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Abstract
The hyperdiverse wood-inhabiting fungi play a crucial role in the global carbon cycle, 
but often are threatened by deadwood removal, particularly in temperate forests 
dominated by European beech (Fagus sylvatica) and Oriental beech (Fagus orientalis). 
To study the impact of abiotic drivers, deadwood factors, forest management and 
biogeographical patterns in forests of both beech species on fungal composition and 
diversity, we collected 215 deadwood-drilling samples in 18 forests from France to 
Armenia and identified fungi by meta-barcoding. In our analyses, we distinguished the 
patterns driven by rare, common, and dominant species using Hill numbers. Despite a 
broad overlap in species, the fungal composition with focus on rare species was deter-
mined by Fagus species, deadwood type, deadwood diameter, precipitation, tempera-
ture, and management status in decreasing order. Shifting the focus on common and 
dominant species, only Fagus species, both climate variables and deadwood type re-
mained. The richness of species within the deadwood objects increased significantly 
only with decay stage. Gamma diversity in European beech forests was higher than 
in Oriental beech forests. We revealed the highest gamma diversity for old-growth 
forests of European beech when focusing on dominant species. Our results implicate 
that deadwood retention efforts, focusing on dominant fungi species, critical for the 
decay process, should be distributed across precipitation and temperature gradients 
and both Fagus species. Strategies focusing on rare species should additionally focus 
on different diameters and on the conservation of old-growth forests.
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1  |  INTRODUC TION

In the western part of the Palearctic, temperate forests are dom-
inated by two species of Fagus: European beech Fagus sylvatica in 
the West and Oriental beech Fagus orientalis in the East, ranging 
from eastern Bulgaria to the Hyrcanian forest in Iran. The latter 
are often Arcto-tertiary relicts, harboring many endemic plants and 
animals (Aliev, 2021; Fayvush & Aleksanyan, 2021; Goginashvili & 
Tvauri, 2013; Mathew et al., 2000). While for European beech the 
impact of forest management on several taxa has been well studied 
during the last decades (Brunet et  al., 2010; Gossner et  al., 2013; 
Hagge et al., 2019; Morales-Hidalgo et al., 2015; Ódor et al., 2006), 
drivers of biodiversity in Oriental beech are not well understood. 
Most of the studies in European beech forests have identified the 
loss of old growth trees and the reduction of deadwood amount by 
forest management as critical for biodiversity (Brunet et al., 2010; 
Gossner et al., 2013). As a consequence, the amount of deadwood 
has been selected as one of nine pan European indicators for main-
tenance, conservation, and appropriate enhancement of the biologi-
cal diversity in forest ecosystems (Schuck et al., 2015).

Aware of the global responsibility for beech forest ecosystems, 
conservation strategies have increasingly focused on these ecosys-
tems. Today, European beech forests are well represented in the 
Natura 2000 network of protected areas (Bohn & Neuhäusl, 2000), 
while Oriental beech forests of the Caucasus region belong to 
the Emerald Network of Areas of Special Conservation Interest 
(Artsivadze et  al.,  2018; Fayvush et  al.,  2016). Moreover, several 
remnants of natural beech forests have received the UNESCO 
World Heritage designation, including “The Ancient and Primeval 
Beech Forests of Carpathians and Other Regions of Europe,” 
“Colchic Rainforests and Wetlands,” and the “Hyrcanian Forest” 
(UNESCO, 2013, 2019, 2021). Despite the unique fauna and flora 
of these Tertiary relicts, many managers of Oriental beech forests 
are often not aware of the key role of deadwood for biodiversity 
and ecosystem functioning. This became particularly clear when 
Iran decided to protect the whole Hyrcanian forest and restricted 
tree removal on deadwood and old growth trees, which would cause 
a major threat to deadwood organisms (Müller et al., 2016, 2017). 
This underlines the need to combine findings and research from 
regions of both beech species. Moreover, in the context of climate 
change, European forest managers are considering Oriental beech 
as a potential tree in the future (Mellert & Šeho, 2022). This seems 
justified because a recent presence of this species in Italy is proved 
from 45,000-year-old DNA pollen samples (Paffetti et al., 2007) and 
because many saproxylic species specialization to trees is more at 

the genus than the species level as shown recently for saproxylic 
beetles (Vogel et al., 2020).

Fungi form a functionally important and hyper-diverse group 
in beech forests, acting as mycorrhiza symbionts supporting for-
est productivity and as key decomposers of litter and deadwood. 
During deadwood decomposition, many coexisting fungi create 
habitat heterogeneity and new resources for many other wood in-
habiting organisms, and play a crucial role in nutrient cycling pro-
cesses (Boddy, 2001; Friess et al., 2019; Gessner et al., 2010; Parisi 
et al., 2018; Valentín et al., 2014). The lignin barrier with the cellulose 
and hemicelluloses of deadwood, which hinders the polysaccharides 
from microbial decomposition is only disintegrated and opened for 
other deadwood dwelling organisms by the help of fungi species and 
their various secretion of enzymes (Dix & Webster,  1995; Fengel 
& Wegener,  1983; Floudas et  al., 2012; Hoppe et  al., 2016; Liers 
et al., 2006; Stokland et al., 2012).

The drivers of wood-inhabiting fungi diversity in beech forest de-
pends on the spatial scale. At the local scale of a deadwood object, 
the tree species, decay stage, type of deadwood and microclimate 
are important drivers (Baber et  al., 2016; Daniel & Nilsson,  1998; 
Englmeier et al., 2023; Krah et al., 2018; Müller et al., 2020; Purahong 
et al., 2018; Rajala et al., 2012; Rayner & Boddy, 1988), all affected 
by local forest management (Abrego, Christensen, et  al.,  2017; 
Bässler et al., 2014; Müller, Engel, et al., 2007). At the larger scale, 
connectivity and macroclimate became more important. For ex-
ample, Abrego et al.  (2015), Abrego, Christensen, et al.  (2017) and 
Heilmann-Clausen et al. (2014) identified forest connectivity, condi-
tion and decay stage of substrates and the climate across European 
beech forests as the most important factor for fungal species com-
munities in protected areas. Furthermore, Ódor et al. (2006) inves-
tigated semi-natural beech forests in Europe and showed that the 
diversity of saproxylic organisms is driven mostly by climate and 
forest management, deadwood volume and habitat fragmentation. 
Finally, Hagge et al.  (2019) showed that the functional diversity of 
wood-inhabiting fungi European wide is determined by the latitude, 
elevation, forest cover, and urbanization.

Despite an increasing interest in beech forests of both Fagus 
species, systematic studies among the entire beech forest belt from 
France to Caucasus and Iran are widely missing. However, only in 
such a synopsis it is possible to test the influencing factors of the 
two beech species in comparison to local factors such as deadwood 
type, decomposition, diameter, climate, and management for biodi-
versity. To unify biodiversity research of wood-inhabiting fungi in 
European and Oriental beech forests, and to guide future conserva-
tion strategies, we conducted a sampling campaign from France in 
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the West to Armenia and Georgia in the East. Using drilling samples 
and metabarcoding, we aimed at identifying the drivers of fungal 
communities in Fagus forests of both species. In specific, we were 
interested in the impact of (1) large-scale factors, such as the Fagus 
species and the two climate variables temperature and precipitation; 
(2) stand scale factors such a forest management; and (3) and small-
scale factors such as the type of deadwood, decay stage, and diame-
ter of the tree objects. For this, we used the concept of Hill numbers 
and focused on rare, common and dominant species (Hill,  1973). 
The Hill number concept was applied for the tree-object scale (α-
diversity) and the scale of overall production and old-growth beech 
forests of both Fagus species (γ-diversity).

2  |  MATERIAL S AND METHODS

2.1  |  Study areas

We collected drilling samples from 215 deadwood objects in differ-
ent type of deadwood in production and old-growth beech domi-
nated forest stands in six countries during the 2021–2022 summer 
and autumn seasons: France, Germany, Ukraine, Bulgaria, Georgia, 
and Armenia. Bulgaria is the only country with both species of Fagus, 
where European beech from west to east is replaced by Oriental 
beech. The 18 forests investigated ranged from 65 to 1770 m above 
sea level (Table  1). For each plot, we extracted the extracted and 
used the local climatic variables mean annual temperature BIO1 and 
annual precipitation (BIO12) from WorldClim (Hijmans et al., 2005) 
grid data in 30 s resolution and calculated the mean values for a 
1-km radius around sampled localities, following the methodol-
ogy of Gossner et  al.  (2013). Both variables were correlated with 
a Pearson's correlation coefficient of −.54, allowing simulatanouse 
use in one model.

2.2  |  Field sampling

During the field sampling, we selected 10 deadwood beech items 
per site. Each item was a natural snag, natural log, or simply a stump. 
We chose only beech deadwood to exclude tree species effects be-
yond the genus Fagus. For each deadwood item, we recorded the 
type of deadwood (snag/standing tree, log, and stump), the diameter 
at breast height (DBH), the decay class (1–4; early, late early, middle, 
and late) (Müller-Using & Bartsch, 2009), the coordinates (WGS84 
world), the elevation and the Fagus species.

2.3  |  Fungal sampling

For collection of the molecular fungal community, we followed 
Rieker et  al.'s  (2022) sample protocol using disposable laboratory 
gloves (fresh pair for each item and disinfection before sampling), a 
knife for removing the outer bark surface of drilling position (to avoid 

contamination by random attached fragments and spores), spray 
bottle with 75% ethanol to disinfect the gloves and the drill after 
each object, Bunsen burner for flaming the drill and knife, the cord-
less drill with auger bits (10 mm diameter, 300 or 400 mm lengths), 
object with a diameter above 38 cm and then finally we drilled from 
both sides. We used Ziploc bags for collecting and storing the sam-
ples and labeling and a cool box with cold packs for transportation. 
The box was immediately placed inside the freezer at −20°C.

2.4  |  Laboratory work

2.4.1  |  DNA extraction and isolation

The total community DNA was extracted from 0.150 g homogenized 
wood samples using NucleoSpin Soil, Mini kit for DNA (MACHEREY-
NAGEL GmbH & Co. KG, Düren, Germany) following the manufac-
turer's protocol. Bead beating was run on a FastPrep-24 instrument 
(MPBiomedicals; 2 cycles of 30 s at speed 6.5). DNA concentrations 
were quantified using a NanoDrop UV–Vis spectrophotometer 
(Peqlab Biotechnologie GmbH, Erlangen, Germany). For sequenc-
ing the internal transcribed spacer (ITS2) regions of the fungal 18S 
rRNA gene, we applied for two-step, Nextera barcoded PCR libraries 
using the locus specific primer pair ITS3 (5′-GCA TCG ATG AAG AAC 
GCA GC-3′) and ITS4 (5′-TCC TCC GCT TAT TGA TAT GC-3′) with 20 
PCR cycles for the first step and 15 PCR cycles for the second step 
were created. Subsequently the PCR libraries were sequenced on an 
Illumina MiSeq platform using a v2 500 cycles kit.

2.4.2  |  Amplicon-metagenomics data analysis

The produced paired end reads, which passed Illumina's chastity 
filter, were subject to de-multiplexing and trimming of Illumina 
adaptor residuals using Illumina's bcl2fastq software version 
v2.20.0.422. The quality of the reads was checked with the soft-
ware FastQC version 0.11.8 and sequencing reads that fell below 
an average Q-score of 24 or had any uncalled bases (N) were re-
moved from further analysis. The locus specific ITS2 primers were 
trimmed from the sequencing reads with the software cutadapt 
v3.2. Paired-end reads were discarded if the primer could not 
be trimmed. Trimmed forward and reverse reads of each paired-
end read were merged to in-silico reform the sequenced molecule 
considering a minimum overlap of 15 bases using the software 
USEARCH version 11.0.667. Merged reads that contained am-
biguous bases or were outliers regarding the expected amplicon 
size distribution were also discarded. Samples that resulted in 
less than 5000 merged reads were also discarded, to not distort 
the statistical analysis. From the remaining reads the fungal ITS2 
subregions were extracted with help of the ITSx software suite 
v1.1.3 and its included database. The surviving reads were de-
noised using the UNOISE algorithm implemented in USEARCH to 
form zero-radius OTUs (zOTUs) also named amplicon sequence 
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variants (ASVs) discarding singletons and chimeras in the process. 
The resulting OTU abundance table was then filtered for possible 
barcode bleed-in contaminations using the UNCROSS algorithm. 
OTU sequences were compared to the reference sequences of 
the UNITE database provided by https://​www.​drive5.​com/​usear​
ch/​manual/​sintax_​downl​oads.​html, taxonomies were predicted 
and confidences were calculated using the SINTAX algorithm im-
plemented in USEARCH. The identification revealed very similar 
proportions of unidentified OTUs with 43% in Fagus orientalis and 
40% in Fagus sylvatica (Table  S1). DNA extraction, library con-
struction, sequencing and data analysis described in this section 
were performed by Microsynth AG (Balgach, Switzerland). For a 
list of OUT identifications, see Table S1.

2.4.3  |  Statistical analyses

All statistical analyses were performed using R 4.3.1 (R Core 
Team,  2021). To determine fungal species richness and commu-
nity composition, we followed two approaches. First, we used the 
observed species after excluding the records with only one read 
(Adamo et al., 2020). Removal of these records increase data qual-
ity for further analysis (Tedersoo et al., 2022). Second, we rarefied 
each community matrix (function rrarefy, package vegan by Oksanen 
et al., 2020). To determine a suitable rarefaction depth, we first cal-
culated the read sums for each sample. Based on this exercise, we 
decided to use a minimum of 990 reads per samle as rarefaction 
depth. As diversity analyses of communities from both approaches 
revealed very similar results, we present the results only for the ob-
served reads (first approach). We then calculated species richness 
for each object. Here, we are aware that OTUs are not equivalent 
to species but for reasons of readability, we chose the term species 
throughout the manuscript. Community matrices based on each log 
was calculated along the Hill numbers in “ecodist” package (Goslee 
& Urban, 2007) for dissimilarity indices representing a focus on rare 
(q = 0, Jaccard Index), common (q = 1, Horn Index) and dominant 
(q = 2, Morisita Horn) species (Chao et al., 2014). This allowed giving 
increasing weights to species with high abundances.

Different predictor sets for fungi community compositions at 
the object level were tested using multiple regression on distance 
matrices (MRMs) (Lichstein, 2007) as follows: First distance matri-
ces for the fungi composition for q = 0, 1, and 2 were created. In a 
second step, distance matrices were created for the management 
type (production/old-growth forests, Gower's distance), diameter 
of the deadwood object (Euclidian distance), temperature (Euclidian 
distance), precipitation (Euclidian distance), decay stage (Euclidian 
distance) and Fagus species (Gower distance). Since the two species 
are distributed along a longitudinal gradient, the predictor distance 
beech species was replaced in a second approach by a spatial dis-
tance (Euclidian distance) that considers the nested structure of the 
plots in the stands (Mamadashvili et al., 2023).

To model the species richness per deadwood object, we used 
a multiple negative binomial model as species numbers are count 

data. We included sampling site as a random factor to account for 
replicated measurements of different objects in a forest. As predic-
tors, we used Fagus species, temperature, precipitation, forest type, 
deadwood type, wood decay and diameter (see Table S1). We finally 
repeated all analyses based on the rarefied communities (see above). 
As this did not change the results, we present these results only in 
the supplement.

To compare the gamma diversity of wood-inhabiting fungi in 
production and old-growth forests of both Fagus species, we fitted 
rarefaction-extrapolation curves across all objects of each cate-
gory based on the incidences of fungi species per object using the 
function iNext in package iNext (Hsieh et al., 2016). To account for 
unequal sample coverage in the four categories due to variation in 
sampling size or even natural variation in sample completeness, we 
standardized by sample coverage as recommended by Chao and 
Jost  (2012). Non-overlapping confidence intervals indicate signifi-
cant differences.

3  |  RESULTS

In total, we found 548 OTUs in 215 deadwood objects of beech. 
European beech revealed more unique OTUs than Oriental beech, 
but the majority (62%) could be found in both (Figure 1). Moreover, 
it is important to note that twice as many deadwood items were 
sampled in European beech (n = 146) than in Oriental beech (n = 69) 
sampling sites (Figure 1).

Overall, the explained variance in fungal composition on the 
single object was low (0.22%–0.35%), however, the multiple re-
gression on distance matrices, identified significant environmen-
tal variables determining the community composition (Figure  2). 
For q = 0, the Fagus species, the type of deadwood, the diameter, 
the precipitation, and management were identified as significant 
variables in descending order. With increasing Hill-numbers, only 
Fagus species, temperature, precipitation, and type of deadwood 
remained significant determinants for community composition 
(Figure  2). However, as illustrated in Figure  3, the communities 
of both species showed a large overlap in wood-inhabiting fungi. 

F I G U R E  1 Venn diagram of fungal OTUs in the two Fagus 
species collected in 18 beech dominated forests, n, deadwood 
items sampled.

https://www.drive5.com/usearch/manual/sintax_downloads.html
https://www.drive5.com/usearch/manual/sintax_downloads.html
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Substituting the distance matrix Fagus species by a spatial dis-
tance matrix revealed similar results (Figure S1), indicating that the 
effect of Fagus species and space cannot be distinguished due to 
the biogeographical distribution of the two Fagus species. These 
results were robust even when using the rarified species commu-
nity (see R code in SM and Figure S2).

The richness of the single deadwood object (α-diversity) was 
more or less independent from our predictors with one exception. 
With increasing decay stage, the richness per object increased sig-
nificantly, which was again robust to the use of raw or rarified com-
munities (Table S2).

Grouping all objects in four categories made by the combina-
tion of two Fagus species and the two management status (old-
growth vs. production), the rarefaction-extrapolation curves 
showed higher γ-diversity for both groups from European beech 
than in Oriental beech with focus on rare species at the same sam-
ple coverage (Figure 4, q = 0). Focusing on dominant species, the 
highest diversity was found in old-growth European beech forests 
(Figure 4, q = 2).

4  |  DISCUSSION

Our systematic investigation of wood-inhabiting fungi in beech for-
ests from France to Armenia revealed overall high similarity in spe-
cies composition and a difference in α-diversity only by differences 
in decay stages. However, the species composition in European and 
Oriental beech revealed to be significantly different for all Hill num-
bers. Second, preciptation determined the species composition in all 
three Hill numbers. This underlines that large-scale drivers includ-
ing the both Fagus species and climate drive the overall very similar 
community of wood-inhabiting fungi. Local factors as deadwood 
type, decay stage and diameter were only relevant for distinguishing 
composition of rare species.

4.1  |  Fagus species is important

Current research of fungal communities related to different host 
species compared mostly different host tree genera showing 

F I G U R E  2 Multiple regression on 
distance matrices (MRM) coefficients 
of the predictors of the composition of 
fungi in 215 deadwood objects located 
in 18 beech dominated forests. Black 
bars indicate significance in MRM, with 
p < .05. Results are shown for rare (q = 0), 
common (q = 1) and dominant (q = 2) fungi 
species, gray-nonsignificant. Management 
compared production with old-growth 
forest stands, and Fagus species compared 
F. sylvatica with F. orientalis.

F I G U R E  3 Community composition of fungi species identified by meta-barcoding from 215 beech deadwood objects collected from 
Fagus sylvatica (Fs) and Fagus orientalis (Fo). Distance matrix for q = 0 is based on Jaccard Index, for q = 1 on Horn, and for q = 2 on Morisita-
Horn as in Figure 2.
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distinct fungal communities (Abrego, Norberg, et al., 2017; Englmeier 
et  al., 2023; Krah et  al.,  2018; Purahong et  al.,  2018). Therefore, 
our knowledge on differences in fungi within a host genus is rather 
scarce. Here our findings are a first confirmation that fungal species 
might differ even between very similar tree species within a genus. 
However, if looking at the distribution of OTUs between the two 
Fagus species and taking into account the OTUs that could be de-
tected in at least 10 samples, there were hardly any OTUs that only 
occur in one of the two Fagus species (Table S1). If this was the case, 
it was mostly unidentified species and exclusively on Fagus sylvatica 
but not on Fagus orientalis. This emphasizes that there are hardly any 
more frequently occurring unique fungal species/OTUs in Fagus ori-
entalis to be expected.

The limitation for identifying the role of host tree identity ver-
sus biogeography remains in our study, because both beech species 
are spatially separated from West to East. Hence, finally we can-
not distinguish between the impact of bioregion, history (Tertiary 
relicts in Oriental beech), and the host species and its traits itself. 
However, we can state that there are differences in fungi communi-
ties in deadwood of both species. Even earlier studies in European 
beech forests by Heilmann-Clausen et  al.  (2014) demonstrated a 
longitudinal effect on the composition of fungi in European beech 
forests and was discussed as an effect of differences in climate and 
land use history. Finally it is important to consider that some studies 
have shown that climate influence wood properties in F. orientalis 
(Topaloğlu et al., 2016) or in both Fagus species (Elzami, 2018), which 
might affect the fungal composition.

We focused in this study on fungi species identified only via me-
tabarcoding of wood samples. Studies on host effects with sporo-
carp surveys and metabarcoding revealed always a strong effect of 
the host identity on community composition in sporocarp datasets 
(Müller et  al.,  2020). Here sporocarp records represent probably 
more the dominant species in deadwood objects. This is further sup-
ported by the fact that the impact of host species for fungi by me-
tabarcoding increased toward common and dominant species along 

the Hill numbers in Müller et al. (2020). Similarly, in our data the role 
of the Fagus species increased toward dominant species (Figure 2). 
In summary, we found either relatively similar communities or more 
diverse communities on the α-  or on the γ-level in much younger 
European beech forests than in the Tertiary relicts of Oriental beech 
forests.

4.2  |  Precipitation is always important, 
temperature toward dominant species

A second important variable for determining fungi community com-
position, for all Hill numbers, was precipitation (Figure  2). In con-
trast, the temperature proved to be important only for communities 
focusing on typical and dominant species (Figure 2). Beech forests 
form very different temperate forest ecosystems from lowland to 
montane levels in both European and Oriental beech. With increas-
ing elevation, the precipitation regularly increases and temperature 
decreases which is one of the fundamental drivers for fungal compo-
sition (Bässler, Müller, Dziock, et al., 2010; Xu et al., 2023). Similarly, 
Heilmann-Clausen et al. (2014) identified elevation as an important 
driver for turnover in fungal species communities within European 
beech reserves in Europe as well. In contrast, along a local eleva-
tion gradient Bässler, Müller, Dziock, et al.  (2010) found structural 
parameters more important than the elevation gradient, which could 
not be confirmed in our large-scale study. However, in most of these 
local studies (Bässler, Müller, Hothorn, et al., 2010) temperature and 
precipitation are to highly correlated to be distinguished. Here, our 
wide range of plots and only limited correlation of both, allowed 
to identify precipitation as more important in general and particu-
larly for rare species communities, while the dominant communi-
ties were affected by both. This contrasts with studies from central 
Europe using wood-inhabiting fungi in specific (Heilmann-Clausen 
et al., 2014) and overall fungal diversity considering a broad range 
of guilds (Andrew et  al.,  2018). However, our spatial scale clearly 

F I G U R E  4 Gamma diversity of Beech forests of both Fagus species and in production as well as old-growth sites using rarefaction-
extrapolation curves based on sample coverage. Solid lines indicate rarefaction, dashed lines extrapolation curves. Nonoverlapping 
confidence bands indicate significant difference.
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exceeds the scale used in these studies which might explain the 
observed difference. Indeed, within increasing scale, both precipita-
tion and temperature become important and have been suggested 
to drive global fungal diversity (Mikryukov et  al., 2023; Tedersoo 
et al., 2014; Větrovský et al., 2019). As climate changes, tempera-
ture and precipitation are changing and many species shift their geo-
graphic range in these long-lasting ecosystems (Antão et al., 2022). 
From our findings, this is to be expected also for wood-inhabiting 
fungi (Bässler et al., 2016; Bässler, Müller, Hothorn, et al., 2010).

4.3  |  Gamma diversity of managed and unmanaged 
beech forests of both species

Splitting the samples in both beech species and management types, 
we found the highest diversity of dominant species in old-growth 
European beech forests, but not in production forests. No differ-
ence could be found between both management types in Oriental 
beech (Figure 4). This might indicate more impactful silviculture treat-
ment in European beech than in Oriental beech forests, leading to 
reduction of functional diversity in the former in terms of deadwood 
(Gossner et al., 2013). However, the highest diversity in old-growth 
European beech might be surprising as Oriental beech forests are 
in generally much older and some of them untouched at least since 
many centuries (Aliev, 2021; Kurz et al., 2023; UNESCO, 2013, 2019). 

Moreover, Oriental beech seems to be the older beech species har-
boring high levels of genetic diversity and should promote the diver-
sity of its inhabitants (Azaryan et al., 2022; Cardoni et al., 2022; Kurz 
et al., 2023; Müller et al., 2016). On the other hand, the geographical 
range of European beech is much larger (see Figure 5) and in general 
larger host ranges lead to higher diversity (Brändle & Brandl, 2001). 
Additionally, the larger the range in European beech the broader the 
climate niche can be assumed, which then should promote diversity of 
fungi (Elzami, 2018). Although, climate niche studies did not confirm 
a broader niche width in Oriental versus European beech (Mellert & 
Šeho, 2022). Another reason might be larger phylogenetic tree diver-
sity in European beech forests with oak in the lowlands and conifers as 
silver fir or spruce in higher altitudes, supporting more fungal species 
which might then jump over to beech deadwood (Krah et al., 2018). In 
contrast, most Fagus orientalis forests (with exception of Borjomi) lack 
conifers exhibiting in total a lower phylogenetic gamma diversity. On 
the other hand, wood-inhabiting fungi are highly mobile. Therefore, 
historically younger old-growth forests might be colonized success-
ful by more dominant fungi species, which still coexist. In contrast, it 
might be that over the time since the Tertiary diversity of dominant 
fungi has shrunk as result of the high and long-lasting competition. 
However, this suggestion remains to be confirmed in future studies, 
e.g. by experiments as in Englmeier et al. (2023).

Management affected the species composition of rare species, 
but not of common or dominant species. Here we have to keep in 

F I G U R E  5 Geographical distribution of European (Fagus sylvatica) and Oriental (F. orientalis) beech (Caudullo et al., 2017) and the location 
of the 18 sampling stands (old-growth and production forest stands) extending from the French Pyrenees to Armenia-Caucasus, investigated 
for saproxylic fungi communities in deadwood.
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mind that this effect was controlled for structural elements as dead-
wood type, diameter, or decay stage, which are respectively influ-
enced by forest management as well. This means that silvicultural 
management has comprehensive impacts on fungal composition at 
least for rare species. Such subtle effects of management on fungal 
communities have been shown along regional logging intensity gra-
dients in European beech forests in Germany (Bässler et al., 2014; 
Müller, Engel, et  al.,  2007) or in Spain (Abrego & Salcedo,  2011), 
where fungal communities in old reserves differed than communi-
ties in production forests. These studies identified species promoted 
or negatively affected by increasing forest management (Abrego, 
Norberg, et al., 2017; Bässler et al., 2014).

4.4  |  Type of deadwood is important for the 
rare species

Different types of deadwood offer very different substrates, e.g., 
from wet to dry (microclimate) conditions. This opens different 
environmental conditions for different species. Therefore, forests 
with high variation of deadwood types provide more different 
niches for more species (Uhl et al., 2022). In contrast, even large 
amount of deadwood dominated by similar types as after large 
scale disturbance, can lead to reduced fungal diversity (Beudert 
et  al., 2015), because wood-inhabiting fungi are highly competi-
tive (Boddy,  2021; Fukami et  al.,  2010). Regularly some domi-
nant species occupy the major deadwood resources successfully 
and outcompete other species (Vogel et al., 2017). This has been 
shown on the scale of petri dishes in the lab (Fukami et al., 2010), 
to field experiments (Hagge et al., 2019) and indicated by global 
experiments (Seibold et al., 2021). As a consequence, fungi often 
show overdispersion in assembly patterns and have more spe-
cies on more different objects as small twigs, when total resource 
volume is standardized (Bässler et al., 2014; Heilmann-clausen & 
Christensen, 2004) and the decay is faster with a few dominant 
but efficient species than with a high diversity of species includ-
ing many rare ones (Fukami et al., 2010). To escape the competi-
tion pressure, it seems therefore of advantage that deadwood is 
offered in many different types, which might have affected the 
composition in our data with focus on rare ones.

4.5  |  Diameter is important for the rare species

Bader et al. (1995) studied the deadwood size as an indicator for 
fungal diversity and showed that some species prefer well de-
cayed and large logs, which is the reason why such species were 
well abundant in old growth forest sites but they became rare 
with increasing human activities-cuttings. In addition, accord-
ing to Küffer and Senn-Irlet  (2005) more species of fungi tend 
to be on deadwood with various diameters. However, Heilmann-
clausen and Christensen  (2004) confirmed that the dead small 
trees and branches host higher diversity then large trees and 

larger logs do. Also, in production forest stands the main driver 
of deadwood fungi (and other saproxylic organisms) diversity is 
fine woody debris, which creates a general deadwood volume 
(Brabcová et al., 2022).

4.6  |  Wood decay stage as driver for 
species richness

Deadwood decomposition is a succession with distinct species turn-
overs over time in all organisms, including fungi (Fukasawa, 2018). 
Lindblad  (1998), Fukasawa et  al.  (2009) and Pouska et  al.  (2016) 
found a significant effect of deadwood decay stage on fungi species 
richness and community composition. In systematic surveys by fruit-
ing bodies and metabarcoding the decay stage was critical for fun-
gal species composition along the Hill numbers (Müller et al., 2020). 
This is in contrast with our study, as we could not confirmed these 
findings with our results. Here the main reason might be that our 
sampling did not cover a broader range of decay or the pattern on 
the large scale was overridden by other factors. However, we found 
decay stage as the only predictor to increase α-diversity per log 
(Table S1), which is in line with the findings from Bader et al. (1995) 
and Kubartová et al. (2012).

5  |  CONCLUSION FOR BIODIVERSIT Y 
CONSERVATION AND FOREST 
MANAGEMENT UNDER CLIMATE CHANGE

Our study provides some important implications for conservation 
and forest management. First, the high diversity and similarity of 
wood-inhabiting fungi in beech forests across the 4k kilometer of 
temperate forest belt supports the view of a highly mobile organism 
group with a lot of functional insurance in rare and dominant species. 
From a mycological perspective the skepticism againts the usage of 
Oriental beech in silviculture managment in Western Europe seems 
not to be justified. Reason for that is the fact that fungi communities 
of both Fagus species are very similar. For conservation, our results 
show that effort should be put on establishment of protected areas 
in different climate conditions for both Fagus species, as currently 
mirrored in the Natural Heritages. For local managers interested in 
enhancing diversity of wood-inhabiting fungi the retention of differ-
ent types of beech deadwood seems promising.
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