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Abstract  Supplementing a fishmeal-free diet with 
yeast extract improves rainbow trout (Oncorhyn‑
chus mykiss) growth performance and modulates the 
hepatic and intestinal transcriptomic response. These 
effects are often observed in the long term but are 
not well documented after short periods of fasting. 
Fasting for a few days is a common practice in fish 
farming, especially before handling the fish, such as 
for short sorting, tank transfers, and vaccinations. In 
the present study, rainbow trout were subjected to a 
4-day fast and then refed, for 8 days, a conventional 
diet containing fishmeal (control diet) or alternative 
diets composed of terrestrial animal by-products sup-
plemented or not with a yeast extract. During the 
refeeding period alone, most of the parameters con-
sidered did not differ significantly in response to the 
different feeds. Only the expression of claudin-15 

was upregulated in fish fed the yeast-supplemented 
diet compared to the control diet. Conversely, fasting 
followed by refeeding significantly influenced most 
of the parameters analyzed. In the proximal intes-
tine, the surface area of villi significantly increased, 
and the density of goblet cell tended to decrease dur-
ing refeeding. Although no distinct plasma immune 
response or major signs of gut inflammation were 
observed, some genes involved in the structure, com-
plement pathway, antiviral functions, coagulation, 
and endoplasmic reticulum stress response of the liver 
and intestine were significantly regulated by refeeding 
after fasting. These results indicate that short-term 
fasting, as commonly practiced in fish farming, sig-
nificantly alters the physiology of the liver and intes-
tine regardless of the composition of the diet.
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Introduction

Aquaculture-rearing practices and feeds changed 
greatly during the twentieth century. Development 
of extruded pellets in the late 1980s and the gradual 
replacement of fishmeal and fish oil with plant ingre-
dients (e.g., whole grains, oilseeds, legumes) helped 
address the constraints faced by the sector, particu-
larly in reducing human pressures on wild forage-fish 
populations (Tacon and Metian 2009; Bandara 2018). 
From 1990 to 2020, especially for Atlantic salmon 
(Salmo salar), the contents of fish oil and fishmeal 
in feed decreased from 65.4% and 24.0% to 12.1% 
and 10.3%, respectively, with no influence on zoot-
echnical performances (Aas et  al. 2019). Nonethe-
less, most carnivorous fish species, such as salmonids 
(salmon and trout), are sensitive to dietary changes, 
which prohibit completely replacing fishmeal and 
fish oil in their feed. Thus, for these species, plant-
based diets are likely to influence feed intake, nutrient 
digestion, absorption, and assimilation (e.g., metab-
olism) (Bureau et  al. 1998; Panserat et  al. 2009; Li 
et  al. 2014). These diets can also degrade intestinal 
health by causing inflammation in the digestive tract, 
likely due to the presence of anti-nutritional factors 
(e.g., oligosaccharides, lectins, saponins) in the plant 
ingredients (Francis et  al. 2001; Gatlin et  al. 2007). 
Therefore, plant-based diets are likely to decrease the 
growth and degrade the health of the fish, thus ren-
dering them more sensitive to stress (Krogdahl et al. 
2010; Lazzarotto et al. 2015).

In addition to plant ingredients, the aquaculture 
sector is considering other replacements for marine 
ingredients, such as insect meals, microalgae, and 
industrial by-products from terrestrial animals. How-
ever, their use is restricted due to variable growth 
performances that result from their inconsistent qual-
ity and nutritional values, as well as the amounts 
included in diets (Galkanda‐Arachchige et al. 2020). 
Including functional ingredients can meet the objec-
tives of maintaining acceptable growth performances 
and mitigating adverse effects of alternative diets. For 
example, yeast can be included in whole or in deriva-
tive form (i.e., cell wall, cytosolic fraction, purified 
components). Including yeast in feed has been shown 
to provide many benefits for most terrestrial and 
aquatic livestock, such as improvements in feed palat-
ability, nutrient digestibility (due to enzyme produc-
tion and intestinal pH regulation), the immune system 

and pathogen resistance (due to bioactive components 
such as MOS, β-glucan, nucleotides, and peptides), 
the quality of meat and milk, egg production of poul-
try, and growth performances of fish and pigs (Gate-
soupe 2007; Vohra et al. 2016; Agboola et al. 2021). 
The performance of new feeds or the benefits of feed 
additives are often examined over the long term to 
primarily assess effects on growth without neces-
sarily analyzing the early physiological responses of 
animals. When using a new diet, long-term responses 
could be the result of mechanisms that fish gradually 
implement to adapt to change in formulation. Short-
term responses, on the other hand, could reflect an 
acute homeostatic response involving the mobiliza-
tion of mechanisms aimed at restoring or maintain-
ing metabolic balance in a perturbed environment, in 
this case a change in diet. Indeed, a study of Atlantic 
salmon fed a soybean meal diet showed that diet can 
have effects on the first day of exposure, particularly 
on intestinal histopathology and on the regulation of 
genes involved in immunity, detoxification, cellular 
repair, and metabolism (Sahlmann et al. 2013).

Short periods of fasting followed by refeeding are 
frequently used in aquaculture. On fish farms, short-
term fasting is strongly recommended and commonly 
applied during periods of stress (i.e., animal handling, 
transport between different production sites, epizootic 
situations) or in order to induce compensatory growth 
(Dobson and Holmes 1984; Cho 2005; Jena et al. 2017). 
During short-term fasting (less than 2 weeks), the met-
abolic rate of fish is lowered and causes the energy 
required for digestion to be directed to vital functions 
such as maintaining cellular homeostasis, brain func-
tion, and respiration, without necessarily causing sig-
nificant weight loss (Caruso et al. 2012; Karatas et al. 
2021). Like birds and mammals, fish in their natural 
environment are also frequently subjected to long peri-
ods of fasting or starvation (greater than 2 weeks) dur-
ing winter, migration, and reproduction events (Navarro 
and Gutiérrez 1995; Bar 2014). Indeed, even when 
short, these periods influence gut microbiota (Xia et al. 
2014), metabolism (Black and Skinner 1986), and 
digestive and hepatic physiology (Martin et  al. 2001; 
Krogdahl and Marie Bakke-McKellep 2005; Bar 2014).

Utilization of alternative diets without fishmeal 
during 12  weeks impacted the growth performance 
of juvenile rainbow trout (Oncorhynchus mykiss) and 
these phenotypes were accompanied by changes in 
hepatic and intestinal transcriptomic profiles, as well 
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as structural changes in the intestine (Frohn et  al. 
2024). As no short-term evaluation has been car-
ried out on this type of feed, we first compared the 
early effect within the first 8 days of feeding a com-
mercial-like diet containing fishmeal and fish oil, an 
alternative diet based on plant ingredients and ter-
restrial animal by-products which had been shown 
to reduce the growth performance of juvenile rain-
bow trout (Oncorhynchus mykiss), and the same diet 
supplemented with yeast extract which significantly 
improved growth (Frohn et  al. 2024). Like the use 
of a novel feed, we then hypothesized that refeeding 
after a short fasting period could also influence the 
fish’s early physiological response, which is rarely 
accounted for, despite the frequent implementation 
of fasting and refeeding periods in fish farms. Conse-
quently, this study also aimed to evaluate the effects 
of a short 4-day fasting period followed by refeeding 
with the above-mentioned feeds on intestinal histol-
ogy and parameters related to defense and protection 
mechanisms in juvenile rainbow trout.

Materials and methods

Feed formulation and experimental design

Three experimental feeds were formulated to meet the 
nutritional requirements of the rainbow trout accord-
ing to NRC recommendations (Council NR 2011). 
The control diet (CTL) was formulated as close as 
possible to a commercial feed for rainbow trout and 
contained 19% fishmeal and 7.0% fish oil. Two pro-
cessed animal protein diets (10% dehydrated poultry 
protein, 6% hydrolyzed feather meal, and 1% poul-
try and pig blood meal) were also formulated: one 
not supplemented (PAP) and one supplemented with 
yeast extract (PAP + YE). The yeast extract used con-
tained the cytosolic fraction of the yeast Saccharomy‑
ces cerevisiae (Prosaf®, Phileo by Lesaffre, Marcq-
en-Barœul, France). The contents of other ingredients 
in the experimental feeds varied (Table 1).

A schematic diagram of the experimental proto-
col is shown in Supplementary Fig. 1. One hundred 
and twenty (120) rainbow trout, with an average bio-
mass of 232 ± 39  g, were distributed in four 100 L 
tanks in groups of 30 fish (initial density: 55 kg/m3). 
Tanks were continuously supplied with well-oxygen-
ated freshwater at 17 °C (flow-through system), with 

Table 1   Ingredients and proximate composition of three 
experimental diets: commercial-like feed (CTL), processed 
animal protein feed (PAP), and PAP with 3% yeast extract 
(PAP + YE)

1 Cytosolic fraction of Saccharomyces cerevisiae (Prosaf®, 
Phileo by Lesaffre, Marcq-en-Barœul, France)
2 Provided per 100 g of premix: vitamin A 500,000 IU, vitamin 
D3 250,000  IU, vitamin E 500 mg, vitamin C 1429 mg, vita-
min B1 10 mg, vitamin B2 50 mg, vitamin B3 100 mg, vitamin 
B5 200 mg, vitamin B6 30 mg, vitamin B7 3000 mg, vitamin 
B8 100 mg, vitamin B9 10 mg, vitamin B12, 100 mg, vitamin 
K3 200 mg, folic acid 10 mg, biotin 100 mg, choline chloride 
16,700 mg, and cellulose 76,921 mg
3 Provided per 100  g of premix: calcium hydrogen phosphate 
49,478  mg, calcium carbonate 21,500  mg, sodium chloride 
4000  mg, potassium chloride 9000  mg, magnesium oxide 
12,400  mg, iron sulfate 2000  mg, zinc sulfate 900  mg, man-
ganese sulfate 300 mg, copper sulfate 300 mg, cobalt chloride 
2  mg, potassium iodide 15  mg, sodium selenite 5  mg, and 
sodium fluoride 100 mg
4 Analyzed values

CTL PAP PAP + YE

Ingredient (%)
  Corn gluten 15.00 17.90 16.00
  Soy protein concentrate 14.03 11.00 12.00
  Soybean meal 12.00 10.52 8.34
  Faba bean 8.00 12.00 8.00
  Whole wheat 10.76 9.22 13.01
  Fishmeal 19.00 - -
  Dehydrated poultry protein - 10.00 10.00
  Hydrolyzed feather meal - 6.00 6.00
  Poultry and pig blood meal - 1.00 1.00
  Rapeseed oil 12.18 10.45 10.54
  Fish oil 7.03 7.87 7.91
  Yeast extract1 - - 3.00
  L-lysine - 0.27 0.49
  L-methionine - 0.26 0.29
  Soy lecithin - 0.51 0.42
  Vitamin premix2 1.00 1.00 1.00
  Dicalcium phosphate - 1.00 1.00
  Mineral premix3 1.00 1.00 1.00

Proximate composition4

  Dry matter (DM) (%) 97.1 97.4 97.2
  Protein (%DM) 46.9 46.5 46.3
  Lipid (%DM) 22.1 21.6 20.8
  Energy (%DM) 25.0 25.1 24.9
  Ash (%DM) 6.8 5.5 5.6
  Starch (%DM) 12.1 13.5 14.2
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concentrations of 9.4 mg/L at the inlet and 7.5 mg/L 
at the outlet of the tank. After batching, the fish were 
acclimated to their new environment and fed a com-
mercial feed (T3P Omega®, Skretting, Fontaine-les-
Vervins, France) for 3 days (distributed daily to visual 
satiation) and then fasted for 4 days. The duration of 
this fasting period was applied in accordance with 
estimated gastric emptying rates in rainbow trout 
and Atlantic salmon (Windell et  al. 1976; Aas et  al. 
2017). Compared to these studies, the duration was 
slightly increased to ensure that the gastrointestinal 
tracts were completely empty, allowing only the effect 
of the experimental diets to be considered during the 
refeeding period. To evaluate the effects of fasting fol-
lowed by refeeding, fish from the first tank were not 
refed after fasting and were used to represent day 0 
and the “fasted fish” group of the experiment. In this 
tank, six individuals were anesthetized and then euth-
anized in baths containing 50 and 150 mg tricaine/L 
of water, respectively. Then, blood was drawn from 
the caudal vein using a 2.5 mL EDTA-treated syringe 
and a 0.6 × 32  mm needle, centrifuged at 3000  g 
for 10  min (microcentrifuge 1–15 P, Sigma Centri-
fuges, Osterode am Harz, Germany), and the plasma 
extracted was stored at − 20 °C until plasma immune 
markers were quantified. Whole liver samples and 
intestine (proximal and distal parts) were collected, 
soaked in RNA later and immediately immersed in 
liquid nitrogen and stored at − 80 °C until molecular 
analyses were performed. Additional samples of the 
proximal and distal intestine were fixed in a 10% buff-
ered formalin solution before being processed for his-
tological analysis. In order to assess the early effect of 
novel diets, the other 3 tanks (tanks 2 to 4) were ran-
domly assigned to one of the three experimental feeds 
(Table 1), and fish were refed twice a day until visual 
satiation over an 8-day period, selected based on the 
study by Sahlmann et al. (2013). On days 2, 5, and 8 
of refeeding, 6 fish per tank were anesthetized, eutha-
nized, and sampled as described above, 6 h after the 
last meal, as previously done by Richard et al. (2021). 
Final density on day 8 was 23 kg/m3.

Plasma immune markers

Activities of the alternative complement pathway, 
lysozyme, and peroxidase were measured in the 
plasma, as described by Frohn et  al. (2024). Total 
antiprotease activity was determined by assessing 

the ability of plasma to inhibit trypsin activity, as 
described by Peixoto et al. (2022).

Histology of intestine

According to the recommendations of Feldman and 
Wolfe (2014), samples of the proximal and distal 
intestine were fixed in buffered formalin, dehydrated 
in successive ethanol baths, clarified in xylene, and 
embedded in paraffin blocks. Transverse intestine 
sections  2  µm thick were cut using a semi-automatic 
rotating microtome (HM 340E, Microm Microtech, 
Brignais, France). Tissues were then stained with peri-
odic acid–Schiff alcian blue to assess gut morphology 
and count the number of goblet cells in the intestinal 
mucosa, as it has been described by Frohn et al. (2024).

Image analysis

Images of the intestinal mucosa were obtained using 
a microscope (DMRB, Leica, Wetzlar, Germany) 
equipped with a digital camera (DP71 1.4  M pix-
els, Olympus, Tokyo, Japan). The images were then 
processed using two macros that were created using 
the MorphoLibJ (Legland et  al. 2016) and StarDist 
(Schmidt et  al. 2018) plugins of FIJI 1.53t software 
(Schindelin et al. 2012). The first macro measured the 
surface area (µm2) of a given villus and counted the 
number of goblet cells in it, in order to calculate the 
density of goblet cells (per mm2) (Fig. 1). The cells 
were detected using the StarDist Versatile (H&E 
nuclei) model, and each villus of interest was manu-
ally delineated (polygon-selection tool). The cells 
inside the villus were manually corrected if incor-
rectly segmented. The second macro measured villi 
height (µm) manually using the segmented-line tool 
of FIJI. Five villi per section were analyzed.

Molecular analysis: RNA extraction and real‑time 
RT‑qPCR

Total RNA was extracted from the liver, proximal 
intestine, and distal intestine (n = 6 per sampling 
day and diet) according to the miRNeasy Tissue/
Cells Advanced Mini Kit protocol (Qiagen, Hilden, 
Germany). RNA was treated with the Turbo DNA-
free kit (Invitrogen, Waltham, MA, USA) to avoid 
genomic DNA contamination. RNA integrity was 
verified on 1% agarose gel, and RNA concentrations 



1285Fish Physiol Biochem (2024) 50:1281–1303	

1 3
Vol.: (0123456789)

were quantified using a spectrophotometer (Nan-
odrop® ND1000, Thermo Scientific, Waltham, 
MA, USA). The cDNA synthesis was performed 
with 750  ng of total RNA using the SuperScript III 
reverse transcriptase (Invitrogen, USA) and random 
primers (Promega, Madison, WI, USA) according 
to manufacturers’ instructions. Then, for each gene 
of interest, real-time RT-qPCR was performed using 
the Lightcycler® 480 II system (Roche Diagnostics, 
Basel, Switzerland). Primers were designed based 
on (i) genes identified in a previous study by Frohn 
et  al. (2024) showing that alternative diets based on 
animal by-product decrease growth performances and 
are accompanied by changes in the transcriptomic 
profiles of the liver and the intestine, and (ii) supple-
mental genes that are key markers of the pathways 
of interest (Table  2). These genes were involved in 
immunity and inflammation, structure, coagulation 
functions, cell protection, antiviral functions, and 
endoplasmic reticulum stress.

Real-time RT-qPCR was performed using a reac-
tion mix containing 2 µL of diluted cDNA, 3 µL of 

Light Cycler 480 SYBR® Green I Master mix (Roche 
Diagnostics, Switzerland), 0.24 µL of each primer 
(10X), and 0.52 µL of RNase- and DNase-free water 
(Thermo Fisher Scientific, USA). Negative controls 
constituted of RT- and cDNA-free samples. Each RT-
qPCR assay was deposited in triplicates on a Frame-
Star® 384-well skirted qPCR plate (Roche Diagnos-
tics, Switzerland). The qPCR program was initiated 
at 95 °C for 10 min to denature the cDNA and acti-
vate the TAQ polymerase enzyme in a thermocycler 
(Lightcycler® 480 II Roche thermocycler, Roche 
Diagnostics, Switzerland). The initiation was fol-
lowed by 45 amplification cycles, each consisting of 
successive thermal steps (15 s at 95 °C, 10 s at 60 °C, 
and 15 s at 72 °C). Melting curves (0.5 °C/10 s from 
65 to 95 °C) were run at the end of each amplification 
cycle to confirm the specificity of the reaction. The 
relative expression of genes was quantified using the 
ΔΔCT method (Pfaffl 2001). Elongation factor EF1α 
(forward 5′-TCC​TCT​TGG​GTT​TCG​CTG​-3′; reverse 
3′-ACC​CGA​GGG​ACA​TCC​TGT​G-5′), 18S rRNA 
(forward 5′-CGG​AGG​TTC​GAA​GAC​GAT​CA-3′; 
reverse 3′-TCG​CTA​GTT​GGC​ATC​GTT​TAT-5′), and 
β-actin (forward 5′-GAT​GGG​CCA​GAA​AGA​CAG​
CTA-3′; reverse 3′-TCG​TCC​AGT​TGA​CGAT-5′) 
were employed as non-regulated reference genes in 
the liver, the proximal intestine, and the distal intes-
tine, respectively. Expression levels were then nor-
malized relative to those of the fasted fish.

Statistical analysis

Plasma immune markers, histological parameters, and 
gene expression were statistically analyzed using the 
Rcmdr package of R software (version 4.1.2).

To assess the early effect of experimental feeds, 
data from the refeeding period including days 2, 5, 
and 8 were first treated excluding fasted fish from 
day 0. Normality of distributions and homogeneity 
of variances were assessed using a Shapiro–Wilk test 
and a Levene test, respectively. When these prerequi-
sites were met, the effects of diet, duration of refeed-
ing (days 2, 5, and 8), and the interaction between 
diet and duration of refeeding (Di:Du) were analyzed 
using a 2-way analysis of variance (2-way ANOVA), 
followed by Tukey’s range test.

Then, to assess the effect of short-term fasting 
followed by refeeding, data including days 0 (fasted 
fish), 2, 5, and 8 were statistically processed without 

Fig. 1   Example of manual delineation of a villus (red line) 
and detection of goblet cells (circles) using FIJI software
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Table 2   Primer sequences for RT-qPCR analysis of the liver and proximal and distal intestine

Gene, by category NCBI accession 
number

Forward primer (5′-3′) Reverse primer (3′-5′) Liver Proximal 
intestine

Distal  
intestine

Immunity and  
inflammation

   c3 XM_021561577.2 TGT​CAC​TTC​GCC​ATA​
CAC​CA

TTT​GCA​AAA​CCG​
TTG​GCC​C

x x x

   prg4 XM_036968497.1 GGC​ATA​GAA​GAG​CCA​
GAA​CCA​

AAT​GGC​ATA​GGC​
TGG​TCG​TC

x

   α2m XM_021587033.2 GAG​ACT​GTC​CCA​AAG​
GGC​TC

CTG​CCA​ACT​TCA​
AGG​TGA​CTTC​

x

   il1β XM_021590496.2; 
AJ557021.2

CCC​TGC​CAG​TTG​TCT​
TAG​GG

GTC​CTT​ACA​GCG​
CTC​CAA​CT

x x

   il6 NM_001124657.1 CTA​TCT​CTC​ACT​CCT​
CTC​GGC​

CTT​CCA​CGG​GCT​
TCT​GAA​AC

x x

   il4 FN820500.1 GAC​AAT​CTT​GGC​CTC​
CGT​GA

CCA​CCT​GGT​CTT​
GGC​TCT​TC

x x

  tnfα AJ278085.1; 
NM_001124357.1

TGC​AAA​AGC​AGC​CAT​
CCA​TT

AAC​GAA​GAA​GAG​
CCC​AGT​GT

x x

Structure
  tjp1a XM_036980662.1 TCA​GCT​GCG​CTA​TGA​

TGA​GG
GGT​CGT​AAC​GTA​

GAG​GAG​CG
x x

  tjp3 XM_031822609.1 GGG​ACA​CAG​CCG​TGA​
TAG​TT

TGA​CAC​GCC​ATT​
GAC​CAT​GA

x x

  muc2 XM_036968565.1; 
XM_036968563.1

GAC​CCT​GAA​GGA​GTT​
CCA​CG

GTT​TGG​AGC​AGA​
CCT​TGG​GT

x x

  cldn15 XM_036987534.1; 
XM_021615039.2

TCT​ACA​TTG​GCT​GGT​
GCT​CG

GTC​CTG​GCC​GTA​
GGA​AGT​G

x x

  aqp7 XM_021568669.2 TGA​ACG​TGT​TCG​AGT​
GGG​AC

AAG​GTA​CTC​TCC​
GAA​CGC​AC

x x

  aqp10a XM_021621544.2 CGA​TGT​CGT​CCA​ATT​
GCG​G

CAG​GTG​CCA​TGC​
GAT​GAA​GA

x x

Coagulation
  serpina10 XM_036954825.1; 

XM_036954823.1
TCG​CAC​TTT​GTC​TCC​

CCA​AA
GCT​AGG​TTG​AGC​

CCC​TTC​AG
x

  fbg XR_005053092.1; 
XM_036987044.1

CTG​GGT​AAC​GAC​CGC​
ATC​AG

GGC​TGT​TCC​TGA​
ATA​CCC​ATC​

x x

  cd9 NM_001124324.1 TTC​CTG​CGT​GTA​GCG​
TTG​A

AAC​CCG​AAC​ATC​
GCA​AAA​CC

x x

Cell protection
  por XM_021623734.2 GTG​GTC​GCA​CAA​TAA​

TGA​CGTAG​
ATG​GGG​CCA​CTC​

ACT​GTC​TG
x

  miox XM_021572362.2 CAA​GCT​GAT​GCA​CAC​
CAA​CC

TCC​AGC​GAT​ATG​
ACG​GCT​TC

x

Cell proliferation
  pcna XM_036936092.1 ATC​CTG​AAG​TGT​GCT​

GGG​AA
TCC​CAA​CTG​TTC​

TAC​ATC​GAGA​
x x

Antiviral
  ch25h XM_021564786.2 GGG​CTT​CTT​CTC​GTC​

GGT​T
GTC​CTC​CAC​AGA​

AAG​CCA​GA
x x

Endoplasmic reticulum 
stress

  selenos XM_036963928.1; 
XM_036981274.1

ACT​GAA​GAG​GCC​AGC​
ACA​TC

ACA​GGA​TCC​ACC​
TCC​CTC​TC

x x
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considering the “diet” factor. As described above, 
distributions were tested for normality, and variances 
for homogeneity. When these preconditions were 
met, the effect of time was assessed using a 1-way 
analysis of variance (1-way ANOVA) followed by a 
Tukey’s range test. If one or both conditions were not 
met, the data were analyzed using the non-parametric 
Kruskal–Wallis test.

For all analyses, differences were considered sta-
tistically significant at the 5% threshold. The p-values 
generated for the two separate statistical analyses 
(early effect of experimental feeds and effect of short-
term fasting followed by refeeding) are shown in 
separate insets below each graph. Significant differ-
ences associated with the early effect of experimental 
feeds during refeeding are indicated by capital letters. 
Significant differences associated with the effect of 
short-term fasting followed by refeeding are indicated 
by lower-case letters.

Results

Plasma immune markers

During the refeeding period, neither diet nor duration 
of refeeding significantly influenced plasma activities 
of the alternative complement pathway, lysozyme, 
antiprotease, or peroxidase (2-way ANOVA, p > 0.05 
for “Diet” and “Duration” factors) (Fig. 2). However, 
an interaction between diet and refeeding duration 
(Di:Du) was observed for plasma lysozyme activity, 
with a significant decrease in fish fed the PAP diet on 
day 8 compared to day 2, and compared to the fish 
fed the CTL diet on days 5 and 8 (2-way ANOVA, 
p < 0.05) (Fig. 2B).

No significant effect of short-term fasting followed 
by refeeding was highlighted for plasma activities 
of the alternative complement pathway, lysozyme, 
antiprotease, and peroxidase (1-way ANOVA or 
Kruskal–Wallis, p > 0.05) (Fig. 2).

Histological parameters of the proximal and distal 
intestine

In the proximal and distal intestine, diet and duration 
of refeeding had no early effect on villi height (2-way 
ANOVA, p ≥ 0.05 for “Diet” and “Duration” fac-
tors) (Fig. 3A and B). Short-term fasting followed by 

refeeding also had no significant effect on this param-
eter in either part of the intestine (1-way ANOVA, 
p > 0.05) (Fig. 3A and B).

During refeeding period, in the proximal intestine, 
the diet did not influence villi area (2-way ANOVA, 
p > 0.05 for “Diet” factor), but refeeding duration 
did (2-way ANOVA, p < 0.05 for “Duration” factor) 
(Fig.  3C). In the distal intestine, no early effect of 
diet and duration of refeeding was observed (2-way 
ANOVA, p > 0.05 for “Diet” and “Duration” fac-
tors) (Fig. 3D). The intestinal villi area in the proxi-
mal part was significantly affected by short-term 
fasting followed by refeeding, resulting in smaller 
areas observed in fasted fish and on day 2 of refeed-
ing compared to 8 days of refeeding. Additionally, an 
intermediate value was observed on the fifth day of 
refeeding (Kruskal–Wallis, p < 0.01) (Fig. 3C). In the 
distal intestine, short-term fasting followed by refeed-
ing had no significant effect on the villi area (1-way 
ANOVA, p > 0.05) (Fig. 3D).

During refeeding, the diet did not influence the 
mean density of goblet cells in the proximal and 
distal intestine (2-way ANOVA, p > 0.05 “Diet” fac-
tor) (Fig.  3E and F). However, refeeding duration 
did affect goblet cells density in the proximal intes-
tine (2-way ANOVA, p < 0.05 for “Duration” fac-
tor) (Fig. 3E) but not in the distal intestine (2-way 
ANOVA, p > 0.05 for “Duration” factor) (Fig.  3F). 
Short-term fasting followed by refeeding signifi-
cantly impacted goblet cell density in the proximal 
part of the intestine, with a significant increase on 
day 2 of refeeding compared to day 8, and interme-
diate values observed for fasted fish and on day 5 
(1-way ANOVA, p < 0.05) (Fig.  3E). Conversely, 
short-term fasting followed by refeeding had no 
significant effect on goblet cell density in the distal 
intestine (1-way ANOVA, p > 0.05) (Fig. 3F).

Cell protection, coagulation, immune, and 
inflammation‑related gene expression in the liver

Expressions of the por (NADPH-cytochrome P450 
reductase) and serpina10 (protein Z-dependent pro-
tease inhibitor-like) genes, involved in cell protec-
tion and coagulation, respectively, were too low to be 
quantified adequately in the liver (i.e., ≥ 32 amplifica-
tion cycles (Ct)).

During refeeding, the diets did not significantly 
influence the expression of genes related to immunity 
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and inflammation (i.e., main complement molecule 
C3 (c3); proteoglycan 4 (prg4); and alpha-2-mac-
roglobulin isoform X2 (α2m)) (Fig.  4A, B, and C) 
and to cell protection (i.e., myo-inositol oxygenase 
(miox)) (Fig. 4D) (2-way ANOVA, p > 0.05 for “Diet” 
factor) in the liver. However, their expression was 
significantly impacted by the duration of refeeding 

(2-way ANOVA, p < 0.05 for “Duration” factor) 
(Fig. 4A, B, C, and D).

Hepatic expressions of c3, prg4, α2m, and miox 
were significantly influenced by short-term fasting 
followed by refeeding (Kruskal–Wallis, p ⩽ 0.01) 
(Fig.  4A, B, C, and D). c3 and prg4 genes were 
significantly downregulated on day 8 of refeeding 

Fig. 2   Mean activity (+ standard deviation) (n = 6) of alter-
native complement pathway (A), lysozyme activity (B), anti-
protease activity (C), and peroxidase activity (D) in the blood 
plasma of rainbow trout after fasting and on three of the eight 
subsequent days of refeeding. CTL, commercial-like feed; 

PAP, terrestrial animal by-products feed; PAP + YE, PAP feed 
with 3% yeast extract. The p-values generated for the two sepa-
rate statistical analyses (early effect of experimental feeds and 
effect of short-term fasting followed by refeeding) are shown 
below each graph
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compared to day 2, and their expressions were inter-
mediate in fasted fish and on day 5 (Fig. 4A and C). 
The expression of the acute-phase protein encoded 
by a2m was significantly upregulated in fasted fish 
compared to fish refed for 8  days. Intermediate lev-
els of expression were measured on the second and 
fifth days of refeeding (Fig.  4B). The expression of 
the miox gene peaked in fasted fish and on day 5 of 
refeeding, was intermediate on day 2, and was signifi-
cantly downregulated on day 8 (Fig. 4D).

Gene expression in the proximal and distal intestine

Immune, inflammation, and antiviral‑related gene 
expression

In the proximal intestine, expressions of genes related 
to immunity and inflammation (i.e., c3, interleu-
kin-1 beta (il1β), interleukin-6 (il6), interleukin-4 
(il4), and tumor necrosis factor alpha (tnfα)) and to 
antiviral functions (i.e., cholesterol 25-hydroxylase 
gene (ch25h)) were too low (Ct ≥ 32) to be quantified 
adequately using RT-qPCR. In the distal intestine, 
the expression levels of genes c3, apolipoprotein A-II 
(apoa2), il4, il6, and tnfα were also too low (Ct > 32) 
to be analyzed.

In the distal intestine, interleukin il1β expres-
sion was not impacted by the diets (2-way ANOVA, 
p > 0.05 for “Diet” factor) but refeeding duration did 
have a significant effect on its expression (2-way 
ANOVA, p < 0.001 for “Duration” factor). Moreover, 
a significant interaction between diet and duration 
(Di:Du) due to upregulation of il1β on day 2 in fish 
fed the PAP compared to fish fed the CTL diet on day 
5 was highlighted during refeeding (2-way ANOVA, 
p < 0.05) (Fig.  5A). Short-term fasting followed by 
refeeding also influenced il1β expression. Compared 
to fasted fish, the expression of il1β increased after 
2 days of refeeding, and then returned to levels simi-
lar to those in fasted fish after 5 and 8 days of refeed-
ing (Kruskal–Wallis, p < 0.001).

During the period of refeeding, expression of the 
cholesterol 25-hydroxylase gene (ch25h) in the dis-
tal intestine was influenced neither by the diet nor by 
the duration of the feeding period (2-way ANOVA, 
p > 0.05 for “Diet” and “Duration” factors) (Fig. 5B). 
However, short-term fasting followed by refeed-
ing modulated its expression. On day 5 of refeeding, 
expression of ch25h was significantly downregulated 

compared to fasted fish and its expression was inter-
mediate on days 2 and 8 (1-way ANOVA, p < 0.05) 
(Fig. 5B).

Structure and cell proliferation‑related gene 
expression

In the proximal and distal intestine, expression of 
tight junction protein-1 tjp1a and aquaporins aqp7 
and aqp10a were too low to be quantified adequately 
using RT-qPCR (Ct ≥ 32).

In the proximal and distal parts of the intestine, 
expression of the gene encoding the tight junction 
protein 3 (tjp3) was not influenced by the diet (2-way 
ANOVA, p > 0.05 for “Diet” factor) (Fig. 6A and B). 
In the proximal intestine, tjp3 expression was influ-
enced by the duration of refeeding (2-way ANOVA, 
p < 0.001 for “Duration” factor) and a significant 
interaction between diet and duration (Di:Du) was 
highlighted (2-way ANOVA, p < 0.05) (Fig.  6A). In 
the distal intestine, no significant effect of duration 
of refeeding was shown (2-way ANOVA, p > 0.05 
for “Duration” factor) (Fig.  6B). Short-term fast-
ing followed by refeeding had a significant effect 
on tjp3 expression in both proximal (Kruskal–Wal-
lis, p < 0.001) (Fig.  6A) and distal intestine (1-way 
ANOVA, p < 0.05) (Fig.  6B). In the proximal intes-
tine, tjp3 was significantly upregulated on day 8 of 
refeeding compared to fasted fish and to fish refed 
during 2 or 5  days. In the distal intestine, tjp3 was 
significantly upregulated on days 2 and 8 after refeed-
ing compared to fasted fish.

The tight junction protein claudin-15 (cldn15) was 
not early influenced by diet in the proximal intes-
tine during refeeding (2-way ANOVA, p > 0.05 for 
“Diet” factor) (Fig. 6C) but was significantly upregu-
lated in the distal intestine of fish fed the PAP + YE 
diet compared with those fed the CTL diet after 2, 5, 
and 8 days of refeeding. Expression of cldn15 in the 
distal intestine of fish fed the PAP diet was not sig-
nificantly different from the two other diets (2-way 
ANOVA, p < 0.05 for “Diet” factor) (Fig. 6D). In the 
proximal and distal sections, cldn15 expression was 
significantly influenced by the duration of refeed-
ing (2-way ANOVA, p < 0.01 for “Duration” factor) 
(Fig. 6C and D), and an interaction between diet and 
duration (Di:Du) was found in the proximal intestine 
(2-way ANOVA, p < 0.05) (Fig. 6C). In both parts of 
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the intestine, short-term fasting followed by refeed-
ing had a significant effect on cldn15 expression. In 
the proximal intestine, cldn15 was upregulated on day 
8 of refeeding compared to day 2 (Kruskal–Wallis, 
p < 0.01) (Fig.  6C). In the distal part, expression of 
cldn15 significantly increased between fasted fish and 
fish refed during 2 and 5 days. A further increase of 
cldn15 then occurred between days 5 and 8 of refeed-
ing (1-way ANOVA, p < 0.001) (Fig. 6D).

Expression of muc2 gene, which encodes a pro-
tein involved in the secretion of intestinal mucus, 
was not regulated by diets during refeeding in the 
proximal and distal parts of the intestine (2-way 
ANOVA, p > 0.05 for “Diet” factor) (Fig. 6E and F). 
However, its expression was significantly influenced 
by the duration of the refeeding period in both sec-
tions  (2-way ANOVA, p < 0.01 for “Duration” fac-
tor) (Fig. 6E and F). In the proximal intestine, short-
term fasting followed by refeeding notably impacted 
muc2 gene expression, showing a significant increase 
between days 5 and 8  days of refeeding (1-way 
ANOVA, p < 0.001) (Fig.  6E). Similarly, in the dis-
tal intestine, short-term fasting followed by refeeding 
led to a significant upregulation of muc2 on day 8 of 
refeeding compared to both fasted fish and fish refed 
for 5  days. However, the expression of muc2 after 
2 days of refeeding did not differ from that measured 
for fasted fish, and on days 5 and 8 (1-way ANOVA, 
p < 0.01) (Fig. 6F).

The expression of the proliferating cell nuclear 
antigen (pcna) gene, which plays a role in DNA 
replication and cell proliferation, was early regu-
lated by the diet in the proximal intestine during 
the refeeding period. It was observed to be lower in 
fish fed the PAP + YE diet compared to that fed the 
PAP diet. The expression of pcna in the CTL group 
did not show significant differences compared to the 
other two diets (2-way ANOVA, p < 0.05 for “Diet” 

factor) (Fig.  6G). In the distal part, no early effect 
of experimental feeds was observed on pcna gene 
expression (2-way ANOVA, p > 0.05 for “Diet” fac-
tor) (Fig. 6H). In both proximal and distal parts, the 
duration of the refeeding period had a significant 
effect on pcna expression (2-way ANOVA, p < 0.01 
for “Duration” factor) (Fig. 6G and H). In the distal 
and proximal intestine, pcna expression increased 
after 2 days of refeeding, then rose again between 2 
and 8 days of refeeding. The expression level of pcna 
on the fifth day of refeeding was significantly higher 
than in fasted fish but not different from the expres-
sion levels observed in fish refed for 2 or 8  days 
(Kruskal–Wallis, p < 0.001) (Fig.  6G). In the distal 
part, pcna expression was initially lower in fasted 
fish, then significantly increased on day 2 of refeeding 
before decreasing on day 5, but its expression levels 
after 5 and 8 days of refeeding remained nonetheless 
higher than those of the fasted fish (Kruskal–Wallis, 
p < 0.001) (Fig. 6H).

Coagulation‑related gene expression

In the proximal and distal intestine, expression of the 
fibrinogen beta chain (fbg) gene was too low (Ct ≥ 32) 
to be quantified adequately using RT-qPCR (Ct ≥ 32).

In both parts of the intestine, cd9 gene expression 
was not early affected by experimental feeds 
(2-way ANOVA, p > 0.05 for “Diet” factor) but was 
significantly modulated by the duration of refeeding 
(2-way ANOVA, p < 0.05 for “Duration” factor) 
(Fig.  7A and B). A significant effect of short-term 
fasting followed by refeeding was highlighted in 
the proximal part of the intestine (Kruskal–Wallis, 
p < 0.001) (Fig. 7A) but not in the distal part (1-way 
ANOVA, p > 0.05) (Fig.  7B). In the proximal 
intestine, the cd9 gene was downregulated in fasted 
fish and on days 2 and 5 of refeeding, compared to 
day 8.

Endoplasmic reticulum stress–related gene 
expression

Expression of selenoprotein S (selenos) gene, involved 
in the endoplasmic reticulum stress response, was 
not early affected by the diets during refeeding in 
both parts of the intestine (2-way ANOVA, p > 0.05 
for “Diet” factor) (Fig.  8A and B). Duration of 
refeeding period did not impact selenos expression  

Fig. 3   Mean morphometric markers (+ standard deviation) 
(n = 6) of the proximal (A, C, and E) and distal (B, D, and F) 
intestine of rainbow trout after fasting and on three of the eight 
subsequent days of refeeding. CTL, commercial-like feed; 
PAP, terrestrial animal by-products feed; PAP + YE, PAP feed 
with 3% yeast extract. The p-values generated for the two sepa-
rate statistical analyses (early effect of experimental feeds and 
effect of short-term fasting followed by refeeding) are shown 
below each graph. Significant differences associated with the 
impact of short-term fasting followed by refeeding are indi-
cated by lower-case letters

◂
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in the proximal intestine (2-way ANOVA, p > 0.05 
for “Duration” factor) (Fig.  8A) but did have a sig-
nificant effect in the distal intestine (2-way ANOVA, 
p < 0.001 for “Duration” factor) (Fig. 8B). A signifi-
cant interaction between diet and time (Di:Du) was 
observed in the proximal intestine (2-way ANOVA, 
p < 0.001). A significant effect of short-term fast-
ing followed by refeeding was highlighted in the 

proximal and distal intestine. In the proximal section, 
selenos expression was strongly upregulated starting 
from 2 days of refeeding (1-way ANOVA, p < 0.001) 
(Fig. 8A). Similarly, in the distal part, selenos expres-
sion strongly increased after 2  days of refeeding, 
then decreased on days 5 and 8 without returning to 
the expression level of fasted fish (1-way ANOVA, 
p < 0.001) (Fig. 8B).

Fig. 4   Mean normalized expression (+ standard deviation) 
(n = 6) of c3 (A), α2m (B), prg4 (C), and miox (D) genes 
related to immunity, inflammation, and cell protection in the 
liver of rainbow trout after fasting and on three of the eight 
subsequent days of refeeding. CTL, commercial-like feed; 
PAP, terrestrial animal by-products feed; PAP + YE, PAP feed 
with 3% yeast extract. c3, main complement molecule C3; 

prg4, proteoglycan 4; miox, myo-inositol oxygenase; α2m, 
alpha-2-macroglobulin isoform X2. The p-values generated for 
the two separate statistical analyses (early effect of experimen-
tal feeds and effect of short-term fasting followed by refeeding) 
are shown below each graph. Significant differences associated 
with the impact of short-term fasting followed by refeeding are 
indicated by lower-case letters
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Discussion

The primary aim of this study was to assess the early 
impact of novel aquafeeds on plasma immune mark-
ers, hepatic and intestinal gene expression, and intes-
tinal histology of rainbow trout fed during 8  days 
with a conventional diet containing 19% fish meal 
(CTL diet) or two new diets in which the proteins pro-
vided by fish meal were replaced with proteins from 
terrestrial animal by-products, specifically dehydrated 
poultry proteins, hydrolyzed feather meal proteins, 
and proteins from pork and poultry blood (PAP and 
PAP + YE diets). One of the two diets based on ani-
mal by-products was supplemented with 3% yeast 
extract (PAP + YE diet).

As shown in our previous study (Frohn et  al. 
2024), the use of a diet based on terrestrial animal by-
product reduced the growth performances of juvenile 
rainbow trout, but this could be partially counteracted 
by adding 3% yeast extract. Over a 12-week feeding 
period, we have shown that these significant differ-
ences in growth performances were accompanied by 
changes in the transcriptomic profiles of the liver and 

especially the distal intestine. The modulated genes 
were related mainly to the innate immune response, 
inflammation, coagulation, and the response to cel-
lular or pathogenic stress (Frohn et  al. 2024). To 
determine whether the long-term responses observed 
could be the result of an early response to the diets, 
we assessed the early effect of these same feeds 
(CTL, PAP, and PAP + YE diets) on specific plasma 
immune markers, the expression of genes involved in 
immunity, inflammation, coagulation, and cell pro-
tection in both liver and intestine, and the histology 
of the intestinal mucosa. Indeed, in a previous study 
on Atlantic salmon, the first 7  days of feeding with 
a plant-based diet induced early symptoms of inflam-
mation accompanied by shrinkage of intestinal villi, 
increased mucus production by goblet cells, and tran-
scriptomic changes for genes related to immune func-
tions (Sahlmann et al. 2013). In our study on rainbow 
trout, although the fishmeal-free PAP and PAP + YE 
diets contained 71.09% and 67.89% plant raw materi-
als, respectively, we did not highlight any major early 
effects of these novel feeds on plasma immune mark-
ers, liver and intestinal gene expression, and intestinal 

Fig. 5   Mean normalized expression (+ standard deviation) 
(n = 6) of il1β (A) and ch25h (B) genes related to inflamma-
tion and antiviral functions in the distal intestine of rainbow 
trout after fasting and on three of the eight subsequent days of 
refeeding. CTL, commercial-like feed; PAP, terrestrial animal 
by-products feed; PAP + YE, PAP feed with 3% yeast extract; 
il1β, interleukin-1 beta; ch25h, cholesterol 25-hydroxylase. 

The p-values generated for the two separate statistical analy-
ses (early effect of experimental feeds and effect of short-term 
fasting followed by refeeding) are shown below each graph. 
Significant differences associated with the impact of short-
term fasting followed by refeeding are indicated by lower-case 
letters
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Fig. 6   Mean normalized 
expression (+ standard 
deviation) (n = 6) of genes 
related to structure, mucus 
synthesis, and cell prolifera-
tion in the proximal (A, C, 
E, and G) and distal (B, 
D, F, and H) parts of the 
intestine of rainbow trout 
after fasting and on three of 
the eight subsequent days of 
refeeding. CTL, commer-
cial-like feed; PAP, ter-
restrial animal by-products 
feed; PAP + YE, PAP feed 
with 3% yeast extract; tjp3, 
tight junction protein 3; 
cldn15, claudin-15; muc2, 
mucin-2; pcna, proliferat-
ing cell nuclear antigen. 
The p-values generated for 
the two separate statisti-
cal analyses (early effect 
of experimental feeds and 
effect of short-term fasting 
followed by refeeding) are 
shown below each graph. 
Significant differences 
associated with the early 
effect of experimental 
feeds during refeeding are 
indicated by capital letters. 
Significant differences asso-
ciated with the impact of 
short-term fasting followed 
by refeeding are indicated 
by lower-case letters
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histology. Of all the parameters studied, only two 
intestinal genes were significantly modulated by the 
diets: pcna and cldn15. Over the 8 days of refeeding, 
pcna was upregulated from day 2 in the distal intes-
tine of fish fed the PAP diet, which could indicate a 
rapid resumption of cell proliferation with refeeding. 
The gene cldn15 was upregulated in the proximal 
intestine in response to yeast extract supplementa-
tion. These results may suggest that adding yeast as 
a feed additive in aquafeed could stimulate intestinal 
cell adhesion after dietary stress, and modulate tis-
sue permeability by preventing the entry of pathogens 
or toxic molecules (Zhang et  al. 2020). Early bene-
fits of including a yeast extract in the diet have been 
described for common carp (Cyprinus carpio) (Sakai 
et  al. 2001) and European sea bass (Dicentrarchus 
labrax) (Bagni et  al. 2005). However, we were not 
able to demonstrate an early influence on the immune 
response or intestinal structure of rainbow trout, as 
the other selected genes showed no expression or 
were not significantly impacted by the experimental 
feeds. Rainbow trout has already shown to be less 

sensitive than Atlantic salmon to plant-based diets 
including soybean meal (Refstie et al. 2000). Never-
theless, in the present study, we rather associate the 
lack of early effects more to the composition of the 
PAP and PAP + YE diets that were not strictly plant-
based. Each of these diets contained 17% of terrestrial 
animal by-products, ingredients that do not contain 
anti-nutritional factors (Bureau et  al. 1999; Oliva-
Teles et  al. 2015). Thus, these findings suggest that 
the long-term effects observed in our previous study 
by Frohn et al. (2024) were probably more related to 
chronic adaptation to the new diets than to an early 
reaction of the fish.

The second objective of this study was to evalu-
ate the effect of a short 4-day fast followed by 8 days 
of refeeding on the structure of intestinal mucosa, 
plasma immune markers, and hepatic and intestinal 
transcriptomic responses. Indeed, intestinal mucosa 
and the liver are key organs involved in metabolism 
and maintenance of homeostasis and play a major 
role in immunity and protective functions. Although 
fish can survive fasting for several weeks, it can 

Fig. 7   Mean normalized expression (+ standard deviation) 
(n = 6) of the cd9 gene, involved in coagulation, in the proxi-
mal (A) and distal (B) intestine of rainbow trout after fasting 
and on three of the eight subsequent days of refeeding. CTL, 
commercial-like feed; PAP, terrestrial animal by-products feed; 
PAP + YE, PAP feed with 3% yeast extract; cd9, CD9 protein. 

The p-values generated for the two separate statistical analy-
ses (early effect of experimental feeds and effect of short-term 
fasting followed by refeeding) are shown below each graph. 
Significant differences associated with the impact of short-
term fasting followed by refeeding are indicated by lower-case 
letters
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cause early structural changes, induce the production 
of immune mediators, and modulate transcriptomic 
responses within the first 2 weeks of feed deprivation 
(Enyu and Shu-Chien 2011; Secombes et  al. 2011; 
Bar and Volkoff 2012; Mohapatra et  al. 2015; Waa-
gbø et al. 2017; Song et al. 2019). In the present study 
on rainbow trout, 4-day fasting followed by refeeding 
had no significant impact on plasma immune markers 
but modulated gene expression in the proximal and 
distal intestine and affected the structure of the intes-
tinal mucosa.

Depending on the fish species, fasting influences 
plasma immune markers within the first few days 
of feed deprivation, and its influence is likely to 
increase if fasting lasts more than 2 weeks (Pascual 
et  al. 2003; Morales et  al. 2004; Feng et  al. 2011; 
Najafi et  al. 2014; Eslamloo et  al. 2017; Li et  al. 
2019; Sakyi et al. 2020; Bu et al. 2021). In fish, the 
complement pathway, which is part of innate immu-
nity and groups together proteins involved in lysis 
and elimination of pathogens, can be influenced 
by short- or long-term fasting. For example, tinfoil 

barb (Barbonymus schwanenfeldii) and crucian carp 
(Carassius auratus), exposed to short- (2  weeks) 
and long-term (60  days) fasting, respectively, 
showed a significant decrease in plasma alternative 
complement activity (Eslamloo et al. 2017; Li et al. 
2019). Thus, nutrient deprivation could weaken the 
innate immune system, which in turn could reduce 
the ability to fight pathogens. In our study on rain-
bow trout, a decrease in plasma complement path-
way activity was not observed, likely due to appli-
cation of a much shorter fasting period than in the 
above-mentioned studies. Lysozyme, also part of 
innate immunity, protects against bacterial infec-
tions when released by phagocytes. In the present 
study, the short fasting period did not seem to influ-
ence plasma lysozyme activity in rainbow trout, as 
it was similar for fasted and refed fish. In the liter-
ature, the influence of fasting on plasma lysozyme 
activity is often described as being dependent on 
the species studied and the duration of feed depri-
vation (Bowden 2008). For tinfoil barb, Eslamloo 
et  al. (2017) showed that 1  week of fasting was 

Fig. 8   Mean normalized expression (+ standard deviation) 
(n = 6) of the selenoprotein S (selenos) gene, involved in the 
endoplasmic reticulum stress response, in the proximal (A) and 
distal (B) intestine of rainbow trout after fasting and on three 
of the eight subsequent days of refeeding. CTL, commercial-
like feed; PAP, terrestrial animal by-products feed; PAP + YE, 

PAP feed with 3% yeast extract. The p-values generated for the 
two separate statistical analyses (early effect of experimental 
feeds and effect of short-term fasting followed by refeeding) 
are shown below each graph. Significant differences associated 
with the impact of short-term fasting followed by refeeding are 
indicated by lower-case letters
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sufficient to induce an increase in lysozyme activ-
ity, which then decreased sharply after 2  weeks of 
fasting. In Chinese sturgeon (Acipenser sinensis), 
43  days of fasting clearly induced lysozyme activ-
ity (Feng et  al. 2011), while prolonged fasting did 
not influence it in European sea bass, red seabream 
(Pagellus bogaraveo), or European eel (Anguilla 
anguilla) (Caruso et al. 2010). Peroxidase is an anti-
oxidant enzyme involved in eliminating reactive 
oxygen species released during oxidative stress. In 
Chinese perch (Siniperca chuatsi), for example, fast-
ing can induce such oxidative stress (Bu et al. 2021). 
Moreover, several studies have demonstrated that 
plasma peroxidase can be induced soon after fast-
ing begins in fish. For example, in binni (Mesopo‑
tamichthys sharpeyi) fingerlings, plasma peroxidase 
activity was strongly induced on the eigth day of 
fasting (Najafi et al. 2014), while gilthead seabream 
(Saprus aurata) exhibited the highest peroxidase 
activity after 7 days of fasting (Pascual et al. 2003). 
However, some studies have shown that if fasting 
exceeds 2  weeks, peroxidase activity may sharply 
decrease due to fatigue of the antioxidant system 
(Morales et  al. 2004; Eslamloo et  al. 2017). In our 
study, however, this plasma immune marker was 
not affected by the 4-day fast followed by refeeding, 
which raises questions about the duration of fast-
ing required in rainbow trout to induce an increase 
in peroxidase activity. Plasma antiproteases protect 
against pathogens by inhibiting the proteases they 
release. However, the influence of fasting on anti-
protease activity remains poorly understood, with 
existing studies mainly focusing on tissues other 
than blood or analyzing antiprotease activity after 
a bacterial challenge (Eslamloo et al. 2017; Esteban 
et  al. 2020; Irungbam et  al. 2021). However, in a 
study involving Nile tilapia (Oreochromis niloticus) 
fasted for 21  days, a duration considerably longer 
than the 4-day fast experienced by rainbow trout 
in the current study, plasma antiprotease activity 
showed a significant increase followed by a decrease 
during refeeding. However, instead of being directly 
related to the immune function, these effects were 
associated to the inhibition of proteases that degrade 
dietary proteins, thereby preventing them from 
being digested and assimilated during prolonged 
fasting (Sakyi et  al. 2020). In contrast to what has 
been described above for other fish species, the short 
4-day fast followed by refeeding implemented in our 

study had no significant impact on plasma alterna-
tive complement pathway, lysozyme, antiprotease, 
or peroxidase activities, suggesting that it may be 
too short to impact these plasmatic markers in rain-
bow trout.

Although we did not observe systemic or histo-
logical inflammation in response to the 4-day fast, 
the expression of certain genes related to immunity, 
inflammation, and cell protection in the liver and 
intestine differed between fasted and refed fish. In 
agreement with observations on red porgy (Pagrus 
pagrus), Atlantic salmon (Salmo salar), and Japanese 
grenadier anchovy (Coilia nasus) (Martin et al. 2010; 
Caruso et al. 2012; Wang et al. 2021), hepatic expres-
sion of the complement c3 gene in rainbow trout was 
highest after 2  days of refeeding. In our study, its 
expression was not significantly lower in fasted fish, 
perhaps because the fasting period was shorter than 
those applied in the three above-mentioned stud-
ies which used fasting periods ranging from 14 to 
28  days. The protein encoded by the a2m gene was 
upregulated in the liver of fasted trout, proposing 
early regulation of acute-phase protein homeosta-
sis after a 4-day fast. The opposite was observed in 
red porgy and Japanese grenadier anchovy, but these 
fish were subjected to a longer fast, suggesting that 
prolonged fasting may decrease the activity of this 
acute-phase protein in fish (Caruso et al. 2012; Wang 
et al. 2021). To our knowledge, our study is the first 
report on the influence of fasting on prg4 expression 
in fish. prg4 encodes a proteoglycan that stimulates 
macrophages during inflammation (Krawetz et  al. 
2022). In the liver of rainbow trout, its expression 
decreased between 2 and 8  days of refeeding, even 
though expression levels during the refeeding phase 
did not show a statistically significant difference com-
pared to fasting. In the intestine, except for genes 
encoding cholesterol 25-hydroxylase (ch25h) and 
interleukin-1β (il1β), genes related to immune and 
inflammatory responses were not expressed, or their 
expression was too low to be adequately quantified 
in the proximal and distal parts of the intestine. The 
gene ch25h has been related to inflammatory patholo-
gies such as Alzheimer’s disease and atherosclerosis 
in humans (Liu et al. 2013; Lathe et al. 2014). Addi-
tionally, it has been associated to viral infections in 
Atlantic salmon (Krasnov et  al. 2021). In our study, 
while we observed a higher expression of ch25h in 
fasted fish and a strong but temporary upregulation of 
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il1β in response to refeeding, these findings are not 
sufficient to indicate that short 4-day fast followed 
by refeeding can induce an immune or inflammatory 
reaction in the intestine of rainbow trout. In addition, 
histological analysis of the intestinal mucosa con-
firmed that there were no signs of inflammation (i.e., 
increased number of mucus cells and shriveling of the 
intestinal mucosa). In fact, the intestinal expression 
levels of genes related to inflammation and immu-
nity in fish appear to be more influenced by long-term 
fasting period exceeding 2 weeks as it has been pre-
viously described for grass carp (Ctenopharyngodon 
idellus), fresh water crayfish marron (Cherax cai‑
nii), Songpu mirror carp (Cyprinus carpio L.), and 
zebrafish (Danio rerio) (Tran et al. 2018; Foysal et al. 
2020; Zhao et al. 2022; Jawahar et al. 2022). Regard-
ing coagulation markers in the liver and intestine, 
although we could not quantify all genes related to 
this pathway due to low expressions, the downregu-
lation of cd9 gene in the proximal intestine of fasted 
fish suggests that fasting could contribute to reduc-
ing wound healing and clotting capacities, and that 
refeeding may restore these functions after 8 days in 
rainbow trout. Fasting impairs hemostasis and clot-
ting, as observed for traíra (Rios et al. 2005) and for 
rainbow trout (Salem et al. 2007), in which all tran-
scripts encoding proteins involved in blood coagula-
tion were downregulated in the liver during fasting. 
Finally, regarding the two selected markers associ-
ated with cell protection, only the miox gene, which 
encodes myo-inositol oxygenase, was upregulated 
in the liver of fasted rainbow trout compared to fish 
refed for 8 days. In Nile tilapia, myo-inositol is used 
as an osmolyte to protect cells and maintain normal 
cytoplasmic osmolarity under hypertonic conditions 
(Foroutan et al. 2022; Pan et al. 2023). In plants, spe-
cifically thale cress (Arabidopsis thaliana), miox is 
upregulated under low-nutrient conditions (Alford 
et  al. 2012). Given that fasting can stress cells and 
impair the osmolarity of rainbow trout (Salem et  al. 
2007), its upregulation in the liver of fasted fish seems 
consistent with its protective function. In this way, 
its downregulation after 8  days of refeeding could 
therefore be related to the presence of nutrients in the 
gut. In the intestine, especially in the distal section, 
the expression of selenos, a gene encoding a protein 
involved in protein folding in the endoplasmic reticu-
lum and in glucose metabolism, was also strongly 
influenced by the transition from fasting to refeeding 

by being significantly upregulated in refed fish. These 
results align with previous descriptions in mammals, 
indicating that selenoprotein S expression is regulated 
by glucose deprivation (Gao et al. 2004; Schröder and 
Kaufman 2005). In fish, feed deprivation is also likely 
to induce endoplasmic reticulum stress and conse-
quently a protein folding defect. Indeed, a study on 
Masu salmon (Oncorhynchus masou masou) showed 
that the transition from a 3-day fast to refeeding was 
accompanied by an overexpression of genes involved 
in protein folding in the first 24  h post-refeeding 
(Kondo et al. 2020). Overall, although not all markers 
considered in this study were influenced by the transi-
tion from 4-day fasting to refeeding, our results still 
suggest that short-term fasting is likely to influence 
the expression of several genes involved in immune 
and inflammatory functions, coagulation, cell protec-
tion, and endoplasmic reticulum stress. Even though 
fish are known to be capable of enduring fasts lasting 
several days, these gene expression variations suggest 
significant physiological adaptations of the animal in 
response to fasting.

Indeed, during fasting in fish, structural changes 
include atrophy of the digestive tract and a decrease 
in the length of the gut, followed by intestinal weight 
loss and a decrease in the surface area of the intesti-
nal mucosa. A decrease in gut length and mass has 
been observed in neon damselfish (Pomacentrus coe‑
lestis) subjected to 16 days of fasting, in javelin goby 
(Synechogobius hasta) after 7  days of fasting (Hall 
and Bellwood 1995; Zhou et  al. 2022), and in com-
mon carp (Cyprinus carpi) subjected to 6  months 
of starvation (Gas and Noailliac-Depeyre 1976). As 
shown for traíra (Hoplias malabaricus), a decrease in 
gut length can also be accompanied by a decrease in 
the height of intestinal mucosa and the villi surface 
area (Rios et  al. 2004). In the present study, short-
term fasting followed by refeeding had no signifi-
cant effect on intestinal villi height in the proximal 
or distal intestine of the rainbow trout. However, villi 
surface area in the proximal intestine significantly 
increased after 8 days of refeeding compared to fasted 
fish, which indicates a strong relation between refeed-
ing and absorptive capacity. This increase in villi sur-
face area is also consistent with the upregulation of 
pcna in the proximal intestine of rainbow trout dur-
ing refeeding, results that were also observed in the 
intestine of frogs (Xenopus laevis) refed after fast-
ing (Tamaoki et al. 2016). Although pcna expression 
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was similarly regulated in the proximal and distal 
parts in response to refeeding, no significant increase 
in villi surface area was observed in the distal intes-
tine. This shift is certainly associated to the transit 
of feed and nutrients through the gut, which reaches 
the distal part last. However, our results are consist-
ent with previous observations made in salmonids. 
Indeed, for short- or medium-term fasting, the gut 
responds rapidly to fasting, and the effects seem to 
be reversible upon refeeding, as described for rain-
bow trout and Atlantic salmon being respectively 
fasted for 3 weeks and 40 days (Weatherley and Gill 
1981; Krogdahl and Marie Bakke-McKellep 2005). 
Regarding the expression of genes involved in entero-
cyte adhesion and intestinal permeability, tjp3 and 
cldn15 were modulated by the transition from fast-
ing to refeeding, which provides further evidence of 
the influence of short-term fasting (< 2  weeks) on 
gut structure. However, the response of genes encod-
ing tight junction proteins differed between the sec-
tions of the intestine: the distal section seemed to 
respond earlier to refeeding, which could indicate its 
higher sensitivity to dietary changes (Van Den Ingh 
et  al. 1991; Baeverfjord and Krogdahl 1996). Like 
tight junction proteins, goblet cells play an important 
role in maintaining intestinal homeostasis since they 
produce intestinal mucus and are present throughout 
the digestive tract. As a lubricant, mucus facilitates 
the passage of feed and nutrients through the gut and 
protects the intestinal mucosa (Khojasteh 2012). In 
our study, although short-term fasting did not sig-
nificantly influence the density of mucus cells in the 
distal intestine of rainbow trout, the number of goblet 
cells increased after 2 days of refeeding in the proxi-
mal intestine, probably in response to the presence of 
feed in the digestive tract. Conversely, the modula-
tion observed for muc2 gene expression (i.e., low in 
fasted fish but higher in both sections of the intestine 
after 8  days of refeeding) supports the observations 
made for northern pike (Esox lucius) and southern 
catfish (Silurus meridionalis) showing that mucus 
cell dynamic can vary depending on whether the fish 
is fed or not (Bucke 1971; Zeng et al. 2012). Overall, 
although we observed shifted expression dynamics in 
some gene expressions between the two parts of the 
intestine, our results indicate that even a short 4-day 
fast followed by refeeding can impact transcriptomic 
markers involved in structure, cell adhesion, and pro-
liferation and mucus production. Furthermore, the 

short fast followed by refeeding appears to have more 
influenced the villi surface area and the density of 
goblet cells in the proximal intestine, but we assume 
that similar effects might have been observed in the 
distal part if the duration of fasting had been longer 
than 4 days.

In conclusion, diets based on terrestrial by-prod-
ucts supplemented or not with yeast extract did not 
have an early major impact on blood plasma immu-
nity, hepatic and intestinal specific gene expression, 
and intestinal histology of rainbow trout during 
8 days of feeding. Thus, the reduction in growth per-
formance associated to the PAP diet, the improve-
ment of this diet with the addition of yeast extract, 
and the changes in hepatic and intestinal transcrip-
tomic profile observed during 12  weeks of feeding 
(Frohn et  al. 2024) may not be related to an early 
response, but rather to long-term adaptation of fish. 
Nevertheless, our study demonstrated that short-term 
fasting can have a significant impact on rainbow trout 
physiology. Although there was no impact on plasma 
immune markers, the 4-day fast followed by refeed-
ing impacted intestinal histology and modulated the 
expression of certain genes related to inflammation 
and immunity, coagulation, structure, cell protection, 
and endoplasmic reticulum stress, in the liver and 
intestine. Given that these periods of short fasting are 
often applied in fish farms before animal handling, 
to increase survival, maintain growth, or improve 
the immune defenses of fish in situations of stress or 
epizootic disease, the effects highlighted in this study 
will need to be examined in greater depth in future 
studies, to confirm the real benefits or disadvantages 
of this type of practice.
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