

We have shown for a large class of random fields that P̂(p)X (𝜖,m;T,u) with p = 2 is a consistent
and asymptotically normal estimator for PT

X (u). Our numerous simulation studies showcase the
various cases where it is advantageous to use the norm p = 2 as opposed to p = 1. An obvious
example is when X is not known to be isotropic. For p > 2, we do not expect P̂(p)X (𝜖,m;T,u) to have
desirable properties, since there is a bias introduced for certain orientations of the curve E𝜕

X (T,u).
There is a natural extension of P̂(p)X (𝜖,m;T,u) to random fields defined on Rd, with d > 2, and it
is plausible that analogous results hold in this multivariate setting. Results such as the central
limit theorems in Shashkin (2013), Müller (2017), and Kratz and Vadlamani (2018), which hold
in arbitrary dimension, will be useful to study the Gaussian fluctuations of our estimate.

Future work might also investigate the rate at whichΛT
X (u) tends weakly to 0 as T ↗ R2, which

would provide a more explicit constraint on the rate at which 𝜖n → 0 in Proposition 2.
Furthermore, we plan to study how the proposed perimeter estimate can be used to build a

test statistics for isotropy testing based on the length of level curves of smooth random fields. This
future analyse could enrich the existing literature of isotropy testing based on functionals of level
curves (Berzin, 2021; Cabaña, 1987; Fournier, 2018; Wschebor, 1985).

The proposed estimator works with observations available at a set of locations forming a
regular grid. A large variety of datasets possess this format, such as outputs of various types
of models (e.g., climate, hydrology), remote sensing data, or imaging data (e.g., in medicine).
However, geostatistical spatial data are sometimes not observed on regular grids, such as meteo-
rological data observed over a network of weather stations not organized in any grid structures. In
such cases, one could first apply a deterministic or stochastic interpolation method (e.g., bilinear
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298 COTSAKIS et al.

interpolation, geostatistical kriging) to preprocess data to make them available on a regular grid,
and then use the grid-based estimator.

In this paper, we have focused on perimeter estimator properties in the case of a single
replicate of the random field with one or several fixed levels u. Properties of estimators of
Lipschitz–Killing curvatures, including the perimeter, could further be studied when the level u
tends toward the upper endpoint of the marginal distribution of X . This setting is relevant for
extreme-value theory of stochastic processes (de Haan & Ferreira, 2006, chapters 9–10). Jointly
with decreasing pixel size and increasing domain T, we would further have to control the rate
at which the perimeter tends toward zero as u increases, where ultimately the excursion set
is almost surely empty. The combination of the results obtained for our perimeter estimator
with asymptotics of the exact perimeter for increasing level u (Adler & Taylor, 2007) could be
useful to establish asymptotic results and appropriate estimators for the perimeter and for other
excursion-set geometrical features at extreme thresholds.
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APPENDIX

Here, we provide two figures; one to complement Lemma 1, and the other, Equation (17).

F I G U R E A1 An illustration to aid Lemma 1. With m = 2, the curve E𝜕

X (T,u) shown in black intersects 13
elements of {B(m𝜖)

si,j
∶ i, j ∈ I(T,𝜖,m)}, which are highlighted in blue. Thus, #

(


T
X (𝜖,m;u)

)
= 13.
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F I G U R E A2 The approximation of TV1(1, si,j) in (16) by 𝜖nNX(𝜔),h(i, j;u) (see Definition 4). The black curve
𝛾 is shown in B(mn𝜖n)

si,j
, which we outline in dashed red. The definite integral TV1(1, si,j) is represented by the grey

area, and is approximated by 𝜖nNX(𝜔),h(i, j;u) = 7𝜖n, the area under the blue curve. The absolute error of this
approximation is clearly bounded above by 4𝜖n as stated in Equation (17). Highlighted in purple is a point in


T
X(𝜔)(u) (see Equation 2).
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