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Abstract

IPCC reports and climate change impact studies generally exploit ensembles of
climate projections based on different socio-economic pathways and climate mod-
els, which provide the temporal evolution of plausible future climates. However,
The Paris Agreement and many national and international commitments consider
adaptation and mitigation plans targeting future global warming levels. Model
uncertainty and scenario uncertainty typically affect both the crossing-time of
future warming levels and the climate features at a given global warming level.
In this study, we assess the uncertainties in a multi-model multi-member CMIP6
ensemble (MME) of seasonal and regional temperature and precipitation pro-
jections. In particular, we show that the uncertainties of regional temperature
projections are considerably reduced if considered at a specific global warming
level, with a limited effect of the emission scenarios and a reduced influence of
GCM sensitivity. We also describe in detail the large uncertainties related to the
different behavior of the GCMs in some regions.
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1 Introduction

A critical issue in climate change studies is the estimation of uncertainties in pro-

jections along with the contribution of the different uncertainty sources, including

scenario uncertainty, the different components of model uncertainty, and internal vari-

ability (see, e.g., Hawkins and Sutton, 2009). Scenario uncertainty is related to the

possible evolution of greenhouse gas emissions, which are implemented by a limited

number of socio-economic evolutions and related greenhouse gas emissions (e.g. the

Shared Socioeconomic Pathways, SSPs, in the last IPPC reports). Model uncertainty

corresponds to the dispersion between the different climate responses obtained with

different models (e.g. Global Climate Models, GCMs) for the same forcing configura-

tion. Internal variability is due to the chaotic variability of the climate (Deser et al,

2012).

Over the recent years, uncertainty in climate projections has been mostly explored

and partitioned based on Multi-model Multi-member Ensembles (MMEs) of tran-

sient climate projections. Various methods have been proposed for this, most of them

based on an Analysis of Variance (ANOVA) applied for different future time peri-

ods (Hawkins and Sutton, 2009; Yip et al, 2011; Paeth et al, 2017; Evin et al, 2019).

Instead of assessing the temporal evolution of climate variables, many recent stud-

ies, the IPCC special report on the impacts of global warming of 1.5◦C (IPCC, 2018)

and the Working Group I contribution to the AR6 (see, e.g. chapter 11, IPCC, 2021)

investigate the impacts of climate change according to certain reference levels of global

warming level (e.g. +1.5◦C or +2◦C above pre-industrial levels at the planetary scale),

hereafter denoted as GWL. Indeed, many national and international commitments to

reduce emissions, such as the Paris Agreement, target a precise level of global warming

which must not be exceeded.

Different approaches have been proposed to estimate projected changes as a func-

tion of the GWLs (Schleussner et al, 2016; Seneviratne et al, 2016; Wartenburger et al,
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2017; Baker et al, 2018; Dosio and Fischer, 2018; Nikulin et al, 2018; Sun et al, 2019).

James et al (2017) provide a detailed critical review of the different existing approaches

targeting specific GWLs based on available MMEs. A straightforward approach con-

sists of selecting a future 30-year period corresponding to the desired GWL for one

forcing scenario or comparing the impact of different warming levels by comparing

climate simulations obtained with different forcing scenarios (e.g. at the end of the

century). However, simulations obtained with different models with the same forcing

scenario have different global temperature responses (so-called climate sensitivity, see

e.g. Mauritzen et al, 2017) so that a warming level corresponds to different time win-

dows according to the GCM (Scafetta, 2021). To account for the climate sensitivity of

the climate model, a simple solution is to choose a different time slice for each model

(Vautard et al, 2014; Schleussner et al, 2016; Nikulin et al, 2018). In any case, the

choice of a future time window has the major drawback of being subject to multi-

decadal natural variability (Lehner and Deser, 2023) which leads to large uncertainties

in both the estimation of the GWL and the related impacts (i.e. regional variables).

Pattern scaling is another popular approach that exploits existing MMEs to relate

GWLs to local responses to climate change (Tebaldi and Arblaster, 2014; Herger et al,

2015; Tebaldi and Knutti, 2018). This approach applies linear regressions between the

regional/local variable of interest and GWLs, the slope of the regression providing a

direct estimate of the regional/local response per degree of GWL. An important advan-

tage of this approach is to dampen the influence of natural variability. These linear

relationships seem to be acceptable for seasonal temperature averages, less adapted for

seasonal precipitation averages (Tebaldi and Arblaster, 2014), and limited for other

variables (Lopez et al, 2014). Different initiatives have also been proposed to run cli-

mate simulations explicitly designed to target specified warming levels (Mitchell et al,

2017; Schleussner et al, 2018; Sun et al, 2019).
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This study proposes to adapt the Quasi-Ergodic ANOVA (QEANOVA) frame-

work considered in several previous studies (Hawkins and Sutton, 2009; Hingray and

Saïd, 2014; Evin et al, 2019) to assess the evolution of the climate responses and the

different uncertainties as a function of GWLs. The proposed approach builds upon

the strengths of the “Time sampling" and “Pattern scaling" approaches and applies

smoothing splines with high smoothing parameters to relate robust estimates of GWLs

(obtained from different forcing scenarios and GCMs) to robust estimates of the cli-

mate responses to climate change. This approach, by construction, shares the same

limitation as the “pattern scaling" and “time sampling" approaches in that it assumes

the climate response to a specific warming level is independent of the emission tra-

jectory whereas regional changes can be sensitive to the rate of warming, lags in the

climate system, emissions reductions, or temperature overshoot (James et al, 2017).

Typical examples of changes sensitive to the rate of warming include long-term sea level

changes (Schaeffer et al, 2012), ice cover (Gregory et al, 2004), or temperature-sensitive

biophysical systems (e.g. coral reefs, Frieler et al, 2013).

The current study aims to assess different uncertainties of the last Coupled Model

Intercomparison Project exercise (CMIP6) using a large MME of seasonal and regional

temperature and precipitation projections. One main objective of this study is to

provide a detailed understanding of the model uncertainties for this MME for a specific

warming level. The objectives are:

• to illustrate that projected changes of seasonal temperature evolve roughly linearly

as a function of global warming, for this CMIP6 multi-model multi-member ensemble

(MME), in line with previous studies (Tebaldi and Arblaster, 2014), but not at

the same rate for the different GCM, and have contrasted monotonic evolution for

seasonal precipitation,

• to present the spatial variability of these projected changes, and the corresponding

uncertainties (total uncertainty of the ensemble, GCM, and scenario uncertainties),
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• to show that GCM and scenario uncertainties for projected seasonal temperatures

are smaller when assessed as a function of global warming, compared to standard

uncertainty assessment as a function of time. In this case, the proposed approach

reconciles climate simulations obtained with different emission scenarios and with

GCMs having different climate sensitivity,

• to identify the regions (Arctic Ocean, Sahel) and seasons where projected changes

of seasonal temperature and precipitation are highly sensitive to the choice of

the GCM/SSP scenario. The particular behavior of some GCMs is highlighted in

comparison to the other GCMs of the MMEs.

Section 2 presents the MME used in this study, which is based on three different

emission scenarios and seven CMIP6 GCMs. For each scenario/GCM combination,

between five and ten members are used to provide projections of mean temperature

and precipitation for winter and summer seasons. Section 3.2 presents the methodology

applied in this paper, which follows up the so-called QUALYPSO approach applied in

Evin et al (2019); Bichet et al (2020); Evin et al (2021). Section 4 presents the mean

climate change response obtained with this CMIP6 MME for a warming level of 2◦C

and for the IPPC WGI reference regions, as well as the corresponding uncertainties,

and discuss these results in comparison to the materials presented in the literature.

Section 5 then describes the spatial patterns of GMC uncertainty and the different

responses of each GCM to a warming level of 2◦C concerning seasonal temperature and

precipitation changes. Section 6 then quantifies the decrease of the GCM uncertainties

that can be attributed to the GCM sensitivity, by comparing the uncertainties for a

warming level of 2◦C to the uncertainties around 2038, which corresponds to a mean

warming level of +2◦C. Section 7 discusses different aspects related to this study and

concludes.
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2 CMIP6 climate projections

This study exploits climate projections from seven CMIP6 GCMs driven by three

Shared Socioeconomic Pathways (SSPs, Riahi et al, 2017) which cover a wide range

of projected warming levels: SSP2-4.5, SSP3-7.0, and SSP5-8.5. Table 1 indicates the

list of selected GCMs and the corresponding number of members selected for each

GCM and SSP scenario (see Table S1 in the Supplement for the corresponding lists

of members). We also indicate the corresponding Transient climate response (TCR)

as provided in a supplement of Chapter 7 / WGI of the IPCC AR6 report (IPCC,

2021)1. This ensemble has been selected according to three criteria:

• Model independence: As illustrated by Brunner et al (2020), most of the CMIP6

GCMs share important similarities in terms of model structure, implementation,

and parameterization. Here, the selected models avoid important model redundancy

indicated in Figure 5 of Brunner et al (2020). One exception is ACCESS-CM2 and

UKESM1-0-LL which are similar and reach high warming levels. Both are kept in

this study because they do not necessarily lead to the same responses to climate

change.

• Range of TCR: The selected GCMs cover a wide range of TCR, from low TCR values

(MIROC6) to the highest TCR values among the CMIP6 GCMs (ACCESS-CM2,

UKESM1-0-LL).

• Number of members: A minimum of five members are required for each GCM and

SSP scenario. Several models (e.g. NorEMS2-MM, CESM2, EC-Earth3) could not

be included because they did not have enough members for the three SSP scenarios

and for the two variables investigated in this study: near-surface air temperature

(‘tas’) and precipitation (’pr’).

At the end, we select seven GCMs. For each GCM/SSP scenario, the maximum

number of members was limited to 10 which was deemed sufficient to obtain a fair

1https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter07_SM.pdf
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representation of the interannual variability of projected changes. In total, 177 simula-

tions of temperature and precipitation for the period 1850-2100 have been downloaded

at a monthly scale, and regridded onto a common 1◦ × 1◦ degree global grid using

a bilinear interpolation (cdo command cdo -remapbil,r360x180). These ensembles

are then aggregated temporally, for winter (DJF), spring (MAM), summer (JJA),

and autumn (SON) seasons, and spatially, over the 58 AR6-WGI Reference Regions

(Iturbide et al, 2020).

GCM
Number of members for

TCR ◦Ceach GCM/SSP scenario
SSP2-4.5 SSP3-7.0 SSP5-8.5

ACCESS-CM2 5 5 10 2.10
CanESM5 10 10 10 2.74

CNRM-ESM2-1 10 5 5 1.86
IPSL-CM6A-LR 7 10 5 2.32

MIROC6 10 10 10 1.55
MPI-ESM1-2-LR 10 10 10 1.84
UKESM1-0-LL 10 10 5 2.79

Table 1 Ensemble of CMIP6 climate projections selected in this
study: Name of the GCM, number of members selected for each
GCM/SSP scenario and Transient climate response (TCR) as
provided by the IPCC AR6 report (see Table 7.SM.5 in IPCC, 2021).

3 Methods

3.1 Global warming levels for each GCM

Climate simulations obtained from GCMs can be used to compute average temper-

atures at the planetary level. In this study, the global mean surface temperatures

(GMST) are averaged at an annual temporal scale over the period 1850-2014 for the

historical runs, and for the period 2015-2100 with the different SSPs, for each GCM

and the different members. These raw GMST values are smoothed using cubic splines

(implemented by the function smooth.spline in R software) with the df argument

of smooth.spline equal to 6, following the choices motivated by Rigal et al (2019);
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Ribes et al (2022). This high smoothing parameter greatly dampens the effect of inter-

nal variability. These smoothed GMST values simulated by each GCM g and for an

emission scenario s (historical or SSP) are denoted by GMSTg,s(t) for a year t and

can be compared to observed GMST values from HadCRUT5 (Morice et al, 2021)

which provides a gridded dataset of GMST anomalies relative to the reference period

1961-1990. For the sake of comparison with absolute GMST values from the GCMs,

a rough estimate of 14◦C can be considered for the observed GMST for the period

1961-1990 (Jones et al, 1999). These observed GSMTs obtained from HadCRUT5 are

also smoothed using cubic splines. Fig. 1a shows the different GMST for the seven

GCMs of our ensemble, for the three emission scenarios. For the period 1850-1900, the

smoothed GMST values GMSTg,s(t) vary from 12.5◦C to 14.5◦C, while HadCRUT5

provides in-between GMST values. These first-order discrepancies can be observed for

the entire period 1850-2100.

In this study, GMST anomalies relative to the pre-industrial period 1850-1900

are considered, in agreement with the IPCC special report on Global Warming of

1.5◦C (IPCC, 2018). These GMST anomalies are referred to as global warming levels

(GWLs) hereafter (or simply warming levels), and denoted by GWLg,s(t) for a GCM

g and a year t. Figure 1b shows GWLg,s(t) for the different GCMs and the different

emission scenarios. By construction, all GWLg,s(t) values are in agreement for the

period 1850-1900. Some models seem to be colder during the period 1950-2000, which

was identified as an overly strong negative aerosol forcing for UKESM1-0-LL (Mulcahy

et al, 2023). For future periods, the warming level reached by the different climate

projections depends on the SSP scenarios and the climate sensitivity of each GCM.
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Fig. 1 Global temperatures from the GCMs and HadCRUT5. (a) Intervals covered by the different
members of each GCM and the corresponding smooth GMST values GMSTg,s(t) in degrees Celsius
(one color by GCM). Raw and smoother HadCRUT GSMT values are shown with dash and plain black
lines, respectively. (b) GMST anomalies (i.e. GWLs) GWLg,s(t)) compared with the pre-industrial
period 1850-1900.

3.2 Statistical assessment of mean changes and uncertainty

sources

Mean changes and associated uncertainty components for the available MME are esti-

mated using an ANalysis Of VAriance (ANOVA) with fixed effects applied to the

ensemble of climate change responses estimated for the different chains. The climate

change response of any given chain is considered to be a gradual and smooth func-

tion of the warming level, the deviations from the climate responses resulting from

internal variability. The different steps are illustrated in Figure S1 in the Supplement

for mean winter temperature in the AR6 reference region ARO (Arctic Ocean), for

which the scenario uncertainty is particularly small despite large projected changes.

The different steps of the approach can be summarized as follows:
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• Climate change response: The climate change response φg,s(GWL) of a GCM g

to an emission scenario s is obtained for different warming levels GWL for each of the

21 GCM/SSP combinations by fitting a trend model using a cubic smoothing spline

to all members available for this GCM/SSP combination. In the same way as for the

GMST estimates, high smoothing parameters (i.e. “equivalent degrees of freedom"

df=6) are chosen to avoid spurious fluctuations in these fitted forced responses (see

raw projections in Figs. S1a-c which can be compared to their respective climate

responses in Figs. S1d-f). Figures S2-S9 in the Supplement show the raw projections

and the corresponding climate responses for 11 illustrative reference regions, for the

different seasons and variables.

• Climate change response: The climate change response φ∗

g,s(GWL) of any given

scenario/GCM combination corresponds to the anomaly of the forced response for

a given warming level GWL, and the forced response corresponding to the ref-

erence warming level of 0◦C, i.e. the warming level considered as zero for the

pre-industrial period 1850-1900. Absolute changes φg,s(GWL)− φg,s(0) are consid-

ered for temperature, and relative changes φg,s(GWL)/φg,s(0)− 1 for precipitation

(Figs. S1g-i).

• Main ANOVA effects: In QUALYPSO, the climate change response of a given

simulation chain (a given emission scenario/GCM combination) is expressed as the

sum of the grand ensemble mean, the main effects corresponding to the considered

GCMs, and emission scenarios, and a residual term, i.e.:

φ∗

i,j(GWL) = µ(GWL) + αg(GWL) + βs(GWL) + ξg,s(GWL), (1)

where

– µ(GWL) is the mean climate change response.

10
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– αg(GWL) and βs(GWL) are the main effects corresponding to the GCM g and

emission scenario s, respectively, for a warming level GWL. They correspond to

the deviations from the mean climate change response µ(GWL) (see illustration

of µ(GWL) and µ(GWL) + αg(GWL) in Fig. S1j).

– ξg,s(GWL) = φ∗

g,s(GWL)− µ(GWL)−αg(GWL)− βs(GWL) is a residual term

which represents the part of the climate change response that cannot be explained

by the sum of the ensemble mean and the main effects. The variance of these

residual terms ξg,s(GWL) will be referred to as "Unexplained variance".

The decomposition (1) can be applied to a MME when different climate simulations

are available for each scenario, GCM, for a warming level GWL. However, as illus-

trated in Fig. 1b, the warming levels reached by the different GCMs vary a lot for

each SSP scenario. As a consequence, the decomposition (1) can only be obtained

up to the maximum warming level shared by all climate simulations, i.e. 2.4◦C for

the SSP2-4.5, 3.4◦C for the SSP3-7.0 and 4.2◦C for the SSP5-8.5. In this study, we

consider a partition of the uncertainties applied to 21 SSP/GCM simulation chains

with the SSP2-4.5, SSP3-7.0, and SSP5-8.5 to obtain the uncertainty related to

GCMs and emission scenarios, for warming levels GWL ranging from 0◦C to 2◦C.

The different terms of Eq. 1 are estimated using a linear model implemented by the

function lm in R ({R Core Team}, 2022). The dispersion (variance) between the main

effects obtained for the seven GCMs and the three SSP scenarios gives an estimate

of the GCM uncertainty and the scenario uncertainty, respectively (Fig. S1j-k), i.e.

VGCM (GWL) = Var(αg(GWL)) and VSSP (GWL) = Var(βs(GWL)). The unex-

plained variance is estimated as Var(ξg,s(GWL)). For each warming level GWL, the

variances VGCM (GWL) and VSSP (GWL) can be tested against Var(ξg,s(GWL))

using F statistics to determine if the GCM and scenario effects can be considered

as significantly different from zero.

11
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The total variance is considered to be the sum of the three variance components,

and the total uncertainty is defined as the standard deviation of the total variance,

i.e.:

TU(GWL) =
√

VGCM (GWL) + VSSP (GWL) + Var(ξg,s(GWL). (2)

In the following, we quantify mean changes and uncertainty sources for each IPPC

WGI reference region and each element of the 1◦ × 1◦ grid. Applications are done on

mean temperature and total precipitation aggregated for the different seasons. In this

study, we focus on the results obtained at the scale of the reference regions for the

winter (DJF) and summer (JJA) seasons but additional results are provided at the 1◦

× 1◦ resolution, and for the spring (MAM) and autumn (SON) seasons (see Section

S5 in the Supplement).

4 Spatial variability of mean changes and related

uncertainties

In this section, we first assess the mean climate change response obtained as the aver-

age of the climate change responses obtained for each of 21 GCM/SSP combinations (7

GCMs X 3 SSPs) and shown in Figs S2-S9 in the Supplement. Figure 2 shows the esti-

mated mean climate change response of temperature and precipitation obtained for a

warming level of 2◦C compared with the pre-industrial period 1850-1900, for both win-

ter and summer seasons. These maps exhibit clear regional contrasts which are very

similar to the results shown in Figures 4.12 and 4.13 of the IPCC AR6 WGI report

(IPCC, 2021) illustrating the projected changes of seasonal mean temperature and

precipitation with the SSP3.7.0 for the period 2021-2040 (which corresponds roughly

to the same warming level of +2◦C). A GWL of +2◦C leads to more than +7◦C

for winter temperature at high latitudes, i.e. the Arctic region and North of Russia.

Land areas generally warm more than oceans and seas. These warming patterns are
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well understood and adequately represented by the climate models (IPCC, 2021). The

mechanisms for the so-called Arctic amplification (e.g. surface-albedo feedback associ-

ated with the loss of sea ice and snow, lapse rate feedback) are for example described

in Section 7.4.4.1 of IPCC (2021). Precipitation changes present large positive pro-

jected precipitation in the Arctic region in winter, and in the North of Africa and the

Middle East in summer (up to +40%), and large negative precipitation changes in

the North of Africa in winter, and Southern Europe, Central and South America, and

South Africa in summer. Similar patterns are obtained in spring and autumn (see Fig.

S13 in the Supplement), the strongest projected changes being obtained in autumn,

up to +10.5◦C and +42% for precipitation changes in the Arctic region. These large-

scale responses are associated with stronger moisture transports, and modulated by

the greater warming over land than ocean, atmospheric circulation responses, and land

surface feedbacks (section 8.4.1.3 IPCC, 2021).

Figure 3 presents the total uncertainty at a warming level of +2◦C and the different

contributions (GCM, scenarios SSP, and unexplained variance) to the total variance

for mean temperature and total precipitation in winter and summer. The total uncer-

tainty of temperature changes is usually smaller than 0.4◦C, except at high latitudes,

especially where mean temperature changes are important (e.g. the Arctic Ocean)

and potentially where the representation of the cryosphere is critical (e.g. Antarctica,

Greenland, Arctic Ocean, Tibet), especially in winter. The total uncertainty of pre-

cipitation changes is also generally small (often less than 5% in ocean regions and less

than 10% in land regions) but strong uncertainties are present in some specific regions

(e.g. Western and North Africa for both seasons). Large uncertainties in arid regions

(e.g. Sahel, Arabian Peninsula) are also obtained in spring and autumn (see Fig. S14

in the Supplement). These unstable projected changes of relative precipitation in dry

regions can often be related to the small values of the seasonal precipitation obtained

for the reference GWL (Bichet et al, 2020).
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Fig. 2 Mean climate change response at a warming level of +2◦C compared with the pre-industrial
period (1850–1900), in winter (DJF) and summer (JJA) for absolute changes of temperature (top
plots) and relative changes of precipitation (bottom plots).

For both variables and seasons, the most important contribution is related to the

disagreement between the GCMs. For 75% of the regions, this contribution exceeds

80% for both temperature and precipitation changes. The contribution of emission

scenario uncertainty is remarkably low for both variables, indicating that the climate

change responses are close between the different SSP scenarios when expressed as a

function of the GWL, in comparison to the GCM uncertainty. Overall, these results

support the assumption that the projected changes of seasonal temperature and pre-

cipitation can be directly related to the global warming level, at the scale of the AR6

reference region. However, this is likely the case here because we assess changes in

atmospheric variables that are less sensitive to the emission pathway (James et al,

2017) in comparison to other regional changes (e.g. sea level, ice cover). This might

also be the result of a specific set of ‘transient’ emission pathways. Using a CMIP5

14



645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

MME, Pendergrass et al (2015) show that the lowest emission scenario (RCP2.6) leads

to higher global precipitation changes per degree in comparison to higher emission sce-

narios (RCP4.5, RCP6.0, RCP8.5). Stabilized warming patterns obtained on longer

periods could also lead to different regional responses if they are impacted by changes

with slow feedbacks (e.g. vegetation changes, ice sheets, Collins et al, 2013).
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Fig. 3 Total uncertainty TU(2) (square root of the total variance) for absolute changes of mean
temperature (tas) and relative changes of total precipitation (pr) in winter (DJF) and summer (JJA)
at a warming level of +2◦C compared with the pre-industrial period (1850–1900). For each reference
region, the pie chart provides the contributions of the different components to the total uncertainty
(GCM in blue, scenario SSP in green, and unexplained variance in yellow), the radius of the pie chart
being a linear function of the total uncertainty. The bottom plots illustrate the dispersion of these
proportions over the different reference regions, for each variable and season.
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Figure S10 in the Supplement shows the same total uncertainty but at the 1◦ × 1◦

resolution. While the spatial patterns are very similar to those shown in Fig. 3, Figure

S10 can show large total uncertainties in some specific regions whereas they are small

for the corresponding reference region. A striking example concerns the winter precipi-

tation changes in the Equatorial Pacific Ocean (EPO) region where the climate change

responses are important for all the GCMs but with different spatial extents (see Fig.

S11 in the Supplement). These projected changes in the inter-tropical convergence

zone (ICTZ) are roughly consistent between the climate models and between CMIP5

and CMIP6 generations. They indicate a narrowing and strengthening of the ICTZ

and greater seasonal precipitation in its core. However, the GCMs do not entirely agree

on the extent of the regions where positive precipitation changes are projected. In par-

ticular, the areas in the ICTZ with winter precipitation increases are smaller with the

GCMs ACCESS-CM2 and UKESM1-0-LL than with the GCMs IPSL-CM6A-LR and

MPI-ESM1-2-LR. Another example of greater uncertainty at a 1◦ × 1◦ resolution con-

cerns temperature changes in the South of Greenland (Labrador Sea), particularly in

winter. The next section describes the GCM uncertainty and details the disagreements

between the changes projected by the different GCMs.

5 Spatial variability of GCM uncertainty

Figure 4 presents the GCM uncertainty and the contribution of each GCM to this

GCM uncertainty for mean temperature and total precipitation changes in winter and

summer. As the GCM uncertainty is the main contributor to the total uncertainty,

these maps are similar to those shown in Fig. 3. The GCM uncertainty is directly

related to the discrepancies between the different GCM main effects. The largest GCM

variances are often due to the effect of one or two GCMs. For example, the contribu-

tion of CanESM5 exceeds 75% in the region TIB (Tibet) in summer and 50% in the

region GIC (Greenland) in winter. Figs. S12 in the Supplement shows the GCMs with
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contributions exceeding 50%, for both variables, in winter and summer. For temper-

ature changes, these maps highlight dominant GCM contributions over large areas:

CNRM-ESM2-1 in the Arctic Ocean in summer, over Antarctica in winter, MIROC6

in most of North America in winter, and in the ITCZ for both seasons. For precipita-

tion changes, the patterns of dominant GCMs are more patchy but it can be noticed,

for example, that MPI-ESM1-2-LR deviates from the other GCMs in North Africa, in

summer.

The boxplots of the GCM contributions in Fig. 4 highlight some GCMs that

contribute more to the GCM uncertainty than others, e.g. CNRM-ESM2-1, and

MIROC6 for winter temperature changes, MIROC6 for summer temperature changes,

CanESM5, MIROC6, and MPI-ESM1-2-LR for winter precipitation changes, and

MIROC6 and MPI-ESM1-2-LR for summer precipitation changes.

Figure 5 presents the GCM effects, i.e. the deviations between the climate change

responses for a GCM and the whole MME. For winter temperature changes, the main

GCM effects highlight strong disagreements between the GCMs in the Arctic Ocean,

with a difference of 5◦C between some GCMs for the same GWL of 2◦C. Models

ACCESS-CM2, CNRM-ESM2-1, and MPI-ESM1-2-LR lead to more limited warm-

ings in the region than MIROC6. Locally, these maps also show the peculiarities of

some GCMs. For example, CanESM5 leads to a much stronger warming than all the

other GCMs in Tibet in summer (up to +15◦C compared to the other GCMs). Large

discrepancies are also obtained in summer over the Southern Ocean which encircles

Antarctica. In this region, CanESM5 and UKEMS1-0-LL warm more than MIROC6

and MPI-ESM1-2-LR in summer.

For precipitation changes, large GCM discrepancies can be found in areas where

large relative changes are obtained. In Africa, MPI-ESM1-2-LR projects strong nega-

tive changes in winter above the equator (see also Fig. S11 in the Supplement) while

the other GCMs provide positive changes at least in some regions (in west and east

17
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Fig. 4 GCM uncertainty
√

VGCM (2) (square root of the variance of the main GCM effects) for
absolute changes of mean temperature (tas) and relative changes of total precipitation (pr) in winter
(DJF) and summer (JJA) at a warming level of +2◦C compared with the pre-industrial period
(1850–1900). For each reference region, the pie chart provides the contributions of the different GCMs
to the GCM uncertainty, the radius of the pie chart being a linear function of the GCM uncertainty.
The bottom plots illustrate the dispersion of these proportions over the different reference regions,
for each variable and season.

Africa for ACCESS-CM2, in Sub-Saharan Africa above the equator for CanESM5).

Similarly, in summer, MPI-ESM1-2-LR leads to the strongest positive changes above

the equator in Africa and the Middle East while the other GCMs provide positive

changes over smaller regions (west Africa for CanESM5, between the Tropic of Can-

cer and the equator for all the other GCMs). At the scale of the reference regions,

these differences can be up to 100% between the GCMs. For example, in the Arabian
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Peninsula, CNRM-ESM2-1, IPSL-CM6A-LR and MPI-ESM1-2-LR lead to large pos-

itive summer precipitation changes at a +2◦C warming level (+86%, +66%, +59%,

respectively) whereas CanESM2 projects negative precipitation changes (-10%).

Fig. 5 Main GCM effects at a 1◦ × 1◦ resolution for absolute temperature and relative precipitation
changes, in winter (DJF) and summer (JJA) at a warming level of 2◦C compared with the pre-
industrial period (1850–1900).

As indicated in Section 1, many studies have shown that targeting a specific warm-

ing level implicitly accounts for the climate sensitivity of the climate models. Smaller

GCM uncertainties are thus expected compared to an uncertainty assessment for a

given future time, as illustrated in the next Section 6. However, Figures 4 and 5 clearly

show that important discrepancies remain between the GCMs for projected changes
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in regional temperature and precipitation. As shown in Figure 5 and Fig. S11 in the

Supplement, regional temperature and precipitation changes are globally similar but

differ locally in terms of intensity and spatial extent, especially in some specific regions:

the Arctic Ocean and the Southern Ocean for temperature changes, Africa above the

equator and the ITCZ area for precipitation changes. Individual evaluations of the

GCMs can help to understand these differences (see, e.g. Sigmond et al, 2023, for the

model CanESM5).

6 Comparison between uncertainty assessments as a

function of global warming and as a function of time

Section 3 presents the method that is applied to obtain uncertainty assessment as a

function of the warming level. Here, we perform additional uncertainty assessments

as a function of time, i.e. the climate responses, and climate change responses are

obtained as a function of time, for the period 1850 to 2100 (the climate response

in 1875 being considered as representative of the reference period 1850-1900). The

different ANOVA outputs (main effects, variances) are then obtained for each year of

this period, for temperature and precipitation changes, and for each reference region.

This comparison between time and warming level uncertainty assessments aims

to illustrate the reduction of uncertainties when climate change is considered at a

given GWL (similarly to other approaches such as pattern scaling and time sampling).

Indeed, it can be expected that removing the discrepancies between the GWL obtained

with different emission scenarios (due to different radiative forcings) and GCMs (due

to the GCM sensitivity) at the global scale translates into a smaller spread of the cli-

mate change responses at the regional scale. This reduction of uncertainties is shown,

for example, by Tebaldi et al (2015) with comparisons of annual average surface tem-

perature and precipitation changes in terms of GWL versus radiative forcings. Here,
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we compare QUALYPSO results obtained for a warming level of +2◦C to the QUA-

LYPSO results obtained for 2038, for which the GWL averaged over all SSP scenarios

and GCMs is the closest to +2◦C (see Figure 1b). The year 2038 is chosen for the sake

of illustration and is deemed illustrative of the climate for the near future, although we

acknowledge the uncertainty concerning the choice of a specific year. Figures 6 and 7

show the SSP and GCM uncertainties (square root of the variances) for the reference

regions when they are obtained for a warming level of 2◦C ("GWL") or the mid-

century ("Time"), for temperature and precipitation changes, respectively. For both

temperature and precipitation changes, SSP uncertainties are lower when uncertainty

assessments are performed as a function of the warming level. As discussed above,

a smaller SSP uncertainty is expected for these two atmospheric variables, and even

becomes non-significantly different from zero for most of the regions (hashed areas),

although it can be noticed that the SSP uncertainty is already small for the "Time"

assessment in 2038. This is not the case for the following decades, the SSP uncertainty

increasing strongly throughout the century (see, e.g., Fig. 1 in Lehner et al, 2020). For

temperature changes, the ratio between the SSP uncertainties with the two approaches

(Ratio Time/GWL) generally exceeds two, and often four in summer, with a median

decrease across the reference regions from 0.09◦C to about 0.02◦C, for both seasons.

For this variable, when applied as a function of the warming level, the climate change

responses are strongly in agreement and do not differ too much from one SSP scenario

to another. The dispersion of the SSP main effects does not increase strongly as a

function of the warming level. When the uncertainty assessments are performed as a

function of time, climate change responses exhibit stronger warming for SSP scenarios

that lead to the highest radiative forcings (e.g. SSP585). For precipitation changes,

the SSP uncertainties are very small (less than 1%) and the difference between "Time"

and "GWL" approaches is not pronounced, with significant decreases (hashed areas

with the "GWL" approach and not with the "Time" approach, and a ratio greater
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than two) only for some specific regions (North-East Asia, East Antarctica, North-

East North America, Greenland in winter, Southern Ocean, Pacific Ocean, South Asia

in summer).

Concerning GCM uncertainties, the comparison between "Time" and "GWL"

approaches leads to similar conclusions: they are smaller by a factor of two with

the warming level approach for temperature changes and are generally smaller for

precipitation changes, especially in some specific regions (high latitudes in winter,

Antarctica in summer). In regions where GCM uncertainties are large (e.g. Sahel,

Arabian Peninsula) in some areas, as discussed in the previous section. When the

uncertainty assessments are performed as a function of time, the ratio "Time/GWL"

is often close to one.
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Fig. 6 Uncertainties (square root of the variances) for absolute changes of mean temperature (tas)
in winter (DJF) and summer (JJA) when they are obtained for a warming level of 2◦C ("GWL") or
the year 2038 ("Time") compared with the pre-industrial period 1850-1900. The third column shows

the ratio between both uncertainties, e.g.
√

VGCM (2038)/
√

VGCM (2) for GCM uncertainties. The
first and third lines show the SSP uncertainty

√
VSSP and the second and fourth lines the GCM

uncertainty
√
VGCM . Hashed regions indicate non-significant variances according to the standard F-

test of the ANOVA.
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Fig. 7 Same as Figure 6 for relative changes of total precipitation (pr).
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7 Discussion and conclusion

This study aims to find the regional climate change response corresponding to a GWL,

irrespective of the corresponding time, using an approach consistent with the “pattern

scaling" and “time sampling" methods. We first estimate the seasonal temperature and

precipitation responses to climate change corresponding to a prescribed GWL, which

vary according to the forcing scenario and the GCM. For temperature changes, this

approach removes a great part of the uncertainty related to the different pathways

taken by the forcing scenario and to the climate sensitivity of each GCM. Concern-

ing precipitation changes, the different uncertainties are only reduced in some specific

regions and seasons (high latitudes in winter, low latitudes in summer). This study

also shows that the relationship between GWLs and local/regional changes is model-

dependent and important uncertainties due to the choice of the GCM remain. For

winter temperature changes in the Arctic Ocean, there is a difference of 5◦C between

the GCMs CNRM-ESM2-1 (colder than the other GCMs) and MIROC6 (warmer

than the other GCMs) for the same GWL of +2◦C. Similarly, for summer precip-

itation changes in the Arabian Peninsula, CNRM-ESM2-1 leads to strong positive

precipitation changes (+86%) compared to CanESM2 (-10%).

As in many previous studies (James et al, 2017), the warming level is character-

ized by the annual average of temperature at the planetary scale. The motivation for

using these warming levels is that they correlate well with the total amount of GHG

emissions which is a main driver of the evolution of the climate system. However, it

can also be debated that the warming level should be obtained at a regional scale since

it is more directly related to common stakes impacted by climate change (agriculture,

forests, water resources, cryosphere, etc.). Indeed, the relationship between the warm-

ing level obtained at a global scale and regional climate features can be altered by

several mechanisms, e.g. local variations in anthropogenic aerosols forcings (Wei et al,

2021; Persad, 2023).

25



1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

While the uncertainties of regional temperature (and precipitation changes to a

lesser extent) are reduced, this study also highlights some important remaining dis-

crepancies between the responses given by the CMIP6 GCMs. According to some

recent studies, the same GCM will not have the same response to the same forcings

depending on the speed of their evolutions because the feedbacks are not equivalent.

For example, Colman and McAvaney (2009); Gregory and Andrews (2016) show that

as climate warms, climate sensitivity weakens, albedo feedback weakens, water vapor

feedback strengthens, and lapse rate feedback increases. The understanding of the cli-

mate sensitivity of the climate models is an important and open research question

that helps the interpretation of the GCM discrepancies (Meehl et al, 2020).

In this study, we do not discuss the important role of internal variability (Lehner

and Deser, 2023) which is often the largest contributor to total uncertainty (Hawkins

and Sutton, 2011; Evin et al, 2021). Figure Fig. S1a-c in the Supplement illustrates

large differences in internal variability from one GCM to another. Therefore, some

GCMs probably under/over-estimate the internal variability over the past period. As

shown in (Shi et al, 2024, Figure S1), the interannual temperature variability is over-

estimated by the CMIP6 GCMs over most of the globe, for both summer and winter

seasons. Furthermore, this interannual variability is generally projected to increase at

all latitudes in summer and at low latitudes in winter. Concerning seasonal precipi-

tation, the interannual and interdecadal variabilities are generally underestimated by

the CMIP6 GCMs (Zhu and Yang, 2021).

MMEs of climate projections are often provided for the next decades using a small

selection of emission scenarios as forcings (e.g. CMIP/CORDEX). These MMEs are

now exploited to assess climate change as a function of the warming level instead of

a future time window. In this study, we show that regional temperature changes are

strongly related to the warming level at the planetary scale as represented by the

GCMs of the climate projections. This statement also holds for precipitation changes
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in some specific regions and seasons (North-East Asia, East Antarctica, North-East

North America, Greenland in winter, Southern Ocean, Pacific Ocean, and South Asia

in summer). We also show that different GCMs can lead to very different regional

changes for the same GWL, and it can be expected that it is also the case for variables

that are more sensitive to the speed of the changes (biophysical systems, glaciers,

ice sheets). In conclusion, these results support the choice of using GWL instead of

time in climate change impact studies, as long as the variables of interest are related

to seasonal temperature, as it will significantly reduce the range of uncertainties for

the projected changes. However, the reduction of uncertainties for variables related to

seasonal precipitation is expected to be marginal and vary regionally and seasonally.
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