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ABSTRACT
The microwave-derived vegetation optical depth (VOD) products were used to monitor above-
ground biomass (AGB) at regional to global scales, but the ability of VOD to monitor AGB in 
China is uncertain. This study evaluated the sensitivity of four VOD products (e.g. L-VOD, IB- 
VOD, LPDR-VOD, and Liu-VOD) and optical vegetation indices (VI) (e.g. NDVI, EVI, LAI, and tree 
cover from MODIS) to the AGB across China. Our results showed tree cover product has the 
highest spatial agreement with reference AGBs (indicated by the median correlation value of 
0.85), followed by L-VOD (with a median correlation value of 0.80), which performs better than 
other VIs and VODs. Further comparisons between reference and estimated AGB computed 
using the fitted logistic regression showed that AGB estimations from tree cover and L-VOD 
outperformed the estimations from other VIs and VODs over most vegetation types (except 
forest), indicated by the higher median correlation value of 0.86 and 0.83 and lower RMSD of 
23.9 and 27.3 Mg/ha, respectively. The good performance of tree cover could be partly due to 
that tree cover product is not independent from the reference AGBs. The good performance of 
L-VOD can be explained by its higher sensitivity to the vegetation characteristics of the entire 
canopy (including woody component), relative to other VODs and VIs. Among the six reference 
AGB products, Saatchi-WT and Saatchi-RF products were found to have the best correlations 
with VIs and VODs. This study demonstrates that microwave VODs, particularly L-VOD, are 
effective proxies for large-scale monitoring of vegetation AGB in China.
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1. Introduction

Aboveground biomass (AGB) serves as a crucial proxy 
for productivity, carbon sequestration and carbon bal-
ance capacity in terrestrial ecosystems (Houghton 2005; 
Scholze et al. 2017). Accurate estimation of AGB in 
terrestrial ecosystems is essential to accurately quantify 
carbon emissions and removals resulting from land use 
and climate change (Harris et al. 2021; Li et al. 2017; 
Yang et al. 2022). China’s forest coverage has achieved 
22.96%, and plays a significant role in the global carbon 
balance in terms of both carbon emissions and uptake 
(Jiang et al. 2022; Piao et al. 2009; Zhou et al. 2019). It is 
therefore critical to monitor the AGB stocks and its 
dynamics in China to mitigate climate change (Fang 
et al. 2018; Piao et al. 2022).

Remote sensing techniques that integrate multi-
source remote sensing datasets can greatly enhance 
the efficiency and precision of AGB mapping on 
a large scale (Harris et al. 2021; Rodriguez-Veiga 
et al. 2019; Xiao et al. 2019). Remote sensing datasets 
from optical, synthetic aperture radar (SAR), and light 
detection and ranging (LiDAR) have become 
a prevalent approach for AGB mapping (Chen et al.  
2023; Huang et al. 2022; Saatchi et al. 2011; Su et al.  
2016; Yang et al. 2023). Although LiDAR is considered 
as the most promising method for estimating AGB, 
there was no dedicated spaceborne LiDAR designed 
specifically to estimate vegetation AGC until the 
launch of Global Ecosystem Dynamics Investigation 
in 2019 (Wang et al. 2023). Among various remote 
sensing datasets, the optical vegetation indices (VIs) 
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(e.g. NDVI, EVI, and LAI) are frequently utilized as 
proxy for AGB monitoring (Xu et al. 2021; Zhang et al.  
2019), because VIs are calculated based on the spectral 
response of the vegetation and therefore can be used as 
an indirect indicator of AGB (Blackard et al. 2008; 
Myneni et al. 2001; Xu et al. 2020). VIs could provide 
better spatial coverage with high resolution and are 
available for long-term time series, which can provide 
effective global monitoring of vegetation trends (J. M. 
Chen et al. 2019; Qin et al. 2023). However, the optical 
VIs are known to be affected by clouds and aerosols, 
and suffered from the signal saturation problem in 
dense vegetation areas (Liao et al. 2020; Myers-Smith 
et al. 2020). Moreover, the retrieved AGB values using 
these approaches are generally available for only 
a single epoch, and therefore cannot be used to moni-
tor the temporal dynamics of AGB stocks (Brandt 
et al. 2018; Fan et al. 2019).

The vegetation optical depth (VOD), retrieved 
from satellite passive microwaves and directly propor-
tion to the vegetation water content, provides inde-
pendent data to monitor AGB dynamics at regional to 
global scales (Fan et al. 2019; Jones et al. 2011; Li et al.  
2021; Liu et al. 2015; Wigneron et al. 2021). Compared 
to optical VIs, VOD is sensitive to vegetation charac-
teristics of both leafy and woody components, and is 
mostly insensitive to atmospheric and cloud effects, 
thus is more sensitive to AGB (Dou et al. 2023; 
Wigneron et al. 1993; Zhao et al. 2021). AGB stocks 
have been monitored using VOD products from mul-
tiple microwave sensors, including the first long-term 
global VOD product (hereafter Liu-VOD) (Liu et al.  
2015), and the global land parameter data record 
(LPDR) X-band (10.7 GHz) VOD (hereafter LPDR- 
VOD) (Du et al. 2017). Although the P-band micro-
wave shows high sensitivity to AGB even in densely 
forests, there are still no available spaceborne P-band 
radar until the launch of Biomass mission scheduled in 
2024 (Quegan et al. 2019). The Chinese Terrestrial 
Water Resources Satellite (TWRS) at L-band is under 
development, will provide global vegetation water 
content and soil moisture by combining L-band active 
and passive microwave (Zhao et al. 2020). Recently, 
VOD at L-band (1.4 GHz) (L-VOD), derived from 
low-frequency passive microwave satellite Soil 
Moisture and Ocean Salinity (SMOS), has been estab-
lished as a promising index for monitoring the AGB 
dynamics over tropics (Brandt et al. 2018; Fan et al.  
2023; Tong et al. 2020; Wigneron et al. 2020). This is 
due to the microwave observation at L-band has 
a stronger penetration capacity because of the long 
wavelength, is thus less sensitive to saturation effects 
(Fan et al. 2019), relative to high-frequency VOD 
products.

Assessing the sensitivity of VIs and VODs products 
to AGB is a first and necessary step before using them 
in monitoring AGB dynamics over China. The 

performance of VODs products have been evaluated 
over tropical regions (Chaparro et al. 2019; Gevaert 
et al. 2016; Rodríguez-Fernández et al. 2018; Teubner 
et al. 2018) or on a limited frequency (Grant et al.  
2016; Lawrence et al. 2014; Li et al. 2020; Mialon et al.  
2020; Vittucci et al. 2019). However, the performance 
of VODs has not been quantified in China. For exam-
ple, the radio frequency interferences (RFI) have 
a significant impact on L-VOD measurements in 
China, which could decrease the performance of 
L-VOD on monitoring AGB in China (Chang et al.  
2023; Wigneron et al. 2021). Although LPDR-VOD 
and Liu-VOD are less affected by RFI, they could have 
saturation issue over the dense forests (Prigent and 
Jimenez 2021; Schmidt et al. 2023). Recently, an alter-
native X-band VOD product, developed by INRAE 
Bordeaux (hereafter IB-VOD) (Wang et al. 2021), 
have not yet assessed or comparative analyzed in 
China. Thus, further work is needed to quantify and 
compare the sensitivity of VODs to AGB at different 
frequencies and for different land cover classes in 
China.

Therefore, the objective of this study is to assess the 
performance of four VOD products (e.g. L-VOD, IB- 
VOD, LPDR-VOD, and Liu-VOD) and four optical 
VIs (e.g. NDVI, EVI, LAI, and tree cover) on monitor-
ing AGB across China.

2. Data

2.1. Microwave VOD products

2.1.1. L-VOD
The L-VOD was retrieved from the SMOS satellite using 
the SMOS-IC (INRA-CESBIO) algorithm (version 105) 
(Fan et al. 2019; Wigneron et al. 2017). The L-VOD 
product was retrieved by the L-band (1.4 GHz) micro-
wave emission of the biosphere (L-MEB) model, provid-
ing daily global VOD and soil moisture (SM) dataset at 
a resolution of 0.25° for 2010–2021. In this study, the root 
mean square error between the measured and simulated 
brightness temperature associated with the L-VOD pro-
duct was used to filter out observations affected by RFI. 
Refer to Fan et al. (2019), observations affected by RFI 
larger than 10K were filtered out. In addition, observa-
tions with a strong topography, frozen conditions, and 
the sum of water, urban and ice fractions higher than 
10% were excluded (Fernandez-Moran et al. 2017). The 
SMOS-IC VOD product was selected because it has been 
shown to exhibit a stronger relationship with AGB than 
other SMOS products (Li et al. 2021; Rodríguez- 
Fernández et al. 2018).

2.1.2. IB-VOD
The IB-VOD product was retrieved from AMSR2 
X-band (10.7 GHz) descending data, using X-MEB 
(X-band microwave emission of the biosphere) 
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model (Wang et al. 2021), with a spatial resolution of 
0.25°. The X-MEB model is an extension of the L-MEB 
model (Fernandez-Moran et al. 2017; Wigneron et al.  
2007), and the values of the soil and vegetation para-
meters were calibrated for X-band. The IB-VOD 
showed competitive advantages with other X-VOD 
products and higher spatial and temporal correction 
than LAI or NDVI (Schmidt et al. 2023; Wang et al.  
2021).

2.1.3. LPDR-VOD
The LPDR-VOD was derived from the land parameter 
data record (LPDR, version 2), which was retrieved from 
AMSR-E and AMSR2 sensors at 10.7 GHz based on both 
ascending (13.30) and descending (01.30) data (Du et al.  
2017). The LPDR provides a long-term (2002–2021) 
global record of key environment variables which includ-
ing daily X-VOD (10.7 GHz) products at 0.25° resolu-
tion. The grid cells affected by frost conditions, large 
water bodies, strong precipitation or RFI were excluded 
using the quality assessment (QA) files (Kim et al. 2017).

2.1.4. Liu-VOD
The Liu-VOD was retrieved from three passive micro-
wave instruments: Special Sensor Microwave Imager 
(SSM/I), TRMM Microwave Imager (TMI) and 
AMSR-E, using the land parameter retrieval model 
(LPRM) (Liu et al. 2011). This product provides 
a continuous long-time series from 1993 to 2012 at 
0.25° resolution. The VOD values affected by open 
water bodies and frost conditions were corrected to 
improve the data quality (Liu et al. 2015).

2.2. Optical vegetation indices

We applied four optical VIs in this study that are 
commonly used to estimate AGB in the previous stu-
dies (Table 1), including:

(1) NDVI and EVI, provided by the monthly 
MODIS product (MOD13A3) at 1 km spatial 
resolution (Didan 2015), used as proxy for 
green vegetation cover (Hmimina et al. 2013; 

Huete et al. 2002) and biomass (Chen et al.  
2023; Myneni et al. 2001; Zhang et al. 2022).

(2) LAI, derived from 8-day MODIS product 
(MOD15A2) at 500 m spatial resolution (R. 
Myneni, Knyazikhin, and Park 2015), provid-
ing information on the amount and distribu-
tion of vegetation and its ability to exchange 
carbon, water, and energy with the atmosphere 
(Chen and Black 1992).

(3) Tree cover, derived from the MOD44B vegeta-
tion continuous fields (VCF) product, with 
a spatial resolution of 250 m (Dimiceli et al.  
2015). It was measured as the percentage of 
skylight blocked by trees that are at least 5 m 
(Hansen et al. 2003).

To reduce the impact of different temporal cov-
erages and gaps between the reference AGB and VIs/ 
VODs, the relationships between AGB and VODs/VIs 
were compared using the average value of VIs/VODs. 
The pixels affected by snow/ice, cloud cover, and non- 
land were filtered using the quality assessment (QA) 
layer accompanying the product. All VI products were 
aggregated to 0.25° through simple averaging to match 
the spatial resolution of VODs.

2.3. Aboveground biomass

This study used six AGB benchmark maps to assess the 
sensitivity of VIs and VODs to AGB (Table 1), including:

(1) Saatchi map, provides the AGB density for the 
pan-tropics at 1 km resolution for the early 
2000s (Saatchi et al. 2011). An updated version 
of global AGB density map for 2015 was used in 
this study (Carreiras et al. 2017).

(2) Baccini map, provides the AGB estimates for 
the pan-tropics at 500 m resolution (Baccini 
et al. 2012). An updated version that expands 
on the methodology presented in Baccini et al. 
(2012) and presents global biomass density at 
approximately 30 m resolution was used in this 
study (Baccini et al. 2017).

Table 1. Overview of the VODs, VIs, and reference AGB datasets used in this study.
Dataset Products/Sensor Period Spatial resolution Reference

L-VOD SMOS-IC V105 2013–2017 0.25° Fan et al. (2019)
IB-VOD AMSR2 2013–2017 0.25° M. Wang et al. (2021)
LPDR-VOD AMSR-E and AMSE2 2013–2017 0.25° Du et al. (2017)
Liu-VOD SSM/I,AMSR-E, MWRI, and Windsat 2008–2012 0.25° Liu et al. (2015)
NDVI MOD13A3 2013–2017 1 km Didan (2015)
EVI MOD13A3 2013–2017 1 km Didan (2015)
LAI MOD15A2 2013–2017 500 m R. Myneni et al. (2015)
Tree Cover MOD44B 2013–2017 250 m Dimiceli et al. (2015)
Saatchi – 2015 1 km Saatchi et al. (2011)
Baccini – 2007 30 m Baccini et al. (2012)
CCI – 2017 100 m Santoro et al. (2021)
Saatchi-WT – 2010s 1 km Chang et al. (2021) 

Chang et al. (2021)Saatchi-RF – 2010s 1 km
Su – 2004 1 km Su et al. (2016)
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(3) CCI map, presents a global map of AGB at 100  
m resolution for 2017 (Santoro et al. 2022). The 
CCI map was derived from a combination of 
multiple SAR observations (Sentinel-1, ALOS, 
and PALSAR).

(4) Saatchi-WT map, produced by merging the for-
est AGB map and non-forest AGB map 
(Supplementary Text) (Chang et al. 2021). The 
forest AGB map was estimated using the weight-
ing technique (WT) method to merge the five 
published AGB products (Baccini et al. 2012; 
Huang et al. 2019; Saatchi et al. 2011; Santoro 
et al. 2021; Su et al. 2016). Non-forest AGB map 
was from Saatchi map over non-forest regions.

(5) Saatchi-RF map, similar to Saatchi-WT map, pro-
duced by merging the forest AGB map and non- 
forest AGB map. The forest AGB map was esti-
mated based on the same datasets in WT map, 
but using random forest (RF) regression method 
(Supplementary Text) (Chang et al. 2021).

(6) Su map, estimating AGB in China forest at 1  
km resolution for 2004 (Su et al. 2016). The Su 
map was derived from a combination of 
LiDAR, optical imagery, and ground inventory 
data using random forest method.

These AGB products constituted the best benchmarks to 
date and have been used as benchmark maps for mon-
itoring the AGB dynamics over the global and tropics 
regions (Brandt et al. 2018; Fan et al. 2023; Qin et al.  
2021). In this study, the spatial resolution of all AGB 
maps were aggregated to 0.25° through simple averaging.

2.4. Land cover

The European Space Agency’s (ESA’s) Climate 
Change Initiative (CCI) L4 land cover data (ESA.  
2017) for 2015 was aggregated from 300 m to 0.25° 
by dominant class. We reclassified the land cover data 
into four classes (Figure S1 and Table S1), namely 
forest, shrubland, grassland, and cropland.

3. Methods

The reference AGB datasets were acquired from years 
2000 to 2015 (Table 1). Given the different temporal 
coverages and gaps between the reference AGB and 
VOD datasets, the relationships between AGB and 
VOD were estimated by comparing the reference AGBs 
with (1) the average value of L-VOD, IB-VOD, and 
LPDR-VOD during 2013–2017, (2) the average value 
of Liu-VOD during 2008–2012. Our study focused on 
carbon stocks in vegetation biomes, so we masked the 
non-vegetated pixels dominated by “settlement”, 
“water”, “bare and spare vegetation”, and “wetland”.

To ensure the relatively homogeneous land cover 
conditions, only pixels with a dominant fraction of single 

class higher than 80% are considered. To understand the 
sensitivity of VIs and VODs to AGB over the different 
land cover types, the relationships between reference 
AGBs and VIs/VODs with were analyzed for forest, 
shrubland, grassland, and cropland, respectively.

The relationship of VIs and VODs to AGB was 
indicated by the spatial correlation (R1) calculated by 
comparing the AGB datasets with VIs and VODs 
using the Pearson correlation coefficient (Entekhabi 
et al. 2010), defined as follows: 

R1 ¼

P
VOD � VOD
� �

AGBref � AGBref
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

VOD � VOD
� �2P AGBref � AGBref

� �2
q

(1) 

where VOD and AGBref is the values of VOD and 
reference AGB. VOD and AGBref is the average values 
of VOD and reference AGB. The p-value (0.05) was 
used to define the significance level of the correlation.

The regression relationship between VOD and 
AGB were established by empirical functions, includ-
ing the linear (Brandt et al. 2018), arctangent (Liu et al.  
2015; Qin et al. 2021), and logistic regressions 
(Rodríguez-Fernández et al. 2018). The linear and 
arcangent regressions were used to assess the carbon 
dynamic in tropical regions. We utilized a logistic 
regression equation to establish the relationship 
between the VIs/VODs and AGB (Fan et al. 2023): 

AGB ¼
a

1þ e� b VOD� cð Þ
þ d (2) 

where a, b, c, and d are regression parameters.
We applied the logistic regression (Equation (2)) 

with the fitted parameters (Table S2) to VOD products 
to estimate VOD-based AGB density (Mg/ha). Spatial 
correlation (R2) and root mean square deviation 
(RMSD), computed between estimated and reference 
AGBs, are used to assess the precision of AGB estima-
tions retrieved from various VIs and VODs products. 

R2 ¼

P
AGBref � AGBref
� �

AGBestimate � AGBestimate
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

AGBref � AGBref
� �2P AGBestimate � AGBestimate

� �2
q

(3) 

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

AGBref � AGBestimate
� �2

N

s

(4) 

where AGBref and AGBestimate is the value of reference 
and estimated AGB. AGBref and AGBestimate is the 
average values of reference and estimated AGB. All 
the above defined statistical metrics (R1, R2, and 
RMSD) were calculated using the overlapping pixels 
(including 8302 pixels covering 5.19 million km2) for 
VI and VOD products.
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4. Results

4.1. Spatial patterns of VODs, VIs, and AGB 
products

Our results showed that the spatial distribution of All 
VODs closely matches the distribution of VIs (Figure 1 
(a–f)). The highest VOD values are found in forests from 
southern and northeastern China, while the VOD values 
in temperate steppe/desert and Qinghai-Tibet plateau 
alpine vegetation are generally low. The same pattern 

can be observed in the reference AGB maps and the 
spatial patterns of all AGB estimates are quite similar 
(Figure 2(a–f)).

4.2. Relationship between VIs/VODs and AGB

4.2.1. The whole biomes
The spatial correlations (R1) between VIs/VODs and 
AGB, as estimated by six reference AGB maps, are 
summarized in Table 2. The density scatter plots are 

Figure 1. Spatial patterns of the VOD and VI maps over China. (a) SMOS-IC L-VOD, (b) IB X-VOD, (c) LPDR X-VOD, (d) liu-VOD, (e) 
NDVI, (f) EVI, (g) LAI, (h) tree cover. The numbers represents the mean ± SD of each product. Map review number: No. GS(2022) 
1561. Note that large differences in these six reference AGB estimates can be observed over the whole China (Table S3). For 
example, Saatchi map has the largest forest and shrubland AGB carbon stock values (11.49 Pg C for forest and 3.33 Pg C for 
shrubland), while CCI map has the largest grassland and cropland AGB carbon stock values (2.81 Pg C for grassland and 1.83 Pg C 
for cropland). On the contrary, the lowest AGB carbon stock values are from CCI map in forest (7.19 Pg C) and shrubland (2.45 Pg C), 
from Baccini map in grassland (0.47 Pg C) and cropland (0.43 Pg C), respectively. In consideration of the forest carbon stock in 
benchmark AGC maps (Table S3), the values range from 7.19 Pg C (CCI) to 11.49 Pg C (Saatchi). Considering these six reference AGB 
maps contain uncertainties and bias, and none can be considered reliable (Fan et al. 2019). Refer to the previous study, the median of 
these six maps were used to assess the relationships of VOD/VIs and AGB to avoid the potential uncertainties from a single AGB 
reference map (Cui et al. 2023; Rodríguez-Fernández et al. 2018).

Figure 2. Spatial patterns of the six reference AGB maps over China. (a) Saatchi, (b) Baccini, (c) CCI, (d) Saatchi-WT, (e) Saatchi-RF, 
and (f) su. Map review number: No. GS(2022)1561.
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presented in Figure 3 (with Saatchi) and Figure S2 
(with Baccini, CCI, Saatchi-WT, Saatchi-RF, and Su). 
Overall, all the scatter plots show a non-linear rela-
tionship between VIs/VODs and reference AGBs.

Considering the sensitivity of VIs to AGB, the high-
est correlation values were obtained for tree cover 
product (R1 = 0.79–0.92), followed by LAI (R1 = 0.60– 
0.78), while NDVI and EVI showed the lowest corre-
lation with reference AGBs (R1 = 0.49–0.65 for NDVI 
and R1 = 0.47–0.62 for EVI) (Table 2). It can be seen 
that the VIs such as NDVI and EVI saturate obviously 
along AGB values increasing sharply from 50 to 300  
Mg/ha (Figure 3(e,f) and Figure S2(e,f)). Compared 
with other VIs, the relationship between tree cover 
and reference AGBs can be observed to be almost 
linear (Figure 3(h) and Figure S2(h)), suggesting 
a good spatial agreement between tree cover product 
and reference AGBs.

With respect to VODs, L-VOD presented the 
highest correlation with reference AGBs (R1 = 0.76– 
0.85), followed by LPDR-VOD (R1 = 0.70–0.83), Liu- 
VOD (R1 = 0.65–0.81), and IB-VOD (R1 = 0.63–0.76) 

(Table 2). The scatterplots between L-VOD and 
reference AGBs showed a relatively higher disper-
sion when AGB >150 Mg/ha (Figure 3(a) and Figure 
S2(A)). For IB-VOD and LPDR-VOD, both of them 
trended to saturate with AGB values higher than 100  
Mg/ha (Figures 3(b–f) and Figure S2(b,c)). The scat-
terplots between Liu-VOD and reference AGBs 
showed a higher dispersion for high VOD values 
(~0.8), with AGB values spanning a range from 100 
to 300 Mg/ha (Figure 3(d) and Figure S2(d)). In 
summary, IB-VOD, LPDR-VOD and Liu-VOD pre-
sented saturation signals when AGB values are 
higher than 100 Mg/ha. L-VOD showed a higher 
spatial correlation to AGB, without strong signs of 
saturation, compared with IB-VOD, LPDR-VOD 
and Liu-VOD.

We computed the spatial correlations (R2) between 
reference AGBs and the AGBs estimated using the 
fitted logistic regression (Equation (2)) and calibrated 
parameters (Table S2). Overall, AGBs retrieved using 
tree cover product showed the best agreement with 
reference AGBs, with a median R2 value of 0.86 

Table 2. Spatial correlation (R1) between VIs/VODs and reference AGBs. All the correlations are significant considering the criteria 
p < 0.05.

Products L-VOD IB-VOD LPDR-VOD Liu-VOD NDVI EVI LAI Tree Cover

Saatchi 0.78 0.71 0.77 0.76 0.58 0.53 0.71 0.86
Baccini 0.78 0.63 0.71 0.65 0.54 0.53 0.75 0.84
CCI 0.79 0.64 0.70 0.70 0.49 0.47 0.60 0.79
Saatchi-WT 0.83 0.74 0.81 0.79 0.63 0.59 0.74 0.90
Saatchi-RF 0.85 0.76 0.83 0.81 0.65 0.62 0.78 0.92
Su 0.76 0.70 0.73 0.72 0.56 0.52 0.69 0.82

Figure 3. The spatial relationship (R1, R2, and RMSD (Mg/ha)) between Saatchi AGB and VIs/VODs from (a) L-VOD, (b) IB-VOD, (c) 
LPDR-VOD, (d) liu-VOD, (e) NDVI, (f) EVI, (g) LAI, and (h) tree cover for the whole biomes. R1 represents the spatial correlation 
between VIs/VODs and Saatchi AGB, R2 represents the spatial correlation between VIs/VODs estimated AGBs and Saatchi AGB. All 
the correlations are significant considering the criteria p < 0.05.
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ranging from 0.80 to 0.93, and a median RMSD value 
of 23.90 Mg/ha ranging from 17.34 to 31.70 Mg/ha 
(Table 3). Following tree cover product, LAI estimated 
AGBs showed lower correlation values (R2 = 0.62– 
0.80) with reference AGBs. It can be seen that the 
correlation values obtained by NDVI and EVI esti-
mated AGBs were the lowest (R2 = 0.49–0.75), with 
RMSD ranging from 23.40–47.70 Mg/ha (Figures 3 
(e–f) and Figure S2(E)-(F)).

With respect to VODs, the best estimation results 
were obtained from L-VOD (R2 = 0.79–0.88) and 
LPDR-VOD (R2 = 0.76–0.90), followed by IB-VOD 
(R2 = 0.72–0.86) and Liu-VOD (R2 = 0.65–0.81) 
(Figure 3(a–d) and Figure S2(A)-(D)). Considering 
both the R2 and RMSD metrics, it can be observed 
that L-VOD and LPDR-VOD estimated AGBs have 
almost comparable performance, with a median R2 of 
0.83 and 0.82 and RMSD of 27.30 and 26.80 Mg/ha, 
respectively.

4.2.2. Different land cover types
To understand the sensitivity of VIs and VODs to 
reference AGB over the different land cover types, 

we compared the VIs and VODs with AGB for forest, 
shrubland, grassland, and cropland, respectively. The 
relationship between VIs/VODs and AGB estimated 
from six reference AGB maps is shown in Figures 4–6 
(with Saatchi) and Figure S3-S6 (with Baccini, CCI, 
Saatchi-WT, Saatchi-RF, and Su) for different land 
cover types.

Over forest, it can be seen that tree cover and IB- 
VOD estimated AGBs have the highest correlation 
values (with median R2 value of 0.60 and 0.61) and 
lowest RMSD (with median RMSD value of 34.30 and 
34.25 Mg/ha) with reference AGBs (Figure 4 and 
Figure S3). LPDR-VOD estimated AGBs ranked the 
third highest correlation values (with a median R2 
value of 0.57, median RMSD value of 35.62 Mg/ha) 
with reference AGBs, and presented a better perfor-
mance than other VIs (LAI, NDVI, and EVI) esti-
mated AGBs (R2 = 0.31–0.32, RMSD = 40.58–40.95  
Mg/ha) and other VODs (L-VOD and Liu-VOD) esti-
mated AGBs (R2 = 0.23–0.33, RMSD = 40.99–41.56  
Mg/ha). However, our results showed that the VIs 
and VODs have a lower sensitivity to AGB in forest, 
relative to in other three land cover classes.

Table 3. Spatial correlation (R2) between VIs/VODs estimated AGBs and reference AGBs computed using the logistic regression. All 
the correlations are significant considering the criteria p < 0.05.

Products L-VOD IB-VOD LPDR-VOD Liu-VOD NDVI EVI LAI Tree Cover

Saatchi 0.82 0.83 0.84 0.80 0.67 0.56 0.72 0.87
Baccini 0.80 0.72 0.79 0.70 0.66 0.59 0.77 0.85
CCI 0.79 0.75 0.76 0.75 0.64 0.49 0.62 0.80
Saatchi-WT 0.85 0.85 0.87 0.84 0.73 0.62 0.75 0.90
Saatchi-RF 0.88 0.86 0.90 0.85 0.75 0.65 0.80 0.93
Su 0.79 0.78 0.79 0.76 0.62 0.53 0.69 0.83

Figure 4. The spatial relationship (R1, R2, and RMSD (Mg/ha)) between Saatchi AGB and VIs/VODs from (a) L-VOD, (b) IB-VOD, (c) 
LPDR-VOD, (d) liu-VOD, (e) NDVI, (f) EVI, (g) LAI, and (h) tree cover for the forest. R1 represents the spatial correlation between VIs/ 
VODs and Saatchi AGB, R2 represents the spatial correlation between VIs/VODs estimated AGBs and Saatchi AGB. All the 
correlations are significant considering the criteria p < 0.05.

GEO-SPATIAL INFORMATION SCIENCE 7



Over shrubland, it can be observed that tree cover 
estimated AGBs present the highest correlation values 
(R2 = 0.74–0.89) with reference AGBs, with RMSD 
ranging from 17.60 to 34.40 Mg/ha (Figure 5 and 
Figure S4). L-VOD estimated AGBs showed higher 
correlation values (R2 = 0.70–0.84) and lower RMSD 
(16.69–36.75 Mg/ha) with reference AGBs than 
LPDR-VOD (R2 = 0.64–0.82), IB-VOD (R2 = 0.60– 
0.75) and Liu-VOD (R2 = 0.58–0.77) in shrubland. 
When compared to L-VOD, both IB-VOD and LPDR- 
VOD still exhibit a somehow saturation effects for 

AGB values >100 Mg/ha in shrubland (Figures 5(b–c) 
and Figure S4(B)-(C)), and the saturation is more 
obvious for NDVI and EVI products (Figures 5(e–f) 
and Figure S4(E)-(F)).

Over grassland and cropland, the relationships 
between VIs/VODs and reference AGBs are observed 
to be closer to linear (Figure 6 and Figure S5-S6). For 
cropland, both AGBs retrieved using L-VOD and tree 
cover have similar accuracy against the reference AGBs, 
indicated by the correlation values (R2 = 0.53–0.78 for 
L-VOD and R2 = 0.54–0.77 for tree cover). For grassland, 

Figure 5. Same as Figure 3 but for shrubland. All the correlations are significant considering the criteria p < 0.05.

Figure 6. Same as Figure 3 but for grassland. All the correlations are significant considering the criteria p < 0.05.
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tree cover estimated AGBs showed the best correlation 
values (R2 = 0.62–0.69) with reference AGBs, followed by 
L-VOD estimated AGBs (R2 = 0.52–0.68) with RMSD 
ranging from 2.64 to 15.45 Mg/ha.

Overall, the correlation values obtained by tree 
cover was generally the highest over most vegetation 
types. With respect to VODs, the best performance 
was achieved with IB X-VOD for forest (with median 
R2 value of 0.61), and L-VOD for other three land 
cover classes, with median R2 value of 0.77 for shrub-
land, 0.56 for grassland, and 0.57 for cropland.

4.3. Inter-comparison between VIs/VODs and AGB

To compare the performance of VIs and VODs on 
monitoring AGB, the median values of evaluation 
metrics (i.e. R1, R2, and RMSD) associated with its 
standard errors were summarized (Figure 7). 
Considering all classes altogether, the highest 
correlation values were obtained by tree cover (with 
a median value of R1 = 0.85, R2 = 0.86), followed by 
L-VOD (R1 = 0.80, R2 = 0.83), LPDR-VOD (R1 = 0.76, 
R2 = 0.82). NDVI (R1 = 0.57, R2 = 0.68) and EVI 
(R1 = 0.54, R2 = 0.57) showed the lowest correlation 
values and highest RMSD (35.23 and 39.13 Mg/ha) 
with reference AGBs.

Among different land cover classes, the highest 
correlations values between VIs/VODs and AGB can 

be observed in shrubland, followed by grassland, crop-
land, and forest (Figure 7). For forest, the highest 
correlation values were obtained by tree cover (R1 = 0.48, 
R2 = 0.61), followed by IB-VOD (R1 = 0.34, R2 = 0.61) 
and LPDR-VOD (R1 = 0.29, R2 = 0.57). Also, tree cover 
showed the highest correlation with reference AGBs 
in shrubland (R1 = 0.82, R2 = 0.83) and grassland 
(R1 = 0.56, R2 = 0.59). L-VOD was better correlated 
to reference AGBs than other three VODs in 
shrubland and grassland. For cropland, L-VOD 
and tree cover product showed similar 
performances (R1 = 0.48, R2 = 0.57 for L-VOD and 
R1 = 0.47, R2 = 0.55 for tree cover). In summary, the 
correlation values obtained by tree cover was gen-
erally the highest over most vegetation types (e.g. 
forest, shrubland, and grassland). With respect to 
VODs, the best performance was achieved with IB 
X-VOD for forest, and L-VOD for other three land 
cover classes. IB-VOD and Liu-VOD exhibit similar 
performance across various vegetation types, such 
as shrubland, grassland, and cropland.

To compare the performance of different reference 
AGB products, the median values of evaluation 
metrics (i.e. R1, R2, and RMSD) of associated with its 
standard errors were summarized by different AGBs 
(Figure 8). Regarding the different reference AGB 
maps, the best correlation values of reference AGBs 
with VIs and VODs were generally observed in 

Figure 7. Comparison of median value of (a) R1, (b) R2, and (c) RMSD for the relationship between VIs/VODs and reference AGBs for 
different land cover classes. The error bars indicate the standard error of the metrics.

GEO-SPATIAL INFORMATION SCIENCE 9



Saatchi-RF map (with a median value of R1 = 0.75, R2  
= 0.83), followed by Saatchi-WT map (with a median 
value of R1 = 0.78, R2 = 0.80). In particular, the best 
correlation values of VIs/VODs estimated AGBs and 
reference AGBs were found with (1) Saatchi-WT map 
for forest, grassland, and cropland (with a median R2 
of 0.45, 0.50, and 0.44, respectively). (2) Saatchi-RF 
map (with a median R2 of 0.78) for shrubland.

5. Discussion

5.1. Sensitivity of VIs to AGB

It is noted that the correlations obtained by tree cover 
were generally the highest over most vegetation types 
(e.g. forest, shrubland, and grassland) (Figure 7). This 
suggests that tree cover product could well capture the 
spatial patterns of AGB. However, the possible reasons 
for this may partly be explained by the fact that the 
tree cover product is not independent from the refer-
ence AGBs, given that the other VIs such as NDVI, 
EVI, and LAI, were as input for the retrieval of refer-
ence AGBs (Baccini et al. 2012; Saatchi et al. 2011; Su 
et al. 2016), and these VIs and tree cover are all derived 
from MODIS reflectance bands. Compared to the 
ground reference data, previous studies showed that 
the MODIS tree cover product was substantially over-
estimated in croplands in regions, such as South 
America (Qin et al. 2017) and Southeast Asia 

(Leinenkugel et al. 2015). More accuracy assessments 
are needed to understand the tree cover uncertainties 
besides the assessment in Maryland and Brazil. The 
annual MODIS tree cover product is the averaged tree 
cover products generated by 30 image-based decision 
tree algorithms. Annual tree cover maps may not be 
comparable at a given pixel. Thus, analyzing MODIS 
tree cover changes at a given pixel in time series 
should be cautious (Leinenkugel et al. 2015).

Our results indicated that optical VIs such as NDVI 
and EVI have low correlations with reference AGBs, 
and saturated obviously over dense vegetation (e.g. 
forest and shrubland) with AGB values higher than 
50 Mg/ha (Figures 3 and 4), in agreement with pre-
vious studies (Grant et al. 2016; Rodríguez-Fernández 
et al. 2018). These results are likely to be related to the 
fact that NDVI and EVI are sensible to the green 
vegetation cover, which may not be strongly correlated 
with the total AGB in dense vegetation (Huete et al.  
2002).

5.2. Sensitivity of VODs to AGB

Our results showed that the spatial correlation 
between L-VOD and reference AGBs are higher than 
other VODs (Figure 7). This is due to that the VOD 
retrieved at L-band has a strong penetration capacity 
because of the long wavelength, and is therefore more 

Figure 8. Comparison of median value of (a) R1, (b) R2, and (c) RMSD for the relationship between reference AGBs and VIs/VODs for 
different land cover classes. The error bars indicate the standard error of the metrics.
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strongly correlated with vegetation characteristics of 
the entire canopy layer, including the woody compo-
nent (Fan et al. 2019; Li et al. 2020; Wigneron et al.  
2021). This is also in agreement with Li et al. (2021) 
findings which showed L-VOD are better correlated 
with Saatchi AGB (R1 = 0.79, R2 = 0.83) than higher 
frequency VOD (e.g. X-VOD and C-VOD) products 
at global scale.

Note that both of the IB-VOD and LPDR-VOD 
trended to saturate with AGB values higher than 100  
Mg/ha (Figures 3 and 4). This result supports the 
findings of Chaparro et al. (2019), who found VOD 
at higher frequencies (e.g. X-band and C-band), as 
well as optical indices, saturated in dense vegetation 
of tropic. This may lead to the uncertainties of AGB 
estimation using IB-VOD and LPDR-VOD in tropical 
forests of southern China. It is worth noting that the 
IB-VOD and LPDR-VOD products are particularly 
responsive to the top layer of the vegetation in the 
canopy, which makes them well-suited for tracking 
seasonal fluctuations in the green vegetation compo-
nents in areas with less dense vegetation (Frappart 
et al. 2020; Li et al. 2021). Moreover, X-VOD are less 
affected by RFI and available for long-term time series 
relative to L-VOD, which can provide effective global 
monitoring of vegetation trends (Du et al. 2017; Liu 
et al. 2015; Moesinger et al. 2020).

Our results showed that L-VOD has a low sen-
sitivity to AGB over the forest lands, relative to IB- 
VOD and LPDR-VOD (Figure 7). This can be 
partly explained by that the effects of RFI on 
L-VOD over China are generally strong 
(Fernandez-Moran et al. 2017), especially in south-
ern China where tropical and subtropical forests 
are mainly dominant (Figure S7), which could con-
sequently decrease the performance of L-VOD on 
monitoring forest AGB in China. It should be 
noted that the impact of RFI on L-VOD has sig-
nificantly decreased over China in recent years 
(Wigneron et al. 2021). Due to the relatively large 
pixel size (0.25°), a pixel may contain heterogeneity 
and include multiple land cover classes (e.g. forests, 
shrubs), which may also affect the performance of 
VODs for specific land cover class (Gevaert et al.  
2016). To ensure the relatively homogeneous land 
cover conditions, only pixels with a dominant frac-
tion of single class higher than 80% are considered. 
On the other hand, the different temporal cov-
erages and gaps between the datasets could also 
affect the performance of the comparison. Thus, 
the sensitivity to AGB were estimated by compar-
ing the reference AGBs with average value of VOD 
and VIs. Our results showed that the best correla-
tions of reference AGBs and VODs were generally 
found in Saatchi-RF maps and Saatchi-WT maps 
(Figure 8). This could be attributed to the fact that 
the two hybrid AGB maps (i.e. WT and RF) 

showed better agreement with the ground observa-
tions (Supplementary Text) (Tang et al. 2018). 
Recently, a refined SMOS multi-angular brightness 
temperature dataset spanning over a decade was 
generated based on a two-step regression approach, 
providing opportunities for retrieving land para-
meters such as VOD and soil moisture (Peng 
et al. 2023; Zhao et al. 2015). The synergistic use 
of VOD from different frequencies could provide 
a more comprehensive assessment of dynamic of 
vegetation AGB (Chaparro et al. 2019).

6. Conclusions

In this study, we evaluated the performance of four 
optical VIs (NDVI, EVI, LAI, and tree cover) and 
microwave-derived VODs (L-VOD, IB-VOD, 
LPDR-VOD, and Liu-VOD) for monitoring AGB 
across China. Tree cover was found to have the 
highest correlation (median R value of 0.85) with 
reference AGBs over most vegetation types (e.g. 
forest, shrubland, and grassland). Since L-VOD is 
more responsive to non-green vegetation compo-
nents such as trunks and branches, thus showing 
higher correlation (median R values of 0.80) with 
reference AGBs than the other VODs in China. 
However, L-VOD was found to have lower correla-
tions with reference AGBs than IB-VOD and LPDR- 
VOD in forest, which are mostly due to the effects of 
RFI on L-VOD over China are generally strong 
(Wigneron et al. 2021). Among the six reference 
AGB products, Saatchi-WT and Saatchi-RF were 
found to be better correlated with VIs and VODs 
than other AGB products.

This study provides the first comprehensive 
assessment of optical VIs and microwave VODs 
on monitoring AGB in China. The findings of 
this study suggested that L-VOD is a promising 
index for monitoring AGB stocks and dynamics 
in China. X-VOD is highly responsive to the 
green vegetation components, making it suitable 
for tracking temporal changes in vegetation at the 
top of the canopy (Frappart et al. 2020). It is valu-
able to synthesis these products to provide a more 
comprehensive assessment of the dynamics of 
vegetation (Mateo-Sanchis et al. 2019; Prigent and 
Jimenez 2021; Zhang et al. 2022). We expect our 
findings could enhance the accuracy of VOD 
retrieval algorithms and help to select the suitable 
VOD products to monitor AGB dynamics in 
China.
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